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A Comparison of Murine PD-1 and PD-L1
Monoclonal Antibodies

Melissa T. Bu,"® Long Yuan,"? Alyssa N. Klee,*? and Gordon J. Freeman'?

Blockade of the PD-L1/PD-1 pathway has proven to be a broadly effective cancer immunotherapy. FDA-
approved therapeutic monoclonal antibodies (mAbs) targeting the pathway have high affinity, blocking capac-
ity, and low antibody effector activity. A number of rat antimouse mAbs have been used to model cancer
immunotherapy in mouse models. We set forth the amino acid sequences of mAbs specific for mouse PD-1
(29F.1A12) and PD-L1 (10F.9G2) and compare their avidities, blocking capacities, biological activities, and
epitope recognition with other commonly used mAbs. Further manipulation of these sequences should facilitate

better modeling of immunotherapy in mouse models and the generation of novel agents.
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Introduction

D-1 1s AN INHIBITORY RECEPTOR expressed on the cell
surface of activated T cells.” Its ligands, PD-L1 and PD-
L2, can be expressed on antigen presenting cell surfaces and
engage an immunoinhibitory signal through PD-1. In addition,
PD-L1 is often—and PD-L2 less frequently—expressed on
tumor cells and can mediate immune evasion of tumors.?>
PD-L1 can also be widely expressed on nonhematopoietic cells
(e.g., epithelial cells, vascular and lymphatic endothelial cells,
keratinocytes, mesenchymal stem cells, and placental syncy-
tiotrophoblasts) as well as hematopoietic cells (e.g., dendritic
cells, macrophages, T cells, NK cells, B cells, and mast cells).
PD-L2 expression is more restricted to hematopoietic cells.
Blockade of the interaction of PD-1 with its ligands
enhances T cell activation, cytokine production, and cy-
tolysis, and has been translated into effective cancer
immunotherapies. The antimurine PD-L1 monoclonal an-
tibodies (mAbs), 9G2 and MIH6, were first reported in
2002.” Numerous antimurine PD-1 mAbs have also been
reported including 1A12, RMP1-14, and RMP1-30.%7'?
PD-1 and PD-L1 mAbs have demonstrated efficacy in many
murine tumor immunotherapy models."' "' Seven antihu-

man PD-1 and PD-L1 mAbs have been FDA approved as
cancer immunotherapies and have displayed unprecedented
clinical efficacy.!' ="

Nevertheless, numerous questions regarding the PD-1/
PD-L1 pathway and optimal combination therapies remain
unanswered and better experimental modeling would
strengthen the clinical relevance of preclinical investigations.
In this study, we report the variable region sequences of the
PD-1 mAb, 1A12, and PD-L1 mAb, 9G2. These sequences
should facilitate the design of novel engineered forms of the
mADbs for PD-1 pathway investigation.

Materials and Methods
Antibodies and fusion proteins

PD-L1 mAb (9G2, rat IgG2b) was purchased from BioX-
cell (Lebanon, NH).“*'¥ Unconjugated and fluorophore-
conjugated PD-1 mAbs (1A12, rat IgG2a; RMPI1-14, rat
IgG2a; and RMP1-30, rat IgG2b) and PD-L1 mAbs
(10F.9G2, rat IgG2b; MIH6, rat IgG2a) were purchased from
BioLegend (San Diego, CA).®7'*' Similar PD-1 mAb
staining and blocking results were seen using unconjugated
PD-1 mAbs purchased from BioXcell (Supplementary
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Figs. S1 and S2). Isotype control mAbs were purchased from
BioXcell. Mouse (m) PD-L1, PD-L2, CD80, and PD-1 human
IgG1 Fc fusion proteins were purchased from R&D (Min-
neapolis, MN). 10F.5C5 (rat IgG2b) was made as described.®

Cell lines and cell culture

300.19 cells are an Abelson leukemia virus transformed
pre-B cell line. 300-mPD-1 and 300-mPD-L1 transfected cell
lines were previously established in the laboratory'®
through transfection of cDNA constructs in an antibiotic
resistance vector through electroporation and selection in
medium containing the selective agent. 300-mPD-1 and 300-
mPD-L1 were maintained in R10 medium, which consists of
RPMI-1640 medium (Life Technologies, Carlsbad, CA),
10% fetal bovine serum (FBS; Life Technologies), 1% Gluta-
Max (Life Technologies), 1% penicillin—streptomycin
(HyClone, Logan, UT), and 15 pug/mL gentamicin (Life Tech-
nologies), supplemented with 0.05 mM beta-mercaptoethanol
and 5 ug/mL puromycin (InvivoGen, San Diego, CA).

Jurkat T cell lymphoma (TIB-152) cell line was obtained
from the ATCC (Manassas, VA). Jurkat cells expressing
mouse PD-1 (mPD-1-Jurkat) were previously established in
the laboratory. mPD-1-Jurkat cells were maintained in R10
medium supplemented with 1 ug/mL puromycin. Mouse
PD-L1/T-cell receptor (TCR) activator (anti-CD3 scFv)-
CHO cells (BPS Bioscience, San Diego, CA) were main-
tained in F12-K medium (Life Technologies) containing 10%
FBS, 1% Gluta-Max, and 1% penicillin—streptomycin (Hy-
Clone), with 750 ug/mL G418 (Life Technologies), and
500 ug/mL hygromycin (Invitrogen, Carlsbad, CA).

TCR activator (anti-CD3 scFv)-CHO cells (BPS Bioscience)
were maintained in F12-K medium containing 10% FBS, 1%
Gluta-Max, 1% penicillin—streptomycin, with 500 ug/mL hy-
gromycin. Mouse PD-1/nuclear factor of activated T-cells
(NFAT) reporter-Jurkat cells (BPS Bioscience) were maintained
in RPMI-1640 medium containing 10% FBS, 1% Gluta-Max,
1% penicillin/streptomycin, 10mM hydroxyethyl piper-
azineethanesulfonic acid (HEPES) (Life Technologies), 1 mM
sodium pyruvate (Life Technologies), with 500 ug/mL of G418,
and 0.25 pg/mL puromycin. All cells were kept at 37°C with 5%
CO,. ATCC-derived cell lines were cultured no more than 3
months before a new thaw was initiated. All Jurkat and 300.19
parental cell lines and stable transfected cell lines were tested for
mycoplasma and the results were negative using the Venor GeM
Mycoplasma Detection Kit (Sigma-Aldrich, St. Louis, MO).

PD-1 and PD-L1 specificity assay

PD-1 and PD-L1 mAbs were diluted in flow cytometry buffer
(phosphate-buffered saline, 2% FBS, 0.02% sodium azide)
twofold 12 times beginning at 10 ug/mL. The indicated con-
centrations of PD-1 or PD-L1 mAbs were incubated with mPD-
1—transfected Jurkat cells or mPD-L1—transfected 300.19 cells,
respectively, for 30 minutes at 4°C. Cells were washed twice,
and binding was detected using 10 ug/mL phycoerythrin (PE)-
conjugated goat antirat-IgG (Southern Biotech, Birmingham,
AL). Cells were washed and analyzed by flow cytometry. ECsq
and ICsq analyses were conducted using GraphPad Prism.

PD-L1 binding to PD-1 blocking assay

The indicated concentrations of PD-1 or PD-L1 mAb were
preincubated with mPD-1-transfected Jurkat cells or mPD-
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L1-transfected 300.19 cells for 30 minutes at 4°C. mPD-L1,
mPD-L2, mCD80, or mPD-1 human IgG1 Fc fusion protein
was added, and incubation continued for 30 minutes at 4°C.
Cells were washed twice, and binding of fusion protein was
detected with 5 ug/mL Alexa647-conjugated goat antihuman
IgG mAb (multispecies adsorbed; Southern Biotech). Cells
were washed and analyzed by flow cytometry.

PD-1 mAb binding to exhausted T cells

Exhausted T cells were prepared as described.'” CD8*
T cells were purified from C57BL/6-Tg(TcraTcrb)1100M;jb/J
(commonly known as OT-I) mouse splenocytes with mag-
netic beads (Miltenyi Biotec, Auburn, CA). Cells were cul-
tured at a final density of 5x10%/mL in complete medium
(RPMI 1640, 10% FBS, 1% 2mM L-glutamine, 1% 1M
HEPES, 1% 100mM sodium pyruvate, 1% nonessential
amino acids, 1% penicillin—streptomycin, 0.05mM beta-
mercaptoethanol) with interleukin (IL)-15 (5 ng/mL; Pepro-
tech, East Windsor, NJ) and IL-7 (5 ng/mL; Peprotech) with
10 ng/mL OV A (257_264) peptide (Anaspec, Fremont, CA).

Cells were repetitively stimulated with 10ng/mL
OVA 257264y peptide daily for 5 to 7 days. Cells were
checked daily, and when confluent, split, and cultured with
fresh complete medium containing cytokines. For flow
cytometry analysis, cells were first incubated with anti-Fc
receptor antibody clone 2.4G2 (1 ug per well) for 30 minutes
at room temperature. The indicated concentration of PE-
conjugated PD-1 mAb 1A12, RMP1-14, or RMP1-30 or
isotype control mAb was added and incubated for 30 minutes
at 4°C. Cells were washed twice and binding was analyzed
by flow cytometry.

PD-1 mAb epitope blocking assay

Jurkat cells stably transfected with mouse PD-1 were
incubated with the indicated concentrations of 1A12, RMP1-
14, RMP1-30, or isotype control mAbs for 30 minutes at 4°C.
PE-conjugated 1A12, RMP1-14, or RMP1-30 mAb was
added and incubated for 30 minutes at 4°C. Cells were
washed and analyzed by flow cytometry.

PD-L1 mAb epitope blocking assay

300.19 cells stably transfected with mouse PD-L1 were
incubated with the indicated concentrations of 10F.9G2,
MIH6, 10F.5C5, or isotype control mAbs for 30 minutes at
4°C. PE-conjugated 10F.9G2 or MIH6 mAb was added and
incubated for 30 minutes at 4°C. Cells were washed and
analyzed by flow cytometry.

Flow cytometry

Cells were examined using a Fortessa X-20 flow cytometer
and data were analyzed with FlowJo 10.6. In total, 10,000 to
20,000 cells were analyzed. Data were analyzed with Excel
and GraphPad Prism. Graphical, ECsy, and ICs, analyses
were conducted using GraphPad Prism.

T cell activation luciferase reporter assays

Mouse PD-L1-TCR activator-CHO cells and TCR
activator-CHO cells were seeded at 3.75x 10* cells/well in
CHOKI1 growth medium (F12-K medium containing 10%
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FBS; 1% Gluta-Max, and 1% penicillin—streptomycin), in
a white 96-well plate (Corning, Corning, NY) and incubated
overnight at 37°C with 5% CO,. The next day, medium was
removed, and cells were incubated with the indicated anti-
bodies in 75 uL. Jurkat cell medium (RPMI-1640 medium
containing 10% FBS, 1% Gluta-Max, 1% penicillin—
streptomycin, 10 mM HEPES, 1 mM sodium pyruvate) for
30 minutes before the addition of 50,000 mouse PD-1/NFAT
reporter-Jurkat cells/well in 25 uL. Jurkat cell medium.

Where added, the final concentration of CD28 antibody
(clone 9.3; BioXcell) was 1 ug/mL. After 5 to 6 hours, Lu-
ciferase signal was produced by adding 100 uL. ONE-Step™
Luciferase Assay System (BPS Bioscience) according to
manufacturer’s protocol, and luminescence was measured as
relative light units (RLU) in a Luminiskan luminometer (Life
Sciences, Saint Petersburg, FL). NFAT fold induction was
calculated as (Experimental value in RLU — background well
without Jurkat in RLU)/(Isotype control without anti-CD28
in RLU — background well without Jurkat in RLU).
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Results and Discussion

Owing to the widespread use of both PD-L1 mAbs 9G2
and MIH6 in experimental mouse models, we compared the
properties of these two mAbs. The 9G2 and MIH6 antimouse
PD-L1 mAbs similarly bound to mPD-L1-transfected 300.19
cells in a dose-dependent manner with an apparent affinity of
0.54nM (Fig. 1A). In addition, 9G2 and MIH6 were able to
block the binding of PD-1-Fc and CD80-Fc to mPD-LI1-
transfected 300.19 cells in a dose-dependent manner with
similar ICs, of 0.054 and 0.061 pg/mL (Fig. 1B) and 0.025
and 0.051 pg/mL (Fig. 1C), respectively.

We tested the ability of 9G2 and MIH®6 to reverse PD-1-
mediated inhibition of a TCR/CD28 signal (Fig. 1D). CHO
cells expressing cell surface anti-CD3 scFv and mouse PD-
L1 were cocultured with anti-CD28 mAb and Jurkat cells
expressing mouse PD-1 and the firefly luciferase gene under
the control of NFAT response elements. Luciferase activity
was assayed as a measure of T cell activation. Incubation

B 4000- PD-L1 mAb blockade of PD-1-Fc binding to PD-L1 cells
ol v Blocker Binder
= 3000 H_'\,..\‘_‘ - 9G2 PD-1-Fc
g = MIH6  PD-1-Fc
:E 2000 -« ratlgG2a PD-1-Fc
e -+ PD-1-Fc alone
- 1000
e -+ Negative control
1] T T T T 1
0001 001 0.1 1 10 100
Concentration (pg/mL)
D = PD-L1 mAb blockade of PD-L1/PD-1 mediated
£ 6 inhibition of T cell activation
o
L Y
E [ r—_—_:,:—-.\
s
T 44 N -e- |sotype control
c A\ —— MIHE
S 2
2
b= o o o —
=
2 a
o U T T T T 1
Y 100 10 1 0.1 0.01  0.001
Concentration (pg/mL)
30000 5C5 does not block 9G2 and MIHG epitopes Blocker  Epitope
& + 5C5  9G2-PE
5 = 9G2  9G2-PE
£ 00007 -+ ratlgG2b 9G2-PE
g > 5C5 MIHg-PE
E -8 9G2 MIHB-PE
& 10000+ - ratlgG2b MIHE-PE
b
g mAb  Secondary
0 ? T 7 @ 5C5 rat IgG-PE
0.001 001 0.1 1 10 100 ¢ ga2 rat lgG-PE

Concentration (pg/mL)

Staining and blocking capacities of PD-L1 mAbs. Flow cytometric analysis of (A) PD-L1 mAbs 9G2 and MIH6

binding to 300.19 cells expressing PD-L1. Replicates n=4. (B) Capacity of PD-L1 mAbs 9G2 and MIH6 to block binding of
PD-1-Fc to 300.19 cells expressing mPD-L1. Replicates n=3. (C) Capacity of PD-L1 mAbs 9G2 and MIH6 to block binding
of CD80-Fc to 300.19 cells expressing mPD-L1. Replicates n=2. (D) Jurkat NFAT-luciferase reporter T cells expressing
mouse PD-1 were cocultured with CHO cells expressing anti-CD3 scFV and mouse PD-L1 with the indicated PD-L1 or isotype
control mAbs and 1 pg/mL CD28 mAb. Fold induction of NFAT reporter was calculated as described in Methods section.
Replicates n=2. (E) Flow cytometric analysis of unlabeled 9G2, MIH6, and rat IgG2b blockade of 9G2-PE binding or MIH6-
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Replicates n=2. mAbs, monoclonal antibodies; MFI, median fluorescence intensity; NFAT, nuclear factor of activated T-cells.
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with isotype control gave only a low level of luciferase
activity, indicating the dominance of the PD-L1/PD-1
inhibitory signal over TCR/CD3 in this system in the absence
of any blocking agent. PD-L1 mAbs 9G2 and MIH6 similarly
increased luciferase induction in a dose-dependent manner
with a maximal induction of fivefold and ICs values of 0.039
and 0.044 pg/mL, respectively.

Epitope blocking studies showed 9G2 and MIH6 cross-
blocked themselves and each other equally well (Fig. 1E).
These results show that 9G2 and MIH6 are near equivalent
mAbs. To identify an mAb that could be used to analyze
PD-L1 expression in the presence of 9G2 or MIH6, such as in
cells from a cancer immunotherapy experiment, we tested a
number of other PD-L1 mAbs and found that 10F.5C5 was
unable to block binding of 9G2 or MIH6 but had a good
affinity (~3 nM) for PD-L1 (Fig. 1F).

Owing to the widespread use of both PD-1 mAbs 1A12 and
RMP1-14 in experimental mouse models, we compared the
avidities of these two mAbs. The 1A12 antimouse PD-1 mAb
bound to mPD-1-transfected Jurkat cells in a dose-dependent
manner with an apparent affinity of 0.42 nM, while RMP1-14
bound with a much weaker apparent affinity of 28.8 nM
(Fig. 2A). This result was also seen with 1A12 and RMP1-14
mAbs from a different vendor (BioXcell; Supplementary
Fig. S1).
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In case the lower avidity of RMP-1-14 was a consequence
of transfection, we assayed the antibody binding to exhausted
murine CD8 T cells naturally expressing PD-1. Similarly,
1A12 had a higher avidity and maximal fluorescence inten-
sity than RMP1-14 (Fig. 2B). The RMP1-30""” mouse PD-1
mAD had an intermediate avidity and maximal fluorescence
intensity (Fig. 2B).

We tested the ability of 1A12 and RMP1-14 to block the
binding of PD-L1 or PD-L2 Fc fusion proteins to mPD-1.
Both 1A12 and RMP1-14 blocked the binding of PD-1 to PD-
L1 and PD-L2, but consistent with its higher avidity, 1A12
blocked with an ICsq of 0.036 and 0.034 pg/mL for PD-L.1
and PD-L2, respectively, whereas RMP1-14 blocked with an
IC5q of 3.23 and 4.05 pg/mL for PD-L1 and PD-L2, respec-
tively (Fig. 2C). These results show that 1A12 and RMP1-14
both block binding to PD-1 ligands but 1A12 is much more
effective at lower concentrations because of its higher
avidity.

We tested the ability of 9G2, 1A12, RMP1-14, and RMP1-
30 to reverse PD-1-mediated inhibition of a TCR/CD28
signal using CHO cells expressing cell surface anti-CD3 scFv
and mouse PD-L1 and Jurkat cells expressing mouse PD-1
and the firefly luciferase gene under the control of NFAT
response elements (Fig. 2D). PD-L1 mAb 9G2 and PD-1
mADb 1A12 similarly increased luciferase induction in a dose-
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FIG. 2. Staining and blocking capacities of PD-L1 and PD-1 mAbs. Flow cytometric analysis of (A) PD-1 mAb 1A12 and
RMP1-14 binding to Jurkat cells expressing mPD-1. Replicates n=5. (B) 1A12-PE, RMP1-14-PE, RMP1-30-PE, and
isotype control-PE binding to exhausted mouse T cells. Replicates n=2. (C) Normalized capacity of 1A12, RMP1-14, or
isotype control to block binding of PD-L1-Fc or PD-L2-Fc to Jurkat cells expressing mPD-1. Label indicates blocking
agent, followed by binding agent. Replicates n=2. (D) Jurkat NFAT-luciferase reporter T cells expressing mouse PD-1
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control mAbs and 1 pg/mL CD28 mAb. Fold induction of NFAT reporter was calculated as described in Methods section.
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dependent manner with a maximal induction of sevenfold
and ICsy values of 0.28 pg/mL. PD-1 mAb RMPI-14
increased luciferase induction in a dose-dependent manner
with a maximal induction of fivefold and an ICsq value of
1.99 pg/mL.

RMP1-30 did not result in any increase in luciferase
activity, consistent with its reported inability to block the
interaction of PD-L1 with PD-1."? In the absence of a PD-1
signal (CHO cells expressing anti-CD3 scFv without PD-L1),
the mAbs had no effect on luciferase induction, indicating the
antibodies did not transduce a T cell stimulating signal but
worked by blocking the PD-1 inhibitory signal (Supple-
mentary Fig. S3). These results indicate that PD-1 and PD-L1
mAbs can reverse the PD-1 inhibitory signal proportionally
to the extent they block the binding of PD-L1 to PD-1
(compare Fig. 2C and D).

We also investigated epitope overlap between 1A12,
RMPI1-14, and RMP1-30 by assaying binding of each PE-
conjugated PD-1 mAb to Jurkat-mPD-1 cells in the pres-
ence of each unconjugated mAb. 1A12 is able to fully
block 1A12-PE binding (Fig. 3A). RMP1-14 and RMP1-30
mAbs did not block 1A12-PE binding, but increasing
concentrations resulted in an ~50% increase in 1A12-PE
fluorescence intensity (Fig. 3A). Such a result suggests
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cooperative antibody binding where structural changes at
one site increase binding at a second site and have been
observed to collaboratively enhance the activity of
PECAM-1 mAbs."'*!

Binding of RMP1-14-PE was blocked by itself and by each
of the other PD-1 mAbs with an avidity order of 1A12,
RMP1-30, and RMP1-14 (Fig. 3B). RMP1-30 can fully block
itself (Fig. 3C). RMP1-30-PE binding was reduced by ~27%
by low concentrations of 1A12, and this level of blocking
remained constant at higher concentrations of 1A12. RMP1-
14 blocked RMP1-30 binding by ~25% at high concentra-
tions of RMP1-14 (Fig. 3C).

These results support the use of RMP1-30 to stain for
PD-1 in the presence of 1A12 or RMP1-14, such as in an
immunotherapy experiment, but with an ~25% decrease in
fluorescence intensity if the therapeutic mAb is bound to
PD-1. The epitope blocking characteristics of mAbs from
BioLegend and BioXcell were compared and found to be
similar (Supplementary Fig. S2).

The heavy and light (kappa) chain signal and variable
domain amino acid sequences of 9G2 and 1A12 are shown in
Figure 3D and should be useful for further modeling immu-
notherapy and developing novel bispecifics. The sequence of
RMP1-14 has been published.*”
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FIG. 3. Epitope blockade by PD-1 mAbs and antibody sequences. Flow cytometric analysis of (A) 1A12, RMP1-14, and
RMP1-30 blockade of 1A12-PE binding. Replicates n=5. (B) 1A12, RMP1-14, and RMP1-30 blockade of RMP1-14-PE
binding. Replicates n=3. (C) 1A12, RMP1-14, and RMP1-30 blockade of RMP1-30-PE binding. Replicates n=5. (D) Signal
and variable domain amino acid sequences of PD-L1 mAb 9G2 and PD-1 mAb 1A12 heavy and kappa light chains.



PD-1 AND PD-L1 ANTIBODIES

Conclusions

In conclusion, 9G2, MIH6, and 1A12 can stain and block
PD-L1 and PD-1, respectively, with subnanomolar affinity.
RMP1-14 can stain PD-1 and block but with ~ 100-fold lower
affinity. Since both 1A12 and RMP1-14 block and are rat
IgG2a, they would be expected to have the same mechanism of
action but different dose responses.*'*? Since FDA-approved
human PD-1 mAbs all have high affinity and blocking ca-
pacity,?>® mouse tumor immunotherapy experiments with
1A12 more closely model the human therapeutic mAbs.

Combination immunotherapy experiments with RMP1-14
may misestimate the potency of the second agent because of a
less persistent blockade of PD-1. The human therapeutic
antibodies are human IgG4 that has low effector function
while both 1A12 and RMP1-14 are rat IgG2a that has mod-
erate effector function. Even better modeling might be
achieved using syngeneic effectorless Fc versions of 1A12.
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Selection and Cloning Procedure

Spleen cells were fused with Sp2/0 myeloma cells, cloned,
and the hybridomas screened by enzyme-linked immunoas-
say (ELISA) for reactivity with a murine PD-L1 fusion pro-
tein (mPD-L1-mIgG2a), followed by cell surface staining of
murine PD-LI-transfected 300.19 cells and COS cells
and for lack of reactivity with untransfected cells and murine
PD-L2—transfected cells.

Heavy and Light Chains of Immunoglobulin
Rat IgG2b, Kappa

Specificity

Screened by ELISA for reactivity with murine PD-L1-
mlgG2a fusion protein, followed by cell surface staining of
murine PD-L1-transfected 300.19 cells and COS cells and
for lack of reactivity with untransfected cells and murine PD-
L2-transfected cells. Recognizes an epitope in the extracel-
lular domain of mouse PD-L1.

Specific Antigen Identified
Mouse PD-L1 (CD274, B7-H1)
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Availability

Yes No
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Tissue culture supernatant
Ascitic fluid
Hybridoma cells

—r—,—
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Hybridoma has been commercially licensed to many
companies and is broadly available in purified and conju-
gated formats. Sequence provided in associated publication.
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Monoclonal Antibody
29F.1A12
Against mouse PD-1 (CD279)

Antigen Used for Immunization

Plasmid DNA expressing mouse PD-1, and murine PD-1-
mlgG2a fusion protein

Method of Immunization

Female Lewis strain rats (Harlan Sprague—Dawley, Inc.,
Indianapolis, IN) were prepared for cDNA immunization by
injecting 100 pL of 10 mM cardiotoxin (Sigma Chemical
Company, St. Louis, MO) in 0.9% saline into the tibialis
anterior muscle of each hind limb. Five days later, 100 pL of
1 mg/mL purified murine PD-1 ¢cDNA in the pAXEF mam-
malian expression vector in 0.9% saline was injected into
each regenerating anterior tibialis anterior muscle of each rat.
The cDNA immunization was repeated three times at 2- to
3-week intervals. Rats were then immunized with murine
PD-1-mIgG2a fusion protein four times at 2- to 5-week
intervals. Five days before fusion, the rat was immunized
with both cDNA (200 pg) and murine PD-1-mIgG2a fusion
protein.

Parental Cell Line Used for Fusion
Sp2/0

Selection and Cloning Procedure

Spleen cells were fused with Sp2/0 myeloma cells, cloned,
and the hybridomas screened by enzyme-linked immunoas-
say (ELISA) for reactivity with murine PD-1-mIgG2a fusion
protein, developed with goat antirat kappa, followed by
cell surface staining of murine PD-1-transfected 300.19 cells
and COS cells and for lack of reactivity with untransfected
cells.

Heavy and Light Chains of Immunoglobulin

Rat IgG2a, Kappa
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crovascular endothelial cells. Microcirculation 2002;9:
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Specificity

Specific for mouse PD-1 by ELISA for reactivity with
murine PD-1-mlIgG2a fusion protein developed with goat
antirat kappa-HRP. Cell surface staining of murine PD-1-
transfected 300.19 cells and COS cells and for lack of reac-
tivity with untransfected cells. Recognizes an epitope in the
extracellular domain of mouse PD-1.
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Mouse PD-1 (CD279)
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