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Introduction
The architecture of mammary glandular epithelium is disrupted 

during the development of preinvasive mammary lesions, such 

as ductal carcinoma in situ (DCIS). Interestingly, the gene ex-

pression profi ling of DCIS lesions indicates that gene products 

that are not known to regulate proliferation or survival are also 

involved in tumor progression (Adeyinka et al., 2002; Ma et al., 

2003; Porter et al., 2003). This suggests that the current mecha-

nistic understanding of preinvasive epithelial tumor growth as 

being the product of excessive proliferation and resistance to 

cell death is incomplete and that there are additional unidenti-

fi ed cellular traits acquired during the preinvasive stage of tu-

mor growth (Porter et al., 2003). A more precise understanding 

of mechanisms that promote the disruption of architecture that 

is observed in preinvasive tumors could assist in diagnosis and 

treatment of human breast cancer (Burstein et al., 2004).

The MAPK extracellular signal–regulated kinases (ERK) 

1/2 are activated by receptor tyrosine kinases that promote the 

development of mammary tumors, and ERK1/2 are hyperacti-

vated in breast cancer patient samples (Sivaraman et al., 1997; 

Mueller et al., 2000; Oh et al., 2001; Pearson et al., 2001). 

ERK1/2 are components of the Raf–MAPK/ERK kinase (MEK) 

1/2–ERK1/2 MAPK module, which is a three-tiered kinase 

 cascade that interprets physiological and pathological signaling 

cues to coordinate cell behavior through the phosphorylation of 

enzymatic and nonenzymatic substrates (Pearson et al., 2001). 

Because the Raf-MEK1/2-ERK1/2 MAPK module is a target of 

receptor tyrosine kinases amplifi ed or overexpressed in breast 

cancer and hormones whose expression is elevated in the pri-

mary tumor microenvironment (Pearson et al., 2001), the regu-

lation of cell behavior by ERK1/2 could be important in the 

phenotypes of mammary epithelial cells in a range of growth 

contexts. Therefore, determining how ERK1/2 regulates mam-

mary epithelial cell behavior is critical to understanding mam-

mary tumorigenesis.

To study epithelial cell behaviors during both organogen-

esis and tumorigenesis, researchers have used three-dimensional 

culture models that reconstitute the form and function of the 

 tissue of interest (Schmeichel and Bissell, 2003). In one of these 

models, individual mammary epithelial cells plated on a recon-

stituted basement membrane (Matrigel) formed hollow polar-

ized growth-arrested spheres of cells, termed acini (Debnath 

et al., 2003). The analysis of cell behavior during the formation 

of these model tissue structures has assisted in deciphering the 

mechanisms of tubule formation and how proliferation and apop-

tosis are balanced to form glandular architecture and maintain 
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tissue homeostasis in mammals (Debnath and Brugge, 2005). 

Furthermore, because epithelial tumors originate in the luminal 

epithelia that form ducts and lobules, organotypic culture mod-

els have also been instrumental in uncovering  biochemical mecha-

nisms and cell biological behaviors believed to be responsible 

for the early stages of mammary tumor development (Bissell and 

Radisky, 2001; Debnath and Brugge, 2005).

To identify mammary epithelial cell behaviors that are 

regulated by ERK1/2, we used real-time imaging as an unbiased 

discovery platform. Because organotypic culture models have 

successfully identifi ed the underpinnings of preinvasive tumor 

growth, the cell behaviors discovered using real-time imaging 

could refl ect the behavior of cells promoted by ERK1/2 in some 

cases of DCIS. Surprisingly, we have discovered that cells in 

polarized MCF-10A mammary epithelial acini become motile, 

but not invasive, through the basement membrane after persis-

tent activation of the ERK1/2 MAPK pathway. This result was 

unexpected because the disrupted architecture of acini was 

 previously believed to be exclusively promoted by increased 

cell proliferation, enhanced cell survival signaling, and the loss 

of cell polarity (Debnath and Brugge, 2005). This noninvasive 

motility was manifested as two previously unrecognized modes 

of ERK1/2-regulated cell motility, underpinned by the activa-

tion of the core cell actomyosin motility machinery, and did not 

require an epithelial–mesenchymal transition (EMT). The mo-

tility of cells was sustained for hours and the acini had an al-

tered architecture reminiscent of DCIS, which suggests that, in 

principle, cells can become motile during the preinvasive stage 

of epithelial tumor growth.

Results
Real-time imaging reveals that ERK1/2 
activation induces noninvasive forms of cell 
motility in epithelial acini
To specifi cally activate the Raf-MEK1/2-ERK1/2 MAPK mod-

ule, we stably expressed a Raf-ER fusion protein in MCF-10A 

mammary epithelial cells. The Raf-ER protein consists of a 

constitutively active mutant of the Raf-1 kinase domain with 

the ligand-binding domain of the estrogen receptor fused to the 

C terminus (McMahon, 2001). The addition of estrogen or es-

trogen receptor antagonists, such as 4-hydroxytamoxifen (4-HT), 

promotes Hsp90 dissociation, which leads to a conformational 

change that increases Raf-ER protein stability and activation of 

MEK1/2 and ERK1/2 (McMahon, 2001). Treatment of Raf-

ER–MCF-10A cells with 100 nM 4-HT was suffi cient to acti-

vate ERK1/2 in monolayer culture and in cultured epithelial 

acini (unpublished data; see Noninvasive motility requires...). 

To achieve single-cell resolution, a GFP-histone fusion protein, 

H2B-GFP, was stably expressed in the Raf-ER–inducible MCF-

10A mammary epithelial cells. This allowed us to track the 

 positions of cells by following the nuclei, and by extension in-

dividual cells, using confocal microscopy. We imaged control 

acini treated with diluent and acini treated with 4-HT to activate 

Raf-ER at 30-min intervals over a 20.5-h period beginning 20 h 

after Raf-ER activation. In control acini, cells did not divide 

or change position (Fig. 1, A and B; and Video 1, available at 

http://www.jcb.org/cgi/content/full/jcb.200706099/DC1). 

In acini expressing activated Raf-ER, cells changed position in 

the x, y, and z planes (Fig. 1, A and B; and Video 2). This was 

a surprising result because previous work has claimed that only 

invasive cells are motile in organotypic culture models in vivo and 

similar to ours (Seton-Rogers et al., 2004). Treatment of MCF-

10A cells expressing only H2B-GFP with 100 nM 4-HT did not 

have any detectable effect on cell behavior (unpublished data).

The ability of cells to move into the lumen, through the 

center of the acinus, and exit on the other side indicates that in-

dividual cells can insert themselves between other cells, a form 

of motility called intercalation, which is observed in Drosophila 
melanogaster epithelia during germ band extension (Irvine and 

Wieschaus, 1994; Munro and Odell, 2002; Schock and Perrimon, 

2002). Cells changed interacting partners (Fig. 1 A, blue- and 

green-circled cells; and Video 3, available at http://www.jcb

.org/cgi/content/full/jcb.200706099/DC1) and moved in oppos-

ing directions (Fig. 1 B, blue- and green-circled cells and total 

movement; and Video 4), which further demonstrates that cells 

are not moving as a collective unit or sheet, such as occurs 

 during wound healing (Friedl and Wolf, 2003; Schneider and 

Haugh, 2006). We did not observe cells detach from the surface 

of the acinar structure, which is surrounded by a basement 

membrane, nor was there invasive growth of cell cords, which is 

often present in invasive ductal carcinomas. This fi nding is con-

sistent with our results using phase-contrast imaging and our 

observation that acini containing activated Raf-ER maintained 

an intact laminin-rich basement membrane (Fig. 2 B). Raf-ER 

induction in MDCK cysts induces the formation of invasive 

 tubules; however, these experiments were performed in cells 

grown in collagen and not in Matrigel (O’Brien et al., 2004). 

Thus, the differential response to Raf-ER induction could be in-

fl uenced by both cell type and growth context. The failure of 

cells to penetrate the surrounding basement membrane is not a 

limitation of the assay because MDA-MB-231 cells form inva-

sive structures under similar conditions (Park et al., 2006). 

To distinguish between motility associated with invasive growth 

through the basement membrane and the motility observed in 

Raf-ER–expressing acini, we will describe the observed cell be-

haviors collectively as noninvasive motility.

Individual cells had different motility rates, as indicated 

by the differences in the distance cells moved (Fig. 1 A, move-

ment between intervals; and Video 2). The maximum rate of 

movement recorded was 360 nm/min. Cells did not necessarily 

achieve their highest speeds over the same time intervals (Fig. 

1 B, total movement; and Video 4). This demonstrates that there 

is not a burst of movement that is propagated across all cells 

and indicates that cells are not moving as a sheet or unit. Cells 

did not sustain rates of over 300 nm/min for more than 1 h. 

 Instead, cells accelerated to a maximum speed and then slowed 

down or stopped over subsequent time intervals (Fig. 1 B, 

4-HT–treated blue-circled cell and total movement; and Video 4). 

The same cell could also begin accelerating again (Fig. 1 B, 

4-HT–treated green-circled cell and total movement; and Video 4). 

Some cells showed no motility over the time frame of the 

 experiment (Fig. 1 B, red-circled cell and total movement; 

and Video 4).



NONINVASIVE CELL MOTILITY • PEARSON AND HUNTER 1557

Interestingly, motile cells displayed two new forms of 

ERK1/2-stimulated cell movement. We found that cells within 

an acinar structure can move around the surface of acini under 

the basement membrane (Fig. 1 A, 4-HT–treated green-circled 

cell; and Videos 2 and 3) and within the luminal space (Fig. 1, 

A [4-HT–treated blue-circled cell] and B [4-HT–treated green- 

and blue-circled cells]; and Videos 2–4). This indicates that cells 

in the surface monolayer of an acinus can intercalate between 

adjacent cells or between these cells and the basement membrane. 

To confi rm these observations, we generated three-dimensional 

reconstructions of control and 4-HT–induced acini. Neither the 

cells on the surface nor cells in the lumen were motile in control 

acini (Fig. 2, A [1 and 2] and B; and Video 5, available at http://

www.jcb.org/cgi/content/full/jcb.200706099/DC1). However, 

the three-dimensional reconstructions confi rmed that in Raf-ER–

stimulated acini, cells were moving around the surface of the acini 

(Fig. 2, A [1] and B; and Video 6) and within the lumen (Fig. 2, 

A [2 and 3] and B; and Video 6). The two types of movement 

are further demonstrated by the rotating the three-dimensional 

reconstructions of control and Raf-ER–induced acini on the z 

Figure 1. Cells become motile but not invasive during the preinvasive disruption of epithelial acinar architecture. (A) Day 10 Raf-ER–H2B-GFP–MCF-10A 
acini were treated with diluent or 100 nM 4-HT in culture media lacking EGF. After 20 h of treatment, acini were imaged at 30-min intervals for 20 h total 
by confocal microscopy (Videos 1 and 2, available at http://www.jcb.org/cgi/content/full/jcb.200706099/DC1). The top rows show equatorial confo-
cal cross sections displaying H2B-GFP, which represents the nucleus, at 90-min intervals. The blue and green circles highlight the position of individual cells 
over time (Video 3). The arrow is added as a fi xed reference point. Bars, 30 μm. The middle rows show the total movement of cells from the start of imag-
ing. When cells depart the plane of view the cell track is removed. The bottom rows show the movement of cells over each 90-min interval. The colored 
scale bar represents increased time. (B) The same acinus shown in A is shown 13.5 h after the start of imaging. Displayed are 1-h intervals over 5 h. The red, 
blue, and green circles track the movement and motility characteristics of individual cells over time (Video 4). The red-circled cell does not move. The blue- 
and green-circled cells move in opposing directions and with different temporal regulation. The cells identifi ed are not the same cells identifi ed in B. 
Bar, 30 μM. The total movement of cells observed over the 5-h time interval is also shown. The colored scale bar represents increased time. The acini dis-
played in A and B are representative of at least 15 independent experiments.
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axis and observing the location of the cell tracks within the acini 

(Fig. 2 C and Videos 7 and 8). Cell track 1 for both the control 

and Raf-ER–induced acini is on the outer surface at either 0 or 

180° of rotation (Fig. 2 C). Cell track 2 in the control acinus and 

cell track 3 in the Raf-ER–induced acinus never appear on the 

top, bottom, or side surfaces of the acini, which demonstrates 

that movement is entirely within the lumen (Fig. 2 C). Cell track 2 

in the Raf-ER–induced acinus begins toward the surface and 

then extends into the interior of the acinus, which demonstrates 

that noninvasive cell movement can be directed away from the 

basement membrane (Fig. 2 C).

The two modes of movement we have demonstrated may 

use distinct molecular mechanisms to generate traction. The 

cells on the surface of acini are in contact with ECM proteins, 

such as laminin V (Fig. 2 D), and the basal surface of cells in 

contact with the ECM contains integrins (Fig. 2 D). Cells track-

ing along ECM proteins, such as the laminin found in the base-

ment membrane on the basal surface of MCF-10A cells, use 

Figure 2. Cells in contact with the ECM or surrounding epithelial cells are motile. (A) Day 10 or later Raf-ER–H2B-GFP acini were treated with diluent or 
100 nM 4-HT for 20 h and then imaged at 30-min intervals for at least 12 h. Shown are three-dimensional reconstructions of a 50-μm span of confocal im-
ages taken over time at 2-h intervals beginning 36.5 h after initial treatment. The acini are being viewed at a slight angle from the bottom up. The top level 
of cells in the acini is not visible in the reconstruction. The colored lines track the movement of selected cells on the outer surface (1) or the lumens (2 and 3) of 
the acini over the course of the experiment (Videos 5 and 6, available at http://www.jcb.org/cgi/content/full/jcb.200706099/DC1). The acini shown 
are representative of three independent experiments. Bars, 40 μm. Length of the side of a square in the grid, 10 μm. The colored tracks and scale bar 
 represent increasing time. (B) The total cell movement from the acini in A is shown. (C) The acini from A at the 44.5-h time point are shown from the side with 
the bottom of the acini at the bottom of the panel and the identical numbered cell tracks. The acini are rotated on the z axis to demonstrate the location of 
cell movement within the acini (Videos 7 and 8). Bars, 40 μm. (D) Day 10 or later Raf-ER–H2B-GFP acini were treated with diluent or 100 nM 4-HT for 
48 h. Acini were then fi xed and immunostained with α–laminin V (green) and α–α6 integrin (red) antibodies and counterstained with HOECHST (blue). 
The acini shown are representative of six independent experiments. Bars, 25 μm. 
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integrin engagement with matrix proteins to supply traction 

(Hynes, 2002), so it is possible that cells on the surface of acini 

in organotypic culture also use integrins to supply traction. 

In contrast, epithelial cells tracking within the luminal space of 

acini are not in contact with the basement membrane. Instead, 

they are only in contact with epithelial cells that also reside in 

the luminal space and the apical surface of the epithelial cell 

monolayer that forms the surface of the acini (Fig. 2 D). Be-

cause integrins do not form contacts with adjacent cells, this 

suggests that when cells move within the lumen, they track 

along adjacent cells and therefore may use a distinct mechanism 

for traction. For example, when border cells migrate during 

D. melanogaster oogenesis, they use homophilic cadherin inter-

actions to supply traction (Niewiadomska et al., 1999). How-

ever, we found that inhibitory antibodies directed toward β1 

integrin or E-cadherin did not infl uence noninvasive motility in 

our model (unpublished data). These results suggest that either 

blockade of additional adhesion molecules is necessary to stop 

noninvasive motility or that the basement membrane surround-

ing Raf-ER–induced acini reduces the effectiveness of these in-

hibitory antibodies.

Noninvasive motility requires acinus-
autonomous ERK1/2 activation
To determine if the induction of noninvasive motility is directly 

related to Raf-ER expression, we used a GFP–Raf-ER fusion 

protein (Fig. 3 A). MCF-10A cells expressing a GFP–Raf-ER 

fusion protein were imaged 5 h after treatment with diluent or 

10 nM 4-HT. As expected, GFP–Raf-ER–MCF-10A cells 

treated with diluent showed no change in appearance as judged 

by phase contrast (Fig. 3 A, top). The outline of individual cells 

can be seen (Fig. 3 A, red circles), which confi rms that cells 

were not moving. GFP–Raf-ER acini treated with 10 nM 4-HT 

showed an increased GFP–Raf-ER signal intensity, which re-

fl ects an increase in stable expression level of the GFP–Raf-ER 

protein (Fig. 3 A, bottom; McMahon, 2001). As GFP–Raf-ER 

expression increased, cells began to move (Fig. 3 A). The acinus 

next to the GFP–Raf-ER–expressing acinus did not have a 

 detectable level of GFP–Raf-ER expression and also did not 

display any change in appearance or cell motility as judged 

by phase contrast, which suggests that motility is acinus auton-

omous. All acini with detectable levels of GFP–Raf-ER had 

motile cells. Identical results were observed when GFP–

Raf-ER–MCF-10A acini were treated with 100 nM 4-HT 

(unpublished data).

We also measured the movement of control and GFP–

Raf-ER induced in sub-confl uent cells grown in monolayer culture. 

Consistent with our results in organotypic culture, individual 

GFP–Raf-ER–induced cells are motile, whereas control cells 

are not (Videos 9 and 10, available at http://www.jcb.org/cgi/

content/full/jcb.200706099/DC1). Although the expression 

level was modest, all motile cells contained detectable levels of 

GFP–Raf-ER. Also, the GFP–Raf-ER cells displayed variations 

in movement that were similar to what we observed in our or-

ganotypic culture model. Cells moved at different speeds and 

directions and in some cases were not motile at all.

Figure 3. Proliferation is not suffi cient to induce noninvasive motility. (A) Day 10 GFP–Raf-ER–MCF-10A acini were treated with diluent or 10 nM 4-HT for 
5 h before imaging. Shown are phase contrast and GFP–Raf-ER at 2-h intervals over 12 h of imaging. The red and blue circles track the movement of indi-
vidual cells over time. Bar, 30 μm. The acini shown are representative of fi ve independent experiments. (B) Day 10 Raf-ER acini were treated with diluent 
or 100 nM 4-HT and grown for an additional 48 h. Lysates were immunoblotted with α–phospho-ERK1/2 (top) and α–ERK1/2 antibodies (bottom). 
(C) Day 10 Raf-ER–H2B-GFP acini were treated with diluent, 100 nM 4-HT, or 100 nM 4-HT and 10 μM U0126 (MEK1/2 inhibitor) simultaneously for 24 h 
and then imaged at 30-min intervals for 20 h total. Shown is the total movement of cells over the 20-h time period and is representative of eight independent 
experiments. The colored scale bar represents increased time. (D) Acini cultured, as described in B, were immunostained with α–phospho-ERK1/2 (green) 
and α–c-Fos (red) and counterstained with HOECHST (blue) to visualize the nuclei. Bar, 20 μM. (E) Day 10 HPV E7–H2B-GFP–MCF-10A acini were imaged 
at 1-h intervals over 18 h total. Shown are the H2B-GFP–labeled nuclei 5 h after imaging began at 1-h intervals over 6 h. The blue and green circles identify 
the daughter cells that have divided into the lumen. The red circle identifi es a representative cell showing no motility. Bar, 30 μm. The total movement of 
cells over the 18 h of imaging is also shown. The acini in D and E are representative of three independent experiments.
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To ensure that the effects of Raf-ER activation were medi-

ated by ERK1/2, we examined their phosphorylation state with 

an antibody that recognizes the dually phosphorylated activated 

form of ERK1/2. By immunoblotting, we found that ERK1/2 

was activated in acini treated with 4-HT and that the level of 

phosphorylation correlated with expression level of the Raf-ER 

protein (Fig. 3 B; unpublished data). Activation of ERK1/2 was 

detected within 2 h of 4-HT treatment and peaked 24 h after 

treatment, which is similar to what has been previously observed 

in MCF-10A cells expressing Raf-ER grown as a monolayer 

(Schulze et al., 2001; unpublished data). Treatment with the 

pharmacological MEK1/2 inhibitor U0126 at the time of Raf-

ER activation blocked induction of noninvasive motility (Fig. 3 C 

and Fig. S1, available at http://www.jcb.org/cgi/content/full/

jcb.200706099/DC1), demonstrating that ERK1/2 activity is re-

quired. Raf-ER or GFP–Raf-ER expression was typically in-

creased in at least 90% of cells within an individual acinar 

structure 48 h after administration of 4-HT (Fig. 3 A; unpub-

lished data) and was refl ected by increased phosphorylation of 

ERK1/2 and the expression of c-Fos, an indirect target of 

ERK1/2 signaling, in at least 90% of cells in acini (Fig. 3 D). 

The stochastic pattern of cell motility is therefore not likely to 

be caused by variations in Raf-ER expression or activity or 

downstream ERK1/2 activation.

Hyperproliferation is not suffi cient to 
promote noninvasive motility
The Raf-MEK-ERK MAP kinase module stimulates prolifera-

tion in a range of contexts, including our organotypic culture 

model (Video 2). To determine whether hyperproliferation is 

suffi cient to induce noninvasive motility, we observed human 

papillomavirus (HPV) E7–H2B-GFP acini in real time. The 

HPV E7 oncoprotein binds to and sequesters Rb, causing exces-

sive proliferation of cells and increased acinar size; however, 

spherical architecture is maintained and cells in the luminal 

space undergo apoptosis (Debnath et al., 2002). In HPV E7, 

acini cell division was readily observed and most frequently ori-

ented into the lumen; however, no cell motility was detected 

(Fig. 3 E, blue-, green-, and red-circled cells and total movement). 

These results demonstrate that the induction of noninvasive 

 motility we observed is a product of ERK1/2 activation and not 

a secondary effect resulting from cell proliferation.

Figure 4. Induction of noninvasive motility does not 
require EMT. (A) Day 10 GFP–Raf-ER acini were treated 
with diluent or 100 nM 4-HT for 48 h, immunostained with 
α–E-cadherin antibody (red), and counterstained with 
HOECHST (blue). The top shows E-cadherin immunostaining 
and the bottom shows the expression level of GFP–Raf-ER. 
Bar, 25 μM. (B) Lysates from acini cultured as described in 
A were immunoblotted with α–E-cadherin and α–α-tubulin 
antibodies. The results are representative of at least three 
independent experiments. (C) Day 10 Raf-ER–H2B-GFP 
acini were treated with diluent or 100 nM 4-HT for 5 d. Ly-
sates were immunoblotted with α–E-cadherin, α-vimentin, 
α–α-tubulin, or N-cadherin and α–α-tubulin antibodies, as 
described in Materials and methods, and are representa-
tive of four independent experiments. (D) The mean nor-
malized expression level of the indicated protein in acini 
treated with 100 nM 4-HT (open bar) compared with con-
trol acini (shaded bar) is shown. The signal intensities for 
each protein were normalized to the expression of α-tubulin 
from the same lysate. The expression of the protein in the 
control acini was set at 100%. The error bars indicate the 
standard deviation. The statistical signifi cance was judged 
by t test with P > 0.05 considered NS.
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Induction of noninvasive motility does not 
require EMT
Carcinoma cells can exploit a preexisting biological program 

called the EMT, which promotes epithelial cell migration during 

development and wound healing. The induction of EMT is suffi -

cient to induce invasive growth when MCF-10A cells are grown in 

organotypic culture (Irie et al., 2005). Because Raf-ER activation is 

suffi cient to promote EMT in MDCK cells (Lehmann et al., 2000), 

we examined whether EMT occurred during the induction of 

non invasive motility. Decreased E-cadherin expression is char-

acteristic of EMT, and we found that E-cadherin expression 

was reduced at cell–cell junctions in GFP–Raf-ER–induced 

acini (Fig. 4 A). Examination of total E-cadherin expression by 

immunoblotting showed that the loss of E-cadherin at adhe sion 

junctions is in part the result of reduced E-cadherin expression 

(Fig. 4, B and D). The expression level of N-cadherin (Thiery, 

2002) is increased in cells that have undergone EMT (Grunert 

et al., 2003). When we examined acini 5 d after Raf-ER activation, 

which is suffi cient to promote EMT in MDCK cells, we found, how-

ever, not only that N-cadherin expression was decreased but also 

that vimentin expression, another characteristic of cells that have 

undergone EMT, was unchanged or reduced (Fig. 4, C and D). 

Collectively, these results indicated that induction of non invasive 

motility was not the result of cells undergoing EMT. We there fore 

next explored the molecular phenotypes that defi ne the changes in 

epithelial character that promote noninvasive motility.

Myosin contraction is necessary for 
noninvasive motility in epithelial acini
Because EMT was not required for the induction of noninvasive 

motility, we had to establish a new set of molecular parameters 

for the induction of motility in epithelial acini. Myosin contrac-

tion is necessary for elongated, amoeboid, and intercalative 

 motility and therefore was likely to be necessary for the various 

forms of noninvasive motility observed in acini expressing acti-

vated Raf-ER (Schock and Perrimon, 2002; Sahai and Marshall, 

2003). At the time of Raf-ER activation, we treated acini with 

blebbistatin, a specifi c inhibitor of myosin II ATPase activity 

(Straight et al., 2003), in an attempt to specifi cally block induc-

tion of motility. When acini were treated with blebbistatin at 

the time of Raf-ER activation, cells did not become motile and 

 disruption of epithelial architecture did not occur (Fig. 5 A). 

Similarly, addition of blebbistatin 48 h after Raf-ER was 

 activated and cells had become motile was suffi cient to block 

existing cell movement (unpublished data). Myosin contraction 

is necessary for disruption of cell–cell adhesion in some sys-

tems (Sahai and Marshall, 2002); however, we found that the 

relocalization of E-cadherin, which took place as a result of 

Raf-ER activation, did not require myosin contraction (Fig. 5 B). 

These results demonstrate an integral role for myosin contraction 

in the induction of motility in mammary epithelial acini. Further-

more, because blebbistatin treatment did not restore E-cadherin–

based cell–cell adhesion, our data suggest that reduced cell 

Figure 5. Myosin contraction is necessary for noninvasive motility. (A) Day 10 Raf-ER–H2B-GFP acini were treated with diluent, 100 nM 4-HT, or 100 nM 
4-HT plus 25 μM blebbistatin for 24 h and then imaged for 16 h every 30 min. Shown are equatorial cross sections of H2B-GFP–labeled nuclei at 2-h intervals. 
The red, blue, and green circles identify individual cells over the time frame displayed. Bar, 25 μm. The total movement of cells over the course of 16 h 
of imaging is also shown. The acini displayed are representative of fi ve independent experiments. (B) Raf-ER–H2B-GFP acini were cultured as described 
in A, immunostained with α–E-cadherin (red), and counterstained with HOECHST (blue). The area within the white squares in the top row is shown immedi-
ately below in the bottom row. The acini shown are representative of at least four independent experiments. Bar, 30 μm.
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adhesion may be necessary, but is not suffi cient for noninvasive 

cell movement.

Phosphorylation of myosin light chain 
(MLC) 2 is a biomarker of motility in 
epithelial acini
Because activation of Raf-ER caused a loss of E-cadherin ex-

pression at sites of cell adhesion, it was possible that cells in 

mammary epithelial acini have a constant propensity to move 

that is restrained by the establishment of cell–cell adhesion. 

Alternatively, the induction of noninvasive motility could require 

activation of motility-stimulating signaling pathways that lie 

dormant in mature acini. Myosin contraction is regulated by 

MLC2, which enhances the ATPase activity of myosin when 

phosphorylated at threonine 18 and/or serine 19 (Friedl and 

Wolf, 2003). Furthermore, phosphorylation of MLC2 on these 

sites is necessary for the motility of several cancer cell lines 

(Sahai and Marshall, 2003). To determine whether there is 

change in the cell motility regulatory program of cells with non-

invasive motility, we examined the phosphorylation state of 

MLC2 by immunostaining with an MLC2 Ser-19 phosphospe-

cifi c antibody. We found that there was an increase in phospho-

MLC2S19 in acini expressing activated Raf-ER, but not in control 

acini or acini overexpressing HPV E7 (Fig. 6 A). The specifi city 

of the antibody used to detect phospho-MLC2S19 was confi rmed 

using a second independent phospho-MLC2S19–specifi c anti-

body (Fig. S2, available at http://www.jcb.org/cgi/content/full/

jcb.200706099/DC1). MLC2 phosphorylation was largely lo-

calized to the basal surface of cells in contact with the basement 

membrane, whereas the phospho-MLC2S19 detected in cells in 

the lumen did not show a polarized localization and they were not 

apoptotic (Figs. 6 B, 7 A, and S2). The localization of phospho-

MLC2S19 therefore mimicked the localization of α6 integrin 

(Fig. 2 B), which suggests that integrins, or other signaling com-

plexes with a polarized localization, play a role in the local regu-

lation of MLC2 phosphorylation.

We also examined the phosphorylation of MLC2 in GFP–

Raf-ER–induced acini and found that the elevation of phospho-

MLC2S19 was specifi c to GFP–Raf-ER–induced acini, which 

confi rmed that the phosphorylation of MLC2S19 was directly 

linked to Raf-ER expression and ERK1/2 activation (Fig. 6 B). 

HPV E7 acini did contain detectable phospho-MLC2S19 in some 

luminal cells (Fig. 6 B); however, this is likely a consequence of 

Rho kinase (ROCK) 1 becoming cleaved by caspases in cells 

that are undergoing apoptosis (Coleman et al., 2001). To ad-

dress whether the concentration of phospho-MLC2S19 we ob-

served was caused by a redistribution of phospho-MLC2S19 or 

an increase in the total amount of phospho-MLC2S19, we quan-

titated the total pixel intensity of phospho-MLC2S19 in control, 

HPV E7, and GFP–Raf-ER–induced acini. We found that there 

was a threefold increase in phospho-MLC2S19 pixel intensity 

within GFP–Raf-ER–induced acini compared with control (Fig. 

6 C), whereas there was only a 1.3-fold increase in phospho-

MLC2S19 pixel intensity within HPV E7 acini (not signifi cant 

by t test). This suggests that there is an increase in the total 

amount of phospho-MLC2S19 within cells with noninvasive 

motility. Consistent with the increase in phospho-MLC2S19 pixel 

intensity we observed, induction of Raf-ER for 48 h in mono-

layer culture promoted a threefold increase in MLC2 phosphor-

ylated on Thr-18 and Ser-19, as determined by immunoblotting 

with antibodies specifi c for dually phosphorylated MLC2 (Fig. 

6 D). This result suggests that both Thr-18 and Ser-19 are phos-

phorylated in Raf-ER–induced acini.

MLC kinase (MLCK) and ROCK1/2 regulate 
MLC2 phosphorylation and noninvasive 
motility
The accumulation of Ser-19 phosphate on MLC2 is dependent 

on both direct phosphorylation by upstream kinases, such as 

MLCK, and on the inhibition of the myosin phosphatase com-

plex mediated through ROCK1/2 phosphorylation (Sahai and 

Marshall, 2003). To investigate the signaling network responsi-

ble for regulating MLC2 phosphorylation in cultured acini, we 

treated cells with pharmacological inhibitors that target MLCK 

(ML-7) and ROCK1/2 (Y27632). MLCK directly phosphory-

lates MLC2 and is a substrate for ERK1/2 (Klemke et al., 1997), 

thus providing a direct link between the Raf-MEK1/2-ERK1/2 

module and MLC2. ROCK1/2 not only phosphorylate MLC2, 

but also phosphorylate the myosin phosphatase–targeting sub-

unit, thereby inhibiting myosin phosphatase (Friedl and Wolf, 

2003). Raf-MEK1/2-ERK1/2 stimulation of ROCK1/2 is likely 

indirect, possibly through the increased production of autocrine 

growth factors (Schulze et al., 2001) that can activate Rho (Ridley 

and Hall, 1992). We treated acini with both ML-7 and Y27632 

and immunostained for phospho-MLC2S19 to determine if MLCK 

and ROCK are required for MLC2 Ser-19 phosphorylation in 

epithelial acini (Fig. 7, A and B). When acini were treated with 

4-HT, phospho-MLC2S19 was detected in 72% of acini, whereas 

only 5% of control acini contained phospho-MLC2S19 (Fig. 7 B). 

Treatment with ML-7 and Y27632 at the time of Raf-ER induc-

tion resulted in phospho-MLC2S19 being detected in just 12% of 

acini (Fig. 7 B). In addition, acini maintained a largely spherical 

architecture despite Raf-ER activation and c-Fos induction, an 

indicator of ERK1/2 activation (Fig. 7 A). Neither inhibitor 

alone reduced phospho-MLC2S19, indicating that MLCK and 

ROCK1/2 can compensate for the loss of activity of the other 

kinase (unpublished data).

Pharmacological inhibitors of protein kinases often inhibit 

more than one kinase, so it is possible that ML-7 and Y27632 

inhibition of kinases in addition to MLCK and ROCK1/2 was 

causal in blocking MLC2 phosphorylation. However, because 

c-Fos expression was unaffected by the inhibitors and because 

neither inhibitor alone had an effect, it is unlikely that the blockade 

of phospho-MLC2S19 is caused by severe nonspecifi c effects 

(Fig. 7 A). ROCK1/2 activity is necessary for disruption of 

E-cadherin adhesion in some cell types (Sahai and Marshall, 2002), 

but we did not observe any effect of combined treatment with 

ML-7 and Y27632 on E-cadherin relocalization in Raf-ER–

expressing acini (Fig. 7 C). Collectively, our results indicate that 

in epithelial acini, ERK1/2 stimulates MLC2 phosphorylation 

through the coordinated activation of MLCK and ROCK1/2.

To determine whether the activities of MLCK and ROCK1/2 

were required for induction of noninvasive motility, we next 

treated acini with ML-7 and Y27632 and quantitated the number 
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of acini containing fi ve or more motile cells. We never detected 

cell motility in all the control acini examined (Fig. 7, D and E; 

and Fig. S3, available at http://www.jcb.org/cgi/content/full/

jcb.200706099/DC1). Activation of Raf-ER resulted in the in-

duction of noninvasive motility in 55% of acini within 24 h 

(Fig. 7, D and E; and Fig. S2). Motility was only detected in 5% 

of acini when the acini were treated with inhibitors of MLCK 

and ROCK1/2 (Fig. 7, D and E; and Fig. S3). Treatment with 

either inhibitor alone had no effect on the induction of non-

invasive motility, which is consistent with the failure of single 

agent treatment to block phospho-MLC2S19 (unpublished data). 

Consistent with MLC2 phosphorylation being required for non-

invasive motility, treatment with blebbistatin reduced the number 

of acini with noninvasive motility to 4% but did not reduce MLC2 

phosphorylation (Fig. 7, A, B, D, and E; and Fig. S3). These 

fi ndings strongly suggest that the phosphorylation of MLC2 

stimulated by MLCK and ROCK1/2 is an integral component 

of the biochemical signal transduction program that promotes 

noninvasive motility.

Discussion
The use of an organotypic culture model to study epithelial cell 

behavior has revealed that there are noninvasive forms of ERK1/2-

induced cell movement. The discovery that epithelial cells can be 

motile in an organotypic culture model with features of DCIS 

suggests that cell motility develops before the detection of inva-

sive growth in some fraction of human breast cancers and that 

this motility can promote the disruption of epithelial architecture. 

Movement of cells similar to that in our culture model can occur 

in vivo, as demonstrated by the observation that MTC nonmeta-

static rat cells injected into the mammary fat pad can move rela-

tive to each other (Wang et al., 2002). Interestingly, because these 

cells were derived from an invasive primary  tumor, the observation 

Figure 6. MLC2 is phosphorylated in cells with noninvasive motility. (A) Day 10 Raf-ER–H2B-GFP or HPV E7–H2B-GFP acini were treated with diluent or 
100 nM 4-HT for 48 h, and then fi xed and immunostained with α–phospho-MLC2S19 (red) and counterstained with HOECHST (blue). The area within the 
white square in the top row is shown immediately below. The acini shown are representative of three independent experiments. Bar, 25 μm. (B) Day 10 
GFP–Raf-ER and HPV E7 acini were treated with diluent or 10 nM 4-HT for 48 h and then fi xed and immunostained with α–phospho-MLC2S19 (red) and 
cyclin B (green) and counterstained with HOECHST (blue). The bottom panels show the level of GFP–Raf-ER expression in the acini depicted in the top panels. 
Bars, 75 μm. The acini shown are representative of four independent experiments. (C) The amount of phospho-MLC2S19 in at least 60 acini cultured as de-
scribed in B was quantitated. The mean fold increase in α–phospho-MLC2S19 pixel intensity compared with control for three independent experiments is 
shown. The error bars represent the standard deviation. The statistical signifi cance was judged by t test with P > 0.05 considered NS. (D) Raf-ER–H2B-
GFP–MCF-10A cells were grown to confl uence in monolayer culture and then cultured in organotypic culture Assay media lacking EGF with or without 
100 nM 4-HT for 48 h. Lysates were immunoblotted with α–phospho-MLC2T18/S19 or α-MLC2 antibodies. The mean fold increase for three independent ex-
periments is shown. The error bar represents the standard deviation. The statistical signifi cance was judged by t test with P > 0.05 considered NS.
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that cells were motile was not considered notable. Because the 

parental MCF-10A cells in our model are not invasive, we can 

defi nitively conclude that the motility we observed is not a by-

product of invasive growth and thus could be acquired during the 

preinvasive stage of tumor development.

The two modes of noninvasive motility observed in our 

organotypic culture model have also been observed during 

branching morphogenesis in salivary gland explants and the 

ureteric bud of the kidney (Shakya et al., 2005; Larsen et al., 

2006). The motility in the salivary gland was halted after acinar 

development, which indicated this was an embryonic cell be-

havior (Larsen et al., 2006). We demonstrate that after formation 

of acini in mammary organotypic culture, dynamic cell move-

ments can be initiated when there is persistent activation of the 

Figure 7. MLCK and ROCK1/2 regulate the induction of noninvasive motility. (A) Day 10 Raf-ER–H2B-GFP acini were treated with diluent, 100 nM 4-HT, 
or 100 nM 4-HT and indicated inhibitor, and then treated again 24 h later. 10 μM ML-7 and 40 μM Y27632 or 25 μM blebbistatin were used. 48 h after 
the fi rst treatment, acini were fi xed and immunostained with α–phospho-MLCS19 (red) and α–c-Fos (green) and counterstained with HOECHST (blue). The 
area within the white squares in the top row displaying the α–P-MLCS19 immunostaining is shown immediately below. The α–c-Fos immunostaining of the 
acini in the top row is shown in the row second from the bottom. Bar, 25 μm. (B) Acini were cultured as described in A and treated as indicated. 10 μM 
U0126 was used. The number of acini containing at least fi ve MLCS19-positive cells was scored. Shown is the mean ± SEM of 100 acini scored in three 
 independent experiments. (C) Raf-ER–H2B-GFP acini were grown as treated as described in A with diluent, 100 nM 4-HT, or 100 nM 4-HT plus 10 μM ML-7 
and 40 μM Y27632. After 48 h total treatment time, acini were fi xed and immunostained with α–E-cadherin (red) and counterstained with HOECHST 
(blue). The area within the white squares is shown in the panels immediately below. Bar, 25 μm. (D) Raf-ER–H2B-GFP acini were cultured as described in A. 
After 24 h of initial treatment, fresh media with diluent, 4-HT, or 4-HT and inhibitor were added 1 h before confocal imaging at 30-min intervals for 20 h 
total. 10 μM U0126 was used. The number of acini containing fi ve moving cells that changed their original position relative to the other cells in the acini 
was scored. Shown is the mean ± SEM of 10 acini scored in three independent experiments. All treatment conditions were assayed in an individual experiment. 
(E) Cells were cultured and imaged as described in D. The total movement of cells over the complete imaging is also shown. All treatment conditions were 
assayed in an individual experiment. The colored scale bar represents increased time.
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Raf-MEK1/2-ERK1/2 MAPK module. Because branching mor-

phogenesis was not the end product of the dynamic movements 

we observed, our results suggest that ERK1/2 can promote cell 

movements in epithelial lesions with a disrupted architecture, 

such as preinvasive epithelial cancers, by engaging a portion of 

the motility program used by epithelial cells during branching 

morphogenesis. Our results also suggest that ERK1/2 activation 

can promote noninvasive motility during embryonic develop-

ment of the salivary gland and the kidney and possibly other epi-

thelial tissues. Considering the fact that noninvasive epithelial 

cell movements contribute to the development of multiple epi-

thelial tissues, such movements are likely to contribute to the 

development of the mammary gland in a manner regulated by 

ERK1/2. Interestingly, both developing MDCK and lung alveolar 

type II cell cysts grown on Matrigel appear to have noninvasive 

cell movements as judged by phase-contrast imaging (Yu et al., 

2007), which supports the hypothesis that acini developing in 

 organotypic culture recapitulate epithelial movements that occur 

during glandular morphogenesis. We are currently investigating 

the role of noninvasive motility in the morphogenesis of mammary 

epithelial acini in both our organotypic culture model and the 

in vivo development of mammary gland.

We have found that myosin contraction is necessary for 

the movement of cells in mammary epithelial acini, which dem-

onstrates that contraction is a critical component of noninvasive 

motility. ERK1/2 regulate contraction by stimulating the phos-

phorylation of MLC2 through MLCK and ROCK1/2. MLCK is 

a known substrate for ERK1/2, thus providing a direct mecha-

nism for activation (Klemke et al., 1997). In contrast, ROCK1/2 

are not known to be ERK1/2 substrates and thus are likely acti-

vated through an indirect mechanism. One possibility is that 

ROCK1/2 are activated by autocrine growth factors because 

persistent ERK1/2 activation promotes the production of heparin-

binding epidermal growth factor, amphiregulin, transforming 

growth factor α, vascular endothelial growth factor, and fi bro-

blast growth factor 2 (McCarthy et al., 1995; Schulze et al., 

2001). ERK1/2 could also induce ROCK1/2 through indirect 

intracellular cross talk, such as the ERK1/2-stimulated tran-

scription of a protein or complement of proteins that stimulate 

the GTP loading of Rho. Interestingly, genetic ablation of Raf-1 

in fi broblasts and keratinocytes causes the mislocalization and 

activation of ROCK2 (Ehrenreiter et al., 2005). Combined with 

our results, these fi ndings suggest that the role of Raf-1 in the 

regulation of ROCK1/2 is cell type specifi c. It is also possible 

that Raf-1 suppresses, whereas B-Raf, through ERK1/2, pro-

motes the activation of ROCK1/2. Also of note is the fact that 

pharmacological and genetic inhibition of MEK1/2 increases 

MLC2 phosphorylation in a ROCK1/2-dependent manner in 

endothelial cells (Mavria et al., 2006). Therefore, determining 

exactly how cell type and genetic context infl uence whether 

ERK1/2 activity promotes or reduces ROCK1/2 activity will be 

necessary to determine how to effectively use pharmacological 

inhibitors of the Raf-MEK1/2-ERK1/2 MAPK cascade.

Mammary epithelial cells are endowed with a plasticity 

that allows for the expansion of the mammary glandular epithe-

lium during puberty and pregnancy. Our results demonstrate 

that there is a molecularly defi ned point within the range of 

 epithelial plasticity where cell motility signaling pathways are 

activated and cell–cell adhesion is compromised. These molecular 

changes promote the movement of mammary epithelia along the 

surface and within the lumen of the mammary glandular epithe-

lium in a manner dependent on actin-myosin contraction; how-

ever, this movement is not suffi cient for invasion through the 

surrounding basement membrane. Whether epithelial cells with 

noninvasive motility require a reactive stroma or if further alter-

ations to the tumor genome are necessary for tumors to become 

invasive is an area for future research that we are investigating.

Materials and methods
Cell culture and reagents
MCF-10A human mammary epithelial cells were obtained from American 
Type Culture Collection and were cultured in DME/F12 (Invitrogen) supple-
mented with 5% horse serum (Invitrogen), 10 μg/ml insulin (Research Di-
agnostics, Inc), 20 ng/ml epidermal growth factor (Research Diagnostics, 
Inc.), 500 ng/ml hydrocortisone (Sigma-Aldrich), 100 ng/ml cholera toxin 
(EMD), and ciprofl oxacin (Cellgro). The growth factor–reduced Matrigel 
(BD Biosciences) used in these experiments had protein concentrations be-
tween 10 and 12 mg/ml. 4-HT, U0126, ML-7, Y27632, and blebbistatin 
were obtained from EMD. Antibodies used were c-Fos, vimentin, MLC2 
(sc-28329 and sc-15370), and ERK2 (Santa Cruz Biotechnology, Inc.); 
α6 integrin and laminin V (Chemicon); phosphorylated MLC2S19 (mouse), 
phosphorylated MLC2S19 (rabbit), phosphorylated MLC2T18/S19 (Cell Sig-
naling Technology); E- and N-cadherin (BD Biosciences); and phosphorylated 
ERK2(T183, Y185) and α-tubulin (Sigma-Aldrich). Secondary anti bodies la-
beled with Alexa fl uor 488, 568, 647, and 680 (Invitrogen) and IRDye800 
(Rockland Immunochemicals) were used. HOECHST 33342 was obtained 
from EMD.

Retroviral vectors and cell lines
The vector pCLNRX–H2B-GFP was a gift from E.T. Wong and G. Wahl 
(Salk Institute, La Jolla, CA), pBABE–Raf-ER was gift from M. White and 
R. Bumeister (University of Texas Southwestern Medical Center, Dallas, TX), 
pBABE–GFP–Raf-ER was a gift from M. McMahon (University of California, 
San Francisco, San Francisco, CA), and pCLXSN-HPV E7 was a gift from 
D. Galloway (Fred Hutchinson Cancer Research Center, Seattle, WA). 
Vesicular stomatitis virus G–pseudotyped virus was generated by transfecting 
HEK293 cells that stably express Gag and Pol with vesicular stomatitis 
virus G and pBABE–Raf-ER, pBABE–GFP–Raf-ER, pCLNRX–H2B-GFP, or 
pCLXSN–HPV E7. Viral supernatant was collected 48–96 h after transfec-
tion, fi ltered through a 0.4-μm fi lter, and supplemented with 4 μg/ml poly-
brene (Sigma-Aldrich). 500,000 MCF-10A cells plated in a 10-cm plate 
were infected. Cells were cultured in 500 ng/ml puromycin or 400 μg/ml 
G418 to create stable pBABE–Raf-ER–MCF-10A or pCLXSN-HPV E7 cells. 
To create Raf-ER–H2B-GFP cells, stable pools of pBABE–Raf-ER–MCF-10A 
cells were infected with pCLNRX–H2B-GFP and selected with 400 μg/ml 
G418. To generate HPV E7–H2B-GFP cells, stable pools of pCLXSN–HPV 
E7–MCF-10A cells were infected with pCLNRX–H2B-GFP. Because the HPV 
E7–MCF-10A cells were already G418 resistant, we did not perform fur-
ther drug selection. The infection rate with pCLNRX–H2B-GFP typically ex-
ceeds 80% of cells, therefore providing a suffi cient population of acini for 
real-time imaging. We did not observe any difference in HPV E7 acini that 
expressed H2B-GFP and those that did not, as judged by acini diameter or 
staining for markers of proliferation or phospho-MLC2. The GFP–Raf-ER–
MCF-10A cells were not selected to allow direct comparison of acini that 
expressed GFP–Raf-ER and those that did not.

Three-dimensional morphogenesis assay
MCF-10A cells were plated in 8-well chamberslides (Falcon) for immuno-
fl uorescence staining or 8-well chambered coverglass (Thermo Fisher Sci-
entifi c) for real-time imaging. First, a solid layer of Matrigel was plated into the 
wells. Then, 5,000 cells resuspended in 2% Matrigel and Assay media 
(Phenol red–free DME/F12 supplemented with 2% horse serum, 10 μg/ml 
insulin, 1 ng/ml EGF, 500 ng/ml hydrocortisone, 100 ng/ml cholera toxin, 
and cyprofl oxacin (Cellgro) were added to the plate. On days 4 and 8, the 2% 
Matrigel assay media mixture was replaced. On day 10, Raf-ER–H2B-GFP 
cultures were treated with a combination of vehicle, 100 nM 4-HT, or 100 nM 
4-HT plus inhibitor in 2% Matrigel assay media mixture without EGF. 
GFP–Raf-ER acini were treated with 10 nM 4-HT. HPV E7–H2B-GFP cultures 
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were refreshed with assay media containing 1 ng/ml EGF on day 10 and 
before imaging. When inhibitors were used and for real-time imaging ex-
periments, the media was refreshed within 24 h.

Immunoblot analysis
12,000–15,000 acini were lysed in RIPA buffer supplemented with prote-
ase and phosphatase inhibitors and protein levels normalized using Cyto-tox 
One (Promega) according to the manufacturer’s instructions. Immunoblots 
were visualized using an infrared scanner (Odyssey; LI-COR). Quantitation 
of protein signal was performed using Odyssey software. For E-cadherin, 
N-cadherin, and vimentin quantitation, protein band intensity for each gel 
lane was normalized to the level of α-tubulin expression in the same lane. For 
phospho-MLC2T18/S19 quantitation, the intensity of the phospho-MLC2T18/S19 
signal was divided by the intensity of the MLC2 signal to obtain a normal-
ized phospho-MLC2T18/S19 value. The normalized phospho-MLC2T/18/S19 
from the 4-HT–treated cells was divided by the normalized value from the 
control cells to determine the fold increase.

Immunofl uorescence staining
Cultures were fi xed in 2% formalin (Sigma-Aldrich) in PBS for 20 min, per-
meabilized with 0.5% Triton X-100 in PBS for 10 min at room temperature, 
immunostained as previously described (Debnath et al., 2003), and mounted 
using ProLong Gold antifade reagent (Invitrogen). All steps were performed 
at room temperature. Images were acquired using Leica software in TIFF 
format on a confocal microscope (SP2 AOBS; Leica) with either 20×/0.7 
(HC PL APO lbd.BL; Leica) or 63×/1.4 (HCX PL APO lbd.BL; Leica) objec-
tives. Images were arranged using Photoshop 7.0 (Adobe) and Canvas 8 
(Deneba Systems). Quantitation of the fold increase in phospho-MLC2 
pixel intensity was performed using Leica software. The mean pixel inten-
sity for an individual acinus was obtained by drawing a region of interest 
around each acinus to obtain a mean intensity value for the each acinus. 
The mean pixel intensity for an equivalent region of interest in an area of 
Matrigel alone in the same fi eld of view was then obtained and subtracted 
from the mean intensity of the acinus to obtain a fi nal mean intensity (FMI) 
value for the acinus. The mean of the FMIs of at least 60 acini was then de-
termined to obtain the mean FMI for each condition of the experiment. The 
mean FMI for the HPV E7 acini or GFP–Raf-ER acini was divided by the 
mean FMI of the control acini to determine the fold increase in phospho-
MLC2 pixel intensity.

Real-time imaging
Three-dimensional cultures were grown in 8-well chambered coverglass 
with a #1.5 coverglass bottom (Thermo Fisher Scientifi c) as described in 
Three-dimensional morphogenesis assay. Media containing the indicated 
components was refreshed before imaging, and within 15 min the cultures 
were placed on the stage of an inverted microscope (DMIRE2; Leica) 
with a real-time confocal scanhead (QLC100 spinning disk confocal; 
Yokogawa) housed in a 37°C chamber enriched with humidifi ed CO2 (Solent). 
Images were acquired with a camera (C9100-02 EM–charge coupled de-
vice; Hamamatsu) using SimplePCI software (Compix) and a 40×/0.60 
objective (HCX Plan Flour; Leica). In each experiment, at least six different 
x,y coordinates were selected for each growth condition. Typically, three 
z-axis positions were selected for each x,y coordinate. For three-dimensional 
reconstructions, z slices were taken at 1-μm intervals over a span of at least 
70 μm. The acini selected were mostly spherical at the start of the experi-
ment, allowing the transition from normal to disrupted architecture to be 
 visualized. Use of the 8-well chamber slides allowed us to compare multiple 
treatment conditions in an individual experiment and therefore rule out the 
contribution of variations in the growth conditions at the time of image 
 acquisition. For imaging of cells in monolayer culture, 5,000 cells per well 
were plated in 8-well chambered coverglass (Ibidi). 18 h after plating the 
cells, the culture media was switched to Assay media lacking EGF, supple-
mented with diluent or 100 nM 4-HT. 24 h after initial stimulation, media 
was refreshed and the subconfl uent cells were imaged as described earlier 
in the paragraph for three-dimensional cultures, with the exception that a 
20×/0.40 objective (N Plan L; Leica) was used. For static presentation, 
movies were exported as image fi les using Quicktime Pro software (Apple) 
and arranged in Photoshop 7.0 and Canvas 8. Cell movement was ana-
lyzed using Imaris software (Bitplane). For three-dimensional reconstructions, 
confocal slices in TIFF format acquired at 1-μm intervals were assembled 
by Imaris software. For image clarity and management of fi le size, the re-
constructions were cropped to a depth of 50 μm in the z axis. The cells on 
the bottom of the acini in contact with the basement membrane are brighter 
than the acini on the top, because of decreased light penetration. The ac-
quisition parameters and laser intensity were set to maintain a linear range 
of signal intensity.

Online supplemental material
Video 1 shows that cells in control acini are not motile. Video 2 shows 
that noninvasive motility promotes the disruption of epithelial architecture 
when ERK1/2 is persistently activated. Video 3 shows that cells can enter 
and exit the lumen but do not become invasive. Video 4 shows that cells 
can move at different speeds and in different directions. Video 5 shows 
a partial three-dimensional reconstruction of a control acinus and dem-
onstrates that cells are not motile on the surface or the lumen. Video 6 
shows a partial three-dimensional reconstruction that shows the movement 
of cells in a 4-HT–induced acinus. Video 7 is a partial three-dimensional 
reconstruction of a control acinus rotating on the z axis that shows that 
neither cells on the surface or in the lumen are motile. Video 8 is a partial 
three-dimensional reconstruction of a Raf-ER–induced acinus rotating on the 
z axis that shows that both cells on the surface and in the lumen are motile. 
Video 9 shows that uninduced GFP–Raf-ER cells in monolayer culture are 
not motile. Video 10 shows that 4-HT–induced GFP–Raf-ER cells in mono-
layer culture are motile. Fig. S1 shows time-lapse images demonstrating 
that MEK1/2 is necessary for induction of noninvasive motility. Fig. S2 
shows costaining of control and 4-HT–stimulated acini with two different 
α–phospho-MLC2S19 antibodies. Fig. S3 shows time-lapse images demon-
strating that MLCK and ROCK1/2 are necessary for induction of noninva-
sive motility. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200706099/DC1.
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