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Introduction
In the study of cancer mechanisms, the use of next-generation 
sequencing (NGS) to gain valuable biological insights via 
pathway/network analyses is still limited, because of the rela-
tive infancy of these high-throughput, computationally inten-
sive methods. Novel bioinformatics methods offer a means 
to reveal previously unappreciated mechanisms that have 
potential of producing new candidate biomarkers or targets 
for pharmaceutical intervention and, thereby, impact clinical 
practice once fully developed.

Whole transcriptome shotgun sequencing (RNA-seq) 
is a biochemical sequencing method that interrogates the 
entire transcriptome of a sample at a particular time using 
NGS.1 In contrast to studies performed using gene expression 
micro arrays, which target specific sequences for measure-
ment with probes, RNA-seq takes into account greater base 
coverage of DNA sequences as well as the different types of 
RNA (microRNA, transfer RNA, etc.). RNA-Seq accom-
plishes this by amplifying and sequencing the RNA con-
tent of a sample using specific, bar-coded RNA sequences of 
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interest, and aligning the sequences by a reference genome 
to determine the gene biomarkers associated with those 
bar-coded sequences. This high-throughput technique uses 
extensive bioinformatics computation to perform the neces-
sary sequence alignments. The resulting data can be used to 
analyze gene expression, single nucleotide polymorphism, 
alternative splicing, and other genomic studies of interest to 
cancer biology.

Pathway and network analysis via modeling biologi-
cal systems as computable networks is another bioinformat-
ics procedure that converts existing biological information 
on canonical pathways and biological networks into search-
able databases, then uses computing algorithms to find link-
ages between related pathways and networks.1,2 This permits 
researchers to filter the existing literature for useful, non-
obvious relationships between biological systems that can be 
used to build a biological model for a system that can be fur-
ther investigated with experimentation.

Lung cancer is the leading cause of cancer-related 
deaths in the United States and is projected to account for 
an estimated 159,260 deaths in 2014.3 Dissemination of pri-
mary tumor cells to distant structures is the primary event 
that leads to mortality in lung cancer and is a major focus 
of disease staging for prognosis and treatment plan deve-
lopment. Biological processes commonly associated with 
metastasis include: increased tumor cell motility, altered 
cellular adhesion, enhanced capacity for remodeling extra-
cellular matrices for extravasation and intravasation, resis-
tance to apoptosis (cell death), induction of angiogenesis, 
and the ability to thrive in the secondary site.4–8 Many of 
these phenotypic features are consistent with the popular 
concept that metastatic progression in epithelial cancers is 
driven by a type III epithelial-to-mesenchymal transition 
(EMT).9,10 Furthermore, this apparent phenotypic “transdif-
ferentiation” is also associated with the adoption of specific 
“cancer stem cell” characteristics, including capacity for self-
renewal, altered surface antigens, modulation of signaling 
pathways, and transcriptional regulation mechanisms.11–14 
Perhaps the most archetypal example of EMT features is 
the loss of E-cadherin expression and upregulation of alter-
nate adhesion molecules, such as N-cadherin or fibronec-
tin.11,15 Several cell-based models for EMT have emerged 
that are thought to be generally consistent with the biology 
observed in early metastatic events clinically, with the model 
using transforming growth factor-beta (TGF-β) induction 
among the most well studied.16–19 In this study, we leverage 
the strengths of RNA-Seq and pathway/network analysis 
to further refine our understanding of events immediately 
resulting from TGF-β induction as a model of early EMT 
events. Our goal is to identify features that further validate 
this model, identify potentially underappreciated processes 
and/or effector molecules intimate to EMT for future study, 
and reveal novel candidate biomarkers that may have trans-
lational significance.

Materials and Methods
sample collection for the tGF-β model of eMt induc-

tion and phenotypic characterization. H358 and A549 lung 
adenocarcinoma cell lines were purchased from American 
Type Culture Collection (ATCC) and maintained in RPMI 
1640 supplemented with 2.5% fetal bovine serum (FBS) at 
37 °C in a humidified 5% CO2 atmosphere. The cell lines were 
cultured for 3 days in the presence or absence of 10 ng/mL 
TGF-β in RPMI 1640 supplemented with 2.5% FBS. After 
treatments, cells were rinsed in cold PBS, scraped, and total 
RNA isolated using an RNeasy kit (Qiagen GmbH) according 
to manufacturer-suggested protocols. A total of four condi-
tions (H358 ± TGF-β; A549 ± TGF-β) in duplicate provided 
eight samples for analysis.

A parallel set of samples were cultured and treated as 
defined above for western blot analysis of apoptosis-related 
targets. Briefly, cellular lysates were prepared for western blot 
analysis as previously described,20,21 with proteins (30 µg/lane) 
resolved on 10–20% Criterion TGX tris-glycine gels (Bio-
Rad) and transferred to nitrocellulose overnight. Blots were 
probed with the Apoptosis Antibody Sampler Kit (Cell Sig-
naling Technologies) for caspase-3, cleaved caspase-3, PARP, 
cleaved PARP, as recommended, and normalized to β-actin. 
Also, cellular proliferation was evaluated in both the A549 
and H358 cell lines using the MTT Cell Proliferation Assay 
kit (ATCC) using recommended protocols, with cell treat-
ments consistent with those defined above (adapted for the 
96-well format). Each condition was evaluated a minimum of 
two times with triplicate sampling of cellular numbers.

whole transcriptome shotgun sequencing. For each 
of the eight samples, total RNA (1 µg/sample) was processed 
into an NGS-compatible library with the TruSeq RNA sam-
ple preparation kit (Illumina). Poly-A containing mRNA 
was purified by bead selection and the collected mRNA 
sized by heat fragmentation. After conversion to cDNA, bar-
coded adaptors were added by A/T supported ligation, and 
the resulting library was amplified by PCR. Equal amounts 
of each library were pooled and submitted to paired-end 
sequencing on a HiSeq2000 sequencer (Illumina). Clus-
ters were sequenced for 50 bases from each end. The Tophat  
(version 2.0.0) software package was used to align the raw 
RNA-seq data to the human genome and identify individual 
read sequences via barcodes followed by the use of Cufflinks 
(version 2.0.0) to count and convert the read results into genes 
with annotation via Ensembl.

statistical analysis. After the gene expression levels 
were derived, expression values were averaged across four 
lanes, log2 transformed, and subjected to statistical analyses 
using Agilent Genespring GX 12.6. Within each cell line, 
the gene lists were processed using an independent Student’s 
t-test and fold-change analysis to identify upregulated and 
downregulated genes in TGF-β-treated specimens, relative to 
control. A significance threshold of P # 0.05 and absolute fold 
change $2.0 were used to define modulated genes of interest. 
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Venn diagrams were used to illustrate commonality in genes 
being up/downregulated in both cell lines.

Pathway and network analysis. A pathway analysis was 
performed to identify associations of the genes identified in 
our cell line studies with canonical pathways and gene net-
works. The pathways and networks were generated through 
the use of Ingenuity Pathway Analyses (IPA; Ingenuity® Sys-
tems, www.ingenuity.com). Thresholds of two-fold or greater 
in changes in expression and a P-value of 0.05 or less for sig-
nificance were used to filter the findings from the analysis 
with IPA software.

correlation of gene expression to metastasis in clini-
cal lung cancer samples. We identified several studies in 
the literature that used Affymetrix U133a expression arrays 
to assess global transcription levels of genes in primary lung 
cancer tumor tissue associated with metastatic progression 
to the locoregional lymph nodes. In total, 731 raw CEL files 
each representing separate and individual tumors were com-
bined and preprocessed using the RMA preprocessing in the 
SimpleAffy Bioconductor package in the statistical analysis 
package R.22 Once expression estimates were generated, indi-
vidual genes identified as differentially expressed by TGF-β 
treatment in cell lines in the above studies were correlated to 
surrogates of metastatic progression in the clinical specimens 
(ie, using disease stage and/or disease-free survival annotation 
as available) using a Cox regression function in the R survival 
package. Briefly, profiles originated from studies conducted by 
Hoang et al.23 (n = 22), Landi et al.24 (n = 107), Raponi et al.25 
(n = 130), Shedden et al.26 (n = 338), Shah et al.27 (n = 30), and 
Spira et al.28,29 (n = 104).

results
Integrity of the adenocarcinoma cell lines with 

tGF-β induction. Prior to expression profiling, it was crucial 
to demonstrate that culturing conditions and/or treatment with 
TGF-β does not result in widespread apoptosis or unexpected 
changes in cellular proliferation. With this, we evaluated via 
western blot analysis specific indicators of apoptosis induction, 

including caspase-3 and PARP activation (cleavage), to find 
no significant differences in any of the conditions tested 
(Supplementary Fig. 1, panels A and B). We did identify a 
change in cellular proliferation rate upon chronic treatment 
with TGF-β that resulted in a 25.2% and 44.1% lower cellular 
density at day 3 for the H358 and A549 cells (Supplementary 
Fig. 2, panels A and B); however, these observations are not 
unexpected and have been reported by others.30,31 Together 
with the adoption of more fibroblastic morphological features 
upon TGF-β treatment and lack of vacuoles (data not shown), 
we determined the general condition of the cells to be suitable 
for evaluation via RNA-sequencing.

comparison of rNA-seq findings of the tGF-β-
induced adenocarcinoma cell lines. Paired-end whole tran-
scriptome sequencing for two lung adenocarcinoma cell lines, 
H358 and A549, was accomplished as a means to investi-
gate modulations in gene expression and pathway/network 
recruitments resulting from a TGF-β model of EMT. Our 
objective was to identify features that further validate this 
model, identify potentially underappreciated processes and/
or effector molecules intimate to EMT, and reveal novel can-
didate biomarkers that may have translational significance.

After expression values were calculated from the RNA-
seq results, a total of 54,607 candidates with unique Ensembl 
gene IDs were identified. When subjected to filtering with 
statistical (P # 0.05) and fold change ($2) thresholds, the 
H358 cell line was found to have a total of 1177 upregu-
lated genes and 1108 downregulated genes, whereas the 
A549 cell line had 525 upregulated and 167 downregulated 
genes, all relative to the cell line controls (eg, no treatment). 
These general findings are illustrated in Figure 1 as “box and 
whisker” plots. In general, there were fewer downregulated 
genes that met our statistical and fold-change thresholds 
than those upregulated. In comparing the findings of unique 
genes modulated in each cell line, a total of 137 upregulated 
and 32 downregulated genes were shared between H358 
and A549 cell lines with the TGF-β induction, as shown 
in Figure 2 as a Venn diagram. Table 1 shows the top 10 
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Figure 1. Comparison of expression value distributions between samples. Average expression value was calculated in each cell line with or without 
tGf-β treatment (control), respectively.
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1040 137 388
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Figure 2. Intersection of upregulated and downregulated genes across cell lines.

Table 1. top 10 upregulated and downregulated overlapping genes.

GENES p-vALUE-358 FoLd ChANGE-358 p-vALUE-549 FoLd ChANGE-549

Upregulated

CLrn3 ,1.0e-005 4.00 ,1.0e-005 9.00

Ism2 2.51e-005 29.50 4.62e-003 22.25

LPar5 2.98e-004 12.43 1.52e-002 33.54

IQseC3 6.19e-004 5.74 ,1.0e-005 4.00

serPIne1 6.20e-004 344.39 6.93e-003 87.83

maoB 7.06e-004 6.30 1.99e-002 5.05

DoCK2 7.86e-004 59.46 8.69e-003 103.29

CLDn14 9.94e-004 23.36 3.64e-002 15.02

JUN 1.02e-003 6.98 2.00e-002 15.46

CGB 1.22e-003 244.82 4.19e-002 19.37

downregulated

nraP ,1.0e-005 2.00 3.97e-002 42.67

aBCC12 9.88e-004 3.57 4.86e-002 8.06

InHBB 1.70e-003 62.98 4.00e-002 10.02

sstr5 4.46e-003 23.47 4.29e-003 56.03

aPoD 5.42e-003 3.29 3.83e-002 9.40

MUC5B 6.46e-003 64.65 3.10e-002 48.93

fGfBP1 8.58e-003 4.91 2.86e-002 22.37

st6GaLnaC1 1.27e-002 54.91 3.59e-003 118.58

tsPan8 1.58e-002 6.32 4.14e-002 18.44

UGT2B15 1.66e-002 6.86 2.86e-002 33.85

Note: P-value and fold change were obtained by comparing the gene expression level in each cell line with and without TGF-treatment.

common upregulated and downregulated genes in the two 
cell lines after TGF-β treatment. The largest increases in gene 
expression in this model were SERPINE1 in the H358 cells, 
with a 344.39-fold change, and DOCK2 in the A549 cells, 
with a 103.29-fold change (Table 1). Conversely, we observed 
the most dramatic decreases in gene expression in this model 
to be MUC5B in the H358 cells, with a 64.65-fold change, 
and ST6GALNAC1 in the A549 cells, with a 118.58-fold 
change (Table 1). Supplementary Tables 1–4 provide addi-
tional examples of genes up- and downregulated in response 

to the TGF-β treatment, separated by cell line and direction 
of change. Many of these targets are typically associated with 
or considered hallmark biomarkers of the EMT thought to 
mechanistically underlie tumor metastasis in vivo.9,32

biological pathways modulation in the tGF-β-induced 
adenocarcinoma cell lines. We further classified these genes 
with varying expression into different pathways according 
to their canonical pathways using the IPA suite. In order to 
distinguish the relative impact of TGF-β on each cell line, 
we provide a selection of the pathways found to be modulated 
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separated based on being observed in either the A549 cells 
(Table 2) or the H358 cells (Table 3). The main point of 
dissimilarity between the cell lines is that the A549 cells appear 
to be very focused on the activation of pathways associated 

with hepatic fibrosis/hepatic stellate cell activation, human 
embryonic stem cell pluripotency, and granulocyte adhesion 
and diapedesis, which are consistent with active transdifferen-
tiation events that are part of the EMT program.9,32 Although, 
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Figure 3. Canonical pathways for upregulated and downregulated genes. the P-value (-log) and ratio between gene expression with or without TGF-β 
treatment are indicated for the top 10 upregulated and the top downregulated genes across the two cell lines.

Table 2. a selection of modulated ‘canonical pathways’ from the a549 lung adenocarcinoma cell line.

PAThwAYS p-vALUE (-log) RATIo GENES INvoLvEd

Upregulated

Hepatic fibrosis/Hepatic stellate  
Cell activation

6.76e00 7.61e-02 CoL4a1,IGfBP5,mmP2,CoL4a2,PDGfB,  
mYL9,CoL5a1,CoL1a1,IGf2,IGf1, 
CoL6a3,CoL22a1,serPIne1,mmP1, 
tnfrsf11B

Human embryonic stem Cell Pluripotency 3.15e00 5.97e-02 ntf4,s1Pr5,Wnt9a,BmP2,Lef1,LeftY2, 
PDGfB,InHBa

Granulocyte adhesion and Diapedesis 2.97e00 5.08e-02 CLDn4,CXCL12,CCL14,mmP2,CLDn14,  
CLDn9,mmP1,HsPB1,tnfrsf11B

Axonal Guidance Signaling 2.4e00 3.24e-02 efna2,GnG4,aDamts8,ntf4,Wnt9a,BmP2, 
CXCL12,mmP2,PDGfB,mYL9,IGf1,aBLIm3, 
aDam19,sema7a

role of osteoblasts, osteoclasts and Chondro-
cytes in rheumatoid arthritis

2.35e00 4.11e-02 COL1A1,JUN,IGF1,WNT9A,BMP2,LEF1,MMP1, 
IL11,tnfrsf11B

Gα12/13 signaling 2.16e00 5.13e-02 MYL9,JUN,CDH4,TBXA2R,LPAR5,CDH19

Chondroitin sulfate Biosynthesis 2.13e00 7.41e-02 CHST1,XYLT1,HS3ST6,SULT1B1

Leukocyte Extravasation Signaling 2.1e00 4.04e-02 tImP3,CLDn4,rasGrP1,CXCL12,mmP2,  
CLDn14,CLDn9,mmP1

tGf-β signaling 2.08e00 5.75e-02 JUN,BMP2,SERPINE1,INHBA,PMEPA1

Heparan sulfate Biosynthesis 2.04e00 7.02e-02 CHST1,XYLT1,HS3ST6,SULT1B1

downregulated

Guanosine nucleotides Degradation III 2.71e00 1.54e-01 GDa,aCPP

fXr/rXr activation 2.39e00 3.15e-02 nr0B2,nr1H4,sLC51B,aPoD

atherosclerosis signaling 1.6e00 2.44e-02 CCr3,rarres3,aPoD

Phospholipases 1.46e00 3.51e-02 rarres3,PLa1a

serotonin Degradation 1.41e00 3.28e-02 ALDH3A1,UGT2B15

IL-17 a signaling in airway Cells 1.37e00 3.12e-02 MUC5AC,MUC5B

Histamine Degradation 1.19e00 7.69e-02 aLDH3a1

Extrinsic Prothrombin Activation Pathway 1.1e00 6.25e-02 f7

fatty acid α-oxidation 1.1e00 6.25e-02 aLDH3a1

Glutathione Redox Reactions I 1.05e00 5.56e-02 GPX2

Note: P-value (-log) was obtained by comparing the expression level of all genes with and without TGF-β treatment.
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Table 3. a selection of modulated ‘canonical pathways’ from the H358 lung adenocarcinoma cell line.

PAThwAYS p-vALUE(-log) RATIo GENES INvoLvEd

Upregulated

Axonal Guidance Signaling 1.01e01 9.49e-02 aDamts7,PDGfa,ePHB2,fZD1,nGf,ntnG1, efnB2,Wnt7a, 
rHoD,aBLIm3,mras,aDam19,Wnt4,fZD2,rtn4r,ItGa4, 
EFNA2,ITGB1,TUBB3,ADAMTS1,RRAS,WNT9A,ITGA2, 
TUBA4A,ITGA5,VEGFC,L1CAM,MMP2,PDGFB,MYL1,MYL9, 
TUBA1A,ADAM12,GLIS2,TUBB6,NFATC2,SEMA3C,GLI1, 
mmP9,Wnt11,sema7a

Hepatic fibrosis/Hepatic stellate  
Cell activation

6.92e00 1.12e-01 CTGF,FN1,PDGFA,FGFR1,KLF6,SMAD7,VEGFC, MMP2, 
CoL17a1,CoL15a1,mYL1,PDGfB,fGf1, mYL9,CoL16a1, 
CoL1a1,CoL6a3,tnfsf9,serPIne1,CoL9a2,mmP9,tImP2

regulation of the epithelial-mesenchymal  
transition Pathway

4.96e00 9.78e-02 LOX,SNAI2,RRAS,mir-8,WNT9A,FGFR1,SNAI1, DVL1,MMP2, 
fZD1,fGf1,CDH2,Wnt7a,mras,Wnt4,fZD2,mmP9,Wnt11

Human embryonic stem Cell Pluripotency 4.92e00 1.12e-01 PDGFA,FGFR1,WNT9A,DVL1,SMAD7,BMPR2,FZD1,NGF, 
PDGfB,Wnt7a,mras, Wnt4,fZD2, Wnt11

ILK signaling 4.89e00 9.68e-02 ITGB1,SNAI2,FBLIM1,FN1,LIMS2,SNAI1,VEGFC,VIM,MYL1, 
MYL9,TGFB1I1,JUN,RHOD,RPS6KA4, ITGB4,ITGB6, 
mmP9,aCtn1

Leukocyte Extravasation Signaling 4.52e00 9.09e-02 ItGB1,mmP28,ItGa2,tHY1,ItGa5,mmP2,CLDn6,mmP23B, 
rasGrP1,nCf2,CD44,CLDn14,mmP9, aCtn1,ItGa4, 
tImP2,msn,ItK

epithelial adherens Junction signaling 4.48e00 1.03e-01 TUBB3,SNAI2,RRAS,FGFR1,SNAI1,TUBA4A,BMPR2,MYL1, 
FGF1,MYL9,CDH2,TUBA1A,TUBB6,MRAS,ACTN1

p53 signaling 4.44e00 1.22e-01 CDKN2A,JUN,GADD45B,SNAI2,GADD45G,TP73, THBS1, 
CDKn1a,serPInB5,sfn,serPIne2,tP53I3

Integrin signaling 4.41e00 8.91e-02 ItGB1,rras,mYLK2,ItGa2,tsPan2,ItGa5,mYLK,tnK2, 
PDGfB,mYL9,tLn2,rHoD,mras,ItGB4,ItGB6,neDD9, 
aCtn1,ItGa4

downregulated

Cell Cycle Control of Chromosomal 
replication

7.31e00 3.33e-01 mCm5,mCm3,mCm6,mCm2,CDC6,CHeK2,mCm4,DBf4,rPa2

mitotic roles of Polo-Like Kinase 5.46e00 1.67e-01 PLK4,esPL1,CDC20,PttG1,PKmYt1,fBXo5,
CDK1,CHeK2,KIf11,CDC25a,CCnB1

role of CHK Proteins in Cell Cycle  
Checkpoint Control

4.5e00 1.64e-01 PCna,rfC2,rfC5,CDK1,CHeK2,e2f2,CDC25a,
CHeK1,rfC3

GaDD45 signaling 3.73e00 2.63e-01 PCna,CCne2,CCne1,CDK1,CCnB1

Cyclins and Cell Cycle regulation 2.66e00 1.03e-01 CCna2,CCne2,CCne1,CDKn2C,CDK1,e2f2,
CDC25a,CCnB1

Cell Cycle: G2/m Dna Damage  
Checkpoint regulation

2.5e00 1.22e-01 toP2a,PKmYt1,CDK1,CHeK2,CHeK1,CCnB1

Granulocyte adhesion and Diapedesis 2.17e00 6.78e-02 CXCL8,CXCL3,seLL,seLe,mmP7,mmP20,ItGam,nGfr, 
CCL22,CLDn2,CX3CL1,CLDn3

nicotine Degradation III 1.76e00 9.8e-02 CYP2F1,UGT2B17,CYP4B1,CYP2S1,UGT2B15

Wnt/β-catenin signaling 8.83e-01 4.73e-02 soX2,mmP7, sfrP2,nr5a2,fZD5,Wnt8B, 
soX5

Note: P-value (-log) was obtained by comparing the expression level of all genes with and without TGF-β treatment.

it should be noted that the activation of pathways such as 
axonal guidance signaling and leukocyte extravasation signal-
ing is also observed in the A549 cells, but these pathways are  
observed to be much more dominate in the H358 cells, sug-
gesting that both cell lines are going through similar changes 
but potentially to different degrees. The Supplementary results 
further illustrate these commonalities by listing the top 10 
upregulated and top 10 downregulated pathways in the two 
cell lines after TGF-β induction (Supplementary Table 5). 
The most significantly up- and downregulated pathways 

common between the cell lines were Gα12/13 signaling 
and serotonin degradation, respectively. We also observed 
that several canonical pathways with involvement of the 137 
upregulated genes shared between the two cell lines were 
associated with cancer-related elements, such as p53 signal-
ing, HER-2 signaling, and bladder cancer signaling (Supple-
mentary Table 5). The downregulated genes did not seem to 
be associated with cancer pathways in particular, but this is 
expected because of the relatively low number of downregu-
lated genes found.
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Network analysis for cancer-related pathways. The 
up- and downregulated genes used for pathway analysis 
were also used for network analysis to find biological net-
works associated with those genes. Network analysis showed 
strong association of modulated gene expressions with known 
cancer networks, represented by high network scores. These 
scores are negative log-transformed P-values of the prob-
ability that a particular network is associated with the focus 
genes by chance. Table 4 lists a selection of five cancer-related 
gene networks modulated in these two cell lines, with three 
upregulated and the other two downregulated. The network 
of pathways involved in cellular movement, organismal injury 
and abnormalities, and cancer was observed to be significantly 
upregulated with TGF-β treatment (P-value = 5.82 × 10−11), 
as shown in Figure 4. A total of 36 unique genes were involved 
in this network (Table 4), with most of them upregulated in 
both cell lines after TGF-β treatment. Similarly, the network 
of pathways related to cancer, tissue development, and hema-
tological disease was also upregulated (P = 9.54 × 10−7), with 
35 genes involved (Table 4 and Fig. 5). There were 36 genes 
involved in the downregulated network of dermatologi-
cal diseases and conditions, cancer, and neurological disease 
(P-value = 2.84E-14), and 35 genes in the network of cellular 
growth and proliferation, tissue development, and organ 
morphology, which was also observed to be downregulated 

(P-value = 3.81 × 10−6) in the two NSCLC cell lines after 
TGF-β treatment (Table 4, Figs. 6 and 7). As with the pre-
sentation of the findings from the canonical pathway analysis, 
we also separated the findings of the network analysis, listing 
the findings for the A549 cell line separately from the H358 
cell line in order to permit an appreciation of the differences 
in events ongoing in the two cell lines. For the A549 cells, 
the networks commonly known to promote adoption of an 
embryonic phenotype and angiogenesis were noted in addi-
tion to those typically associated with an EMT; however, the 
inactivation of systems controlling cellular morphology and 
cellular adhesion was also observed (Supplementary Table 6). 
The H358 cells appeared to have networks activated that simi-
larly promoted cellular locomotion and angiogenesis, and also 
display the inhibition of cellular proliferation, which is com-
monly associated with EMT (Supplementary Table 7).

Verification of study findings using reposited microar-
ray data from clinical trials. The significant findings from the 
analyses of the cell lines were then contrasted against genes, 
pathways, and networks found to be modulated in a compos-
ite of U133a microarray data originating from seven stud-
ies and representing 731 patient profiles. These findings are 
presented primarily in the Supplementary information, given 
the findings are presented only to corroborate the general 
findings of the TGF-β induction model. Overall, we found 

Table 4. selection of gene networks modulated by tGf-β in both lung adenocarcinoma cell lines.

ToP dISEASES ANd FUNCTIoNS SCoRE FoCUS MoLECULES GENES INvoLvEd*

Upregulated 

Cellular movement, organismal  
Injury and Abnormalities,  
Developmental Disorder

36 18 alp,alpha catenin,Cdh4,CGb (includes others),CoL1A1, 
CoL6A3,collagen,Collagen alpha1,Collagen type I,Collagen  
type III,Collagen type IV, Collagen(s),ERK1/2,FoXS1,ITGb6, 
JInK1/2,Laminin,
LTbP2,mir-27,MMP2,NES,Pdgf (complex),PDGF BB, PdGFb, 
PMEPA1,RASGRP1,SEMA7A,SERPINE1,smad,smad2/3, 
smad2/3-smad4,SNAI1,tgf beta,TGFbI,ThbS1

Cellular assembly and organization,  
Cellular function and maintenance,  
neurological Disease

33 17 ACKR3,Calmodulin,Cg,CGb7,CGb1/CGb2, 
CRLF1,EFNA2,estrogen receptor,FLRT2,focal  
adhesion kinase, GALNT9,Gpcr,GPR87,GPR115,Jnk,LAMC2, 
Lh,LPAR5, mapk,metalloprotease,mmp,NPbwR1,P2RY2,P38  
maPK,Pka,Pkc(s),PLEK2,rac,RAMP1,sos,stat,TbXA2R, 
tnf (family),TSPAN2,Vegf

Cellular movement, Cellular Growth  
and Proliferation, Hematological  
system Development and function

31 16 AbLIM3,AdAM19,akt,Cadherin,caspase,CD3,Cdc2,CdK14, 
CdKN1A,Cofilin,Cyclin A,Cyclin B,Cyclin E, doCK2,e2f, 
f actin,Hsp27,Ige,IL11,Immunoglobulin, JUNb,MAF,mek, 
mir-147,MYL9,PIK3IP1,PPP1R13L, rb,RbP1,rock,SEC14L2, 
TPM1,TSH,Ubiquitin,wNT9A

downregulated

Cancer, Dermatological Diseases  
and Conditions, endocrine  
system Disorders

45 17 akt,ALdh3A1,ap1,APod,AQP3,Creb,CSF2RA,erK, erK1/2, 
FGFbP1,fsH,GdF15,hGF,Ifn,IL1,INhbb,Insulin,Jnk,LCN2, 
mapk,mek,MUC2,MUC5AC,MUC5b,
NFkB (complex),P38 MAPK,Pkc(s), Pro-inflammatory Cytokine, 
RARRES3,SLPI,tCf,TSPAN8, UGT2b15, Vegf,vTCN1

Cellular Development, tissue  
Development, tissue morphology

10 5 ACVR1,ACVR2A,AMPH,CHGA,COL4A1,EXOSC2,FAM3C, 
fam50a,fnta,fsHr,fst,fstL3,GLdN,GoPC,GPrC5a, 
IL33,JUN,LHCGR,MAN2B2,MAP2K4,MAP2K7,NOG,NRAP, 
s1Pr3,sLC52a2,sLC7a1,soX2,SoX21, SSTR5, 
ST6GALNAC1,TAF4B,TGFB1,TNC,UBC,ZDHHC5

Note: *Bold gene names indicate those genes observed modulated in both cell lines in response to tGf-β treatment.
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Figure 4. Upregulated network in cellular movement, organismal injury and abnormalities, and cancer. IPA network legend is on the right side.

Figure 5. Upregulated network in cancer, tissue development, and hematological disease. IPA network legend is on the right side.
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Figure 6. Downregulated network in dermatological diseases and conditions, cancer, and neurological disease. IPa network legend is on the right side.

Figure 7. Downregulated network in cellular growth and proliferation, tissue development, and organ morphology. IPa network legend is on the right side.
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a general agreement of the correlations between the cell line 
data and the clinical dataset, with 24/137 upregulated and 
7/32 downregulated genes being shared between H358 and 
A549 cell lines with the TGF-β induction. More impressive, 
however, is the agreement between significant gene expression 
changes between the clinical dataset (Supplementary Tables 8 
and 9) and either H358 or A549 findings (Supplementary 
Tables 1–4). Further, the agreement at the level of canoni-
cal pathways between the datasets was very striking, with 
“Hepatic Fibrosis/Hepatic Stellate Cell Activation,” “Axonal 
Guidance Signaling,” and “ILK Signaling” being among the 
top hits in both the TGF-β model cell line data (Supplementary 
Table 5) and the clinical datasets (Supplementary Table 10). 
With further examination of these findings, other examples 
of pathway modulations are extremely supportive of paral-
lels between the TGF-β model for EMT and signatures of 
metastatic progression in clinical specimens, such as “Regu-
lation of the Epithelial–Mesenchymal Transition Pathway” 
and “Integrin Signaling” in the clinical datasets and “TGF-β 
signaling” and “HIF1α Signaling” in the cell line-based 
analyses.

discussion
In this study, we report the modulations of multiple genes 
and biological pathways that were up- or downregulated in 
two lung adenocarcinoma cell lines after induction by TGF-β 
treatment. This investigation was accomplished as a means 
to identify features that further validate this model of tumor 
progression, identify potentially underappreciated processes 
and/or effector molecules intimate to EMT for future study, 
and reveal novel candidate biomarkers that may have transla-
tional significance. Our results revealed a reasonable overlap 
in upregulated and downregulated significant genes in the 
two cell lines 358 and 549, indicating that the two cell lines 
share similar genetic characteristics and similar response to 
TGF treatment, and these genes may play similar roles in the 
pathological process. However, a large portion of the up- and 
downregulated genes did not overlap in the two cell lines 
(Fig. 2), which could be explained by the high heterogeneity 
of tumorigenesis in the two cell lines.

Although the “process of metastasis” is an idea well 
implanted in the mindsets of most cancer researchers, metas-
tasis is far from being well understood on a molecular level.33 
Features commonly associated with metastasis for many sci-
entists include the following: increased tumor cell motility, 
altered cellular adhesion molecules, cell cycle arrest, the ability 
to remodel extracellular matrices (esp. basement membranes) 
for extravasation and intravasation, resistance to apoptosis, 
and the ability to thrive in the secondary site.4–8 One of the 
more important aspects of this study was to validate that the 
TGF-β induction model for EMT was consistent with the 
hallmarks of this process. Indeed, at the individual gene level, 
we observed upregulation of many of the molecules associated 
with EMT, including vimentin, N-cadherin, fibronectin-1, 

Snai1 (“snail”), Snai2 (“slug”), and MMP-2 and -9 just to list a 
few, and observed the downregulation of cadherin 13, MUC2, 
MUC5AC, cytokeratin-4, -20, and -40, and collagen type IX 
(as listed in Supplementary Tables 1–4). At the level of the 
canonical pathways and network analysis, we further confirm 
the validity of this model with functional pathways associated 
with cellular locomotion, ability to remodel basement mem-
branes, and altered cellular signaling (including P53) pathways 
all activated, whereas pathways associated with epithelial cell 
signaling and cell cycle control (leading to decreased prolifer-
ation) were silenced. These finding are all consistent with our 
current understanding of EMT. Of interest would be future 
studies examining the changes in gene expression and path-
way/network activation with treatment time. The findings 
reported here were after 3 days of incubation with TGF-β;  
it is unclear if these changes would continue in a manner that 
further supports our understanding of EMT or if other fac-
tors, such as IGF-1, need to be recruited to advance to the 
next phase of this process. Along these lines, we observe an 
over 29-fold upregulation of IGF-1 in the A549 cells as well as 
other components of the “IGF-axis” (eg IGFBP-5 and -7) in 
both cell lines, supporting the idea that IGF-1 is a key media-
tor in EMT in vitro34–37 and tumor progression in vivo.38–41

Multiple molecular signaling pathways have been exten-
sively investigated in lung cancer,12 and the main pathways 
observed here are believed to be able to provide roadmaps 
for therapy of this disease, which include: EGFR/Ras/PI3K 
growth promoting pathways,42–45 p53/Rb/P14ARF growth 
inhibitory pathways,46 and Bcl-2/Bax/Fas/FasL apoptotic 
pathways.47,48 Our observations in this study further pro-
vided valuable clues to understand these pathways in lung 
cancer cells under the circumstance of TGF transformation. 
For example, we found that the p53-signaling pathway was 
upregulated via TGF stimuli in these two cell lines (Table 2). 
Our data also suggested some novel pathways related to tumor 
cell’s response to TGF treatment, which have not been well 
investigated in lung cancer yet.

In this study, we also provided results from a network 
analysis on multiple pathways interaction in the two lung cancer  
cell lines after TGF-β treatment. We demonstrated four cancer- 
related networks significantly up- or -downregulated in the 
two lung cancer cell lines after TGF-β treatment. These net-
works include multiple interacting genes and reciprocal path-
ways, which function in various biological processes including 
cellular movement, growth and proliferation, organismal 
injury and abnormalities, tissue development, hematologi-
cal and dermatological disorders, and cancer development 
(Figs. 4–7). These observations shed light on the understand-
ing of the complex mechanism of lung cancer development as 
well as the potential application of these pathways/networks 
in the treatment of this disease, while further studies are 
warranted in the future. Further, the parallels with data we 
present from the analysis of 731 U133a expression microarray 
profiles are substantial and further legitimize the use of the 
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TGF-β model of EMT induction in the A549 and H358 cell 
lines for future efforts.

conclusion
RNA-seq is a useful tool along with statistical, pathway, and 
network analyses to identify cancer mechanisms. The find-
ings of this study will help direct cell-based studies in our lab 
modeling early events in lung cancer progression and have also 
exposed a range of new candidate biomarkers to be explored for 
potential prognostic value. Our overall objective is to improve 
treatment options and selection methods as a means to one 
day improve clinical outcomes for this dreaded disease.

Author contributions
Conceived and designed the experiments: YD, JAB. Performed 
and/or analyzed the data: OR, YL, RR, JAB, YD. Wrote the 
first draft of the manuscript: YL, HC. Contributed to the writ-
ing of the manuscript: YL, OR, HC, JAB, YD. Agreed with 
manuscript results and conclusions: YL, OR, RR, HC, JAB, 
YD. Jointly developed the structure and arguments for the 
paper: YL, HC, OR, JAB, YD. Made critical revisions and 
approved final version: YL, HC, JAB, YD. All authors reviewed 
and approved of the final manuscript.

Acknowledgments
The authors would like to express their gratitude to  
Dr. Susanne Wagner of Myriad Genetics, Inc. for her efforts 
in acquiring the primary RNA-seq data.

supplementary Material
supplementary table 1. Selection of 50 genes upregu-

lated in the A549 lung adenocarcinoma cell line.
supplementary table 2. Selection of 50 genes down-

regulated in the A549 lung adenocarcinoma cells.
supplementary table 3. Selection of 50 genes upregu-

lated in the H358 lung adenocarcinoma cell line.
supplementary table 4. Selection of 50 genes down-

regulated in the H358 lung adenocarcinoma cells.
supplementary table 5. Top 10 canonical pathway 

modulations for overlapping genes.
supplementary table 6. Selection of gene networks 

modulated by TGF-β in the A549 adenocarcinoma cell lines.
supplementary table 7. Selection of gene networks 

modulated by TGF-β in the H358 adenocarcinoma cell lines.
supplementary table 8. A selection of upregulated 

genes from clinical data set analysis.
supplementary table 9. A selection of downregulated 

genes from clinical data set analysis.
supplementary table 10. A selection of modulated 

canonical pathways from clinical data sets.
supplementary Figure 1. Impact of TGF-β induction 

on apoptosis markers. Evaluation of markers for the induction 
of apoptosis by western blot analysis in both control and 
TGF-β induced cultures over a 5-day interval, as indicated. 

All immunoblots were performed according to manufacturer-
recommended protocols and optimized against positive con-
trol cultures (not shown).

supplementary Figure 2. Impact of TGF-β induction 
on the lung adenocarcinoma cell lines. Cellular pro liferation 
of cell lines was monitored using the MTT Cellular Pro-
liferation Assay Kit (ATCC) using 6,000 cells per well in 
a 96-well plate over 4 days. All cells were adjusted to 2.5% 
serum for 24 hours prior to initiation of the experiment. Upon 
each time point absorbance was measured at 570 nm with a 
Bio-Tek Powerwave XS with normalization to an empty well  
(Note: *P , 0.05; **P , 0.001).

reFereNces
 1. Parikh AP, Curtis RE, Kuhn I, et al. Network analysis of breast cancer progres-

sion and reversal using a tree-evolving network algorithm. PLoS Comput Biol. 
2014;10:e1003713.

 2. Shen Y, Wang X, Jin Y, Lu J, Qiu G, Wen X. Differentially expressed genes  
and interacting pathways in bladder cancer revealed by bioinformatic analysis. 
Mol Med Rep. 2014;10(4):1746–52.

 3. American Cancer Society. Cancer Facts & Figures 2013. Atlanta, GA: ACSCFF; 
2013.

 4. Albini A, Mirisola V, Pfeffer U. Metastasis signatures: genes regulating tumor-
microenvironment interactions predict metastatic behavior. Cancer Metastasis 
Rev. 2008;27:75–83.

 5. Eccles S, Paon L, Sleeman J. Lymphatic metastasis in breast cancer: importance 
and new insights into cellular and molecular mechanisms. Clin Exp Metastasis. 
2007;24:619–36.

 6. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour 
stroma promote breast cancer metastasis. Nature. 2007;449:557–63.

 7. Nuyten DS, Hastie T, Chi JT, Chang HY, Vijver MJ. Combining biological gene 
expression signatures in predicting outcome in breast cancer: an alternative to 
supervised classification. Eur J Cancer. 2008;44(15):2319–29.

 8. Nuyten DS, van de Vijver MJ. Gene expression signatures to predict the develop-
ment of metastasis in breast cancer. Breast Dis. 2006;26:149–56.

 9. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin 
Invest. 2009;119:1420–8.

 10. Yao H, Zhang Z, Xiao Z, et al. Identification of metastasis associated proteins in 
human lung squamous carcinoma using two-dimensional difference gel electro-
phoresis and laser capture microdissection. Lung Cancer. 2009;65(1):41–8.

 11. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition gener-
ates cells with properties of stem cells. Cell. 2008;133:704–15.

 12. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal 
states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9: 
265–73.

 13. Stevenson M, Mostertz W, Acharya C, et al. Characterizing the clinical rel-
evance of an embryonic stem cell phenotype in lung adenocarcinoma. Clin Cancer 
Res. 2009;15:7553–61.

 14. Wu Y, Zhou BP. New insights of epithelial-mesenchymal transition in cancer 
metastasis. Acta Biochim Biophys Sin (Shanghai). 2008;40:643–50.

 15. Moreno-Bueno G, Cubillo E, Sarrio D, et al. Genetic profiling of epithelial cells 
expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 
factors in epithelial-mesenchymal transition. Cancer Res. 2006;66:9543–56.

 16. Capaccione KM, Hong X, Morgan KM, et al. Sox9 mediates Notch1-induced 
mesenchymal features in lung adenocarcinoma. Oncotarget. 2014;5:3636–50.

 17. Drabsch Y, ten Dijke P. TGF-beta signaling in breast cancer cell invasion and 
bone metastasis. J Mammary Gland Biol Neoplasia. 2011;16:97–108.

 18. Tan Y, Xu Q , Li Y, Mao X, Zhang K. Crosstalk between the p38 and TGF-beta 
signaling pathways through TbetaRI, TbetaRII and Smad3 expression in plan-
cental choriocarcinoma JEG-3 cells. Oncol Lett. 2014;8:1307–11.

 19. Toonkel RL, Borczuk AC, Powell CA. Tgf-beta signaling pathway in lung  
adenocarcinoma invasion. J Thorac Oncol. 2010;5:153–7.

 20. Farlow EC, Patel K, Basu S, et al. Development of a multiplexed tumor-associ-
ated autoantibody-based blood test for the detection of non-small cell lung can-
cer. Clin Cancer Res. 2010;16:3452–62.

 21. Patel K, Farlow EC, Kim AW, et al. Enhancement of a multianalyte serum bio-
marker panel to identify lymph node metastases in non-small cell lung cancer 
with circulating autoantibody biomarkers. Int J Cancer. 2010;129:133–42.

 22. Wilson CL, Miller CJ. Simpleaffy: a BioConductor package for Affymetrix 
Quality Control and data analysis. Bioinformatics. 2005;21:3683–5.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Li et al

140 CanCer InformatICs 2014:13(s5)

 23. Hoang CD, Guillaume TJ, Engel SC, Tawfic SH, Kratzke RA, Maddaus MA. 
Analysis of paired primary lung and lymph node tumor cells: a model of metastatic 
potential by multiple genetic programs. Cancer Detect Prev. 2005;29:509–17.

 24. Landi MT, Dracheva T, Rotunno M, et al. Gene expression signature of ciga-
rette smoking and its role in lung adenocarcinoma development and survival. 
PLoS One. 2008;3:e1651.

 25. Raponi M, Zhang Y, Yu J, et al. Gene expression signatures for predict-
ing prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res. 
2006;66:7466–72.

 26. Shedden K, Taylor JM, Enkemann SA, et al. Gene expression-based survival 
prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat 
Med. 2008;14:822–7.

 27. Shah V, Sridhar S, Beane J, Brody JS, Spira A. SIEGE: smoking induced epithe-
lial gene expression database. Nucleic Acids Res. 2005;33:D573–9.

 28. Beane J, Sebastiani P, Liu G, Brody JS, Lenburg ME, Spira A. Reversible and 
permanent effects of tobacco smoke exposure on airway epithelial gene expres-
sion. Genome Biol. 2007;8:R201.

 29. Spira A, Beane JE, Shah V, et al. Airway epithelial gene expression in the diag-
nostic evaluation of smokers with suspect lung cancer. Nat Med. 2007;13:361–6.

 30. Datta R, Halder SK, Zhang B. Role of TGF-beta signaling in curcumin-medi-
ated inhibition of tumorigenicity of human lung cancer cells. J Cancer Res Clin 
Oncol. 2013;139:563–72.

 31. Miyazaki M, Ohashi R, Tsuji T, Mihara K, Gohda E, Namba M. Transforming 
growth factor-beta 1stimulates or inhibits cell growth via down- or up-regula-
tion of p21/Waf1. Biochem Biophys Res Commun. 1998;246:873–80.

 32. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 
2011;144:646–74.

 33. Nguyen DX, Massague J. Genetic determinants of cancer metastasis. Nat Rev 
Genet. 2007;8:341–52.

 34. Kim EY, Kim A, Kim SK, et al. Inhibition of mTORC1 induces loss of 
E-cadherin through AKT/GSK-3beta signaling-mediated upregulation of 
E-cadherin repressor complexes in non-small cell lung cancer cells. Respir Res. 
2014;15:26.

 35. Liao G, Wang M, Ou Y, Zhao Y. IGF-1-induced epithelial-mesenchymal transi-
tion in MCF-7 cells is mediated by MUC1. Cell Signal. 2014;26:2131–7.

 36. Sivakumar R, Koga H, Selvendiran K, Maeyama M, Ueno T, Sata M. Autocrine 
loop for IGF-I receptor signaling in SLUG-mediated epithelial-mesenchymal 
transition. Int J Oncol. 2009;34:329–38.

 37. Walsh LA, Damjanovski S. IGF-1 increases invasive potential of MCF 7 breast 
cancer cells and induces activation of latent TGF-beta1 resulting in epithelial to 
mesenchymal transition. Cell Commun Signal. 2011;9:10.

 38. Ding J, Tang J, Chen X, et al. Expression characteristics of proteins of the insulin- 
like growth factor axis in non-small cell lung cancer patients with preexisting 
type 2 diabetes mellitus. Asian Pac J Cancer Prev. 2013;14:5675–80.

 39. Fidler MJ, Basu S, Buckingham L, et al. Insulin-like growth factor 1 recep-
tor (IGF-1R) and outcome measures in advanced non-small cell lung cancer 
(NSCLC) patients treated with Gefitinib. J Thorac Oncol. 2008;3:S284.

 40. Kim JS, Kim ES, Liu D, et al. Prognostic implications of tumoral expression of 
insulin like growth factors 1 and 2 in patients with non-small-cell lung cancer. 
Clin Lung Cancer. 2014;15:213–21.

 41. Shersher DD, Vercillo MS, Fhied C, et al. Biomarkers of the insulin-like growth 
factor pathway predict progression and outcome in lung cancer. Ann Thorac Surg. 
2011;92:1805–11.

 42. Ding D, Yu Y, Li Z, Niu X, Lu S. The predictive role of pretreatment epider-
mal growth factor receptor T790M mutation on the progression-free survival 
of tyrosine-kinase inhibitor-treated non-small cell lung cancer patients: a meta-
analysis. Onco Targets Ther. 2014;7:387–93.

 43. Eberhard DA, Johnson BE, Amler LC, et al. Mutations in the epidermal growth 
factor receptor and in KRAS are predictive and prognostic indicators in patients 
with non-small-cell lung cancer treated with chemotherapy alone and in combi-
nation with erlotinib. J Clin Oncol. 2005;23:5900–9.

 44. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the 
PIK3CA gene in human cancers. Science. 2004;304:554.

 45. Zhang Q , Dai HH, Dong HY, Sun CT, Yang Z, Han JQ. EGFR mutations 
and clinical outcomes of chemotherapy for advanced non-small cell lung cancer:  
a meta-analysis. Lung Cancer. 2014;85:339–45.

 46. Kaye FJ. RB and cyclin dependent kinase pathways: defining a distinction 
between RB and p16 loss in lung cancer. Oncogene. 2002;21:6908–14.

 47. Zhao C, Gao W, Chen T. Synergistic induction of apoptosis in A549 cells by 
dihydroartemisinin and gemcitabine. Apoptosis. 2014;19:668–81.

 48. Zhu K, Fang W, Chen Y, Lin S, Chen X. TNF-related apoptosis-inducing ligand 
enhances vinorelbine-induced apoptosis and antitumor activity in a preclinical 
model of non-small cell lung cancer. Oncol Rep. 2014;32(3):1234–42.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

