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Many theoretical models predict when genetic evolution and phenotypic plasticity allow adaptation to changing environmental

conditions. These models generally assume stabilizing selection around some optimal phenotype. We however often ignore how

optimal phenotypes change with the environment, which limit our understanding of the adaptive value of phenotypic plasticity.

Here, we propose an approach based on our knowledge of the causal relationships between climate, adaptive traits, and fitness to

further these questions. This approach relies on a sensitivity analysis of the process-based model PHENOFIT, which mathematically

formalizes these causal relationships, to predict fitness landscapes and optimal budburst dates along elevation gradients in three

major European tree species. Variation in the overall shape of the fitness landscape and resulting directional selection gradients

were found to be mainly driven by temperature variation. The optimal budburst date was delayed with elevation, while the range

of dates allowing high fitness narrowed and the maximal fitness at the optimum decreased. We also found that the plasticity

of the budburst date should allow tracking the spatial variation in the optimal date, but with variable mismatch depending on

the species, ranging from negligible mismatch in fir, moderate in beech, to large in oak. Phenotypic plasticity would therefore be

more adaptive in fir and beech than in oak. In all species, we predicted stronger directional selection for earlier budburst date at

higher elevation. The weak selection on budburst date in fir should result in the evolution of negligible genetic divergence, while

beech and oak would evolve counter-gradient variation, where genetic and environmental effects are in opposite directions. Our

study suggests that theoretical models should consider how whole fitness landscapes change with the environment. The approach

introduced here has the potential to be developed for other traits and species to explore how populations will adapt to climate

change.
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Impact Summary
With climate change, many species may express traits that are

mismatched with their new environment. If the mismatch is

too large, the population may go extinct before adapting. Mis-

match can be reduced by phenotypic plasticity, through which

individuals express different trait values depending on the en-

vironment, or by genetic evolution, through which individuals

with genes producing traits better fitted to the environment in-

crease in frequency in the population across generations. Un-

fortunately, we often have limited knowledge of which exact

trait value is optimal in which environment, thereby reducing

our capacity to quantify this mismatch. We here propose to

take advantage of our good understanding of the causal rela-

tionships between traits, climate, and performance to predict

such optimal values and how they vary across environments.

We focus on the date of leaf emergence in the spring, for three

emblematic Western European forest species, beech, sessile

oak, and silver fir, because this trait largely affects growth,

reproduction, and survival of trees. We use a model, which

predictions have been extensively validated using tree distri-

bution data and life cycle data, to predict how the optimal

date of leaf emergence varies across an elevation gradient in

the Pyrenean Mountains. We found that phenotypic plasticity,

which results in later leafing dates at high elevation because

of cooler temperature, should help all species tracking their

optimal leafing date. Yet, the degree of mismatch and the con-

sequences of this mismatch on tree performance varied both

among species and with elevation. Local leafing dates were

later than the optimal date in all species. While this mismatch

is very small and has very little consequences for the evergreen

fir, it is much larger in oak, whose performance more severely

decreases at higher elevation. The approach proposed here al-

lows calibrating models aimed at predicting populations’ fate

in a changing environment.

Predicting species ability to adapt to new environmental

conditions requires moving forward in our understanding of the

ecological bases of selection (Chevin et al. 2010; MacColl 2011;

Kingsolver et al. 2012). While both genetic and plastic changes

have been reported in response to contemporary climate change

(see Merilä and Hendry 2014 for a review), we are still too rarely

able to distinguish between adaptive versus nonadaptive responses

(Ghalambor et al. 2007), and to identify the specific environmen-

tal drivers of selection (Siepielski et al. 2017). Investigating the

relationship between phenotypes, fitness, and demography, that

is, the fitness landscape, under variable climatic conditions is thus

a priority for research on adaptation to climate change. Here, we

demonstrate that, complementary to empirical estimates of selec-

tion (e.g., Chevin et al. 2015), such questions can also be inves-

tigated using process-based models, highly trained on extensive

datasets, which can predict fitness landscapes in silico. Ultimately,

understanding and predicting the ability of species to adapt to

climatic variation across large spatial and temporal scales will

require combining such experimental and modeling approaches.

Theoretical models attempting to predict whether a species

can adapt sufficiently fast to changing environmental conditions

generally assume stabilizing selection around some optimal phe-

notype (reviewed in Kopp and Matuszewski 2014). The change in

the optimum with the environment (assumed linear for simplicity),

called environmental sensitivity of selection (B), is considered a

critical parameter to predict the evolutionary trajectory of popu-

lations and their persistence (Chevin et al. 2010; Gienapp et al.

2013; Michel et al. 2014). These models generally assume that

environmental change mainly affects this optimum phenotype,

rather than other aspects of the fitness landscape. Under these

assumptions, the mismatch between observed and optimal phe-

notypes in space and time is used to determine whether plasticity

is adaptive or not, the strength of the directional selection, and the

resulting eco-evolutionary dynamics in a changing environment.

Plasticity can be considered adaptive if it allows tracking the

spatial or temporal changes in the optimum (Ghalambor et al.

2007; Chevin et al. 2010). Quantitative assessments of the adap-

tive value of phenotypic plasticity are however rare (but see Ved-

der et al. 2013; Duputié et al. 2015; Tansey et al. 2017; Kingsolver

and Buckley 2017). If plasticity alone does not allow the mean

phenotype to match the optimum, we expect directional selection

to locally favor genotypes with a different reaction norm, express-

ing phenotypes closer to the optimum. The terms co- and counter-

gradient variation are commonly used to describe geographical

patterns where the expected genetic and environmental influences

on the phenotypic cline are in the same or opposite directions,

respectively (Conover and Schultz 1995; Conover et al. 2009;

Ensing and Eckert 2019). Counter-gradient variation is sometime

interpreted as genetic evolution compensating for maladaptive

plasticity (Crispo 2008; Grether 2005). Yet, recent theory also

shows that counter-gradient variation can adaptively evolve when

environments vary both in time and space (Scheiner 2013; King

and Hadfield 2019). The evolution of co- and counter-gradient

variation is also shaped by patterns of nonrandom gene flow and

assortative mating in heterogeneous environments (Soularue and

Kremer 2012, 2014). Thus, the adaptive value of plasticity cannot

be inferred from the comparison of genetic and phenotypic clines

across spatial environmental gradients. A better understanding of

the environmental sensitivity of selection is necessary to predict

both the evolution of co- and counter-gradient variation and the

adaptive value of phenotypic plasticity.

The environmental sensitivity of selection is however diffi-

cult to estimate. Many studies use the standardized directional

selection gradient β (Lande and Arnold 1983), a measure of

1 1 0 EVOLUTION LETTERS APRIL 2020



PLASTICITY AND SELECTION ON TREE PHENOLOGY

the strength and direction of the linear component of selection,

estimated in different environments, to investigate the mecha-

nisms and ecological factors driving selection (Caruso et al. 2017;

Siepielski et al. 2017). However, variation in the selection gradi-

ent with the environment does not only depend on changes in

the fitness landscape, that is, the relationship between fitness and

phenotype, but also on the distribution of the phenotypes (e.g.,

due to past selection responses, plastic responses, or genetic drift;

Chevin and Haller 2014). Conversely, in the case of perfectly

adaptive plasticity, a change in the optimum across environments

would not drive a change in the selection gradient. For this reason,

many studies advocate assessing changes in the fitness landscape,

rather than just variation in the selection gradient to reach a deeper

understanding of eco-evolutionary processes (e.g., Morrissey and

Sakrejda 2013; Chevin and Haller 2014; Weis et al. 2014; Wadgy-

mar et al. 2017). Building on a long history of selection analyses

(Brodie et al. 1995; Via et al. 1995), new statistical methods

have been proposed to describe how whole fitness landscapes

change along continuous environmental gradients (e.g., Chevin

et al. 2015; Gamelon et al. 2018), often by assuming a Gaussian

shape for the fitness function.

Complementary to empirical estimates of fitness landscapes,

some recent studies have used our increasing understanding of

the physiological processes driving variation in phenotypes in re-

sponse to environmental conditions, and of their connection with

life-history traits, to model how the optimal and realized pheno-

type change with the environment (Vedder et al. 2013; Gienapp

et al. 2013, 2014; Weis et al. 2014; Colautti et al. 2017; King-

solver and Buckley 2017). Building on this approach, we here

show how process-based models can be used to predict whole

fitness landscapes in silico for functional traits, investigating the

ecological causes of selection and the adaptive role of plastic-

ity. The functional trait we focused on in this study is budburst

date, a trait that determines the period during which temperate

plant species can grow, photosynthesize, and produce their seeds

(Cleland et al. 2007; Chuine 2000; Richardson et al. 2013). The

exact shape of the relationship between phenology and fitness

has however rarely been investigated empirically in trees (but

see Bontemps et al. 2017). The process-based model PHENOFIT

(Chuine and Beaubien 2001) is particularly relevant to address

such questions as it describes the causal relationships between

climate, phenology, and fitness. It also explicitly describes the

major expected ecological causes of selection on budburst date

in temperate trees: (1) frost damages on vegetative and repro-

ductive organs, especially in early spring; and (2) the duration

of the growing season, which determines the probability to pro-

duce viable seed. So far, the PHENOFIT model has mainly been

used to predict tree species distribution in past, current, and fu-

ture climates (Morin et al. 2007; Saltre et al. 2013; Duputié et al.

2015).

Here, we make an original use of the PHENOFIT model to

investigate variation in fitness landscapes for the budburst date

of three major European temperate tree species along climatic

gradients. We focused our predictions on well-studied elevation

gradients in the Pyrenees Mountains, for which the phenotypic

and genetic clines of the budburst date and the species perfor-

mance have been characterized using long-term in situ monitoring

and common garden experiments (Vitasse et al. 2009a, 2009b).

We used these datasets to validate our modeling approach at the

local scale. We focused on three species that exhibit contrast-

ing patterns of genetic variation in budburst date along elevation

gradients: common beech (Fagus sylvatica L.), which shows a

counter-gradient pattern, sessile oak (Quercus petraea L.) with

a co-gradient pattern, and silver fir (Abies alba Mill.) for which

genetic differentiation is very low (Vitasse et al. 2009a). Our

method consisted of varying the budburst date in a biologically

credible range and calculating the resulting fitness to obtain the

relationship between fitness and budburst date for a given climate.

Because this relationship is an emergent property of the model,

no a priori assumption was required about the shape of the fit-

ness function, unlike in most previous studies on similar questions

(Vedder et al. 2013; Gienapp et al. 2013, 2014). We then assumed

that all populations of the same species along the elevation gradi-

ent had initially the same reaction norm to climate and predicted

how mismatch between mean and optimal phenotypes may result

in directional selection on budburst date and lead to evolution of

genetic divergence along the gradient.

We address the following questions: (1) How do the optimum

and shape of the fitness landscape change along elevation gradi-

ents, and which environmental variables drive this response? (2)

Is the plastic response of the budburst date always adaptive? (3)

Which pattern of spatial genetic divergence would evolve starting

from a single reaction norm of budburst to climate? (4) Can we ex-

plain the patterns of co- and counter-gradient variation observed

for these species?

Methods
STUDY SPECIES, REFERENCE SITES, AND CLIMATE

Common beech, sessile oak, and silver fir are emblematic species

in European forests, and they co-occur in the Pyrenees Mountains,

which is characterized by a temperate oceanic climate (Vitasse

et al. 2009b). While the deciduous species (beech and oak) occurs

mainly at low and mid elevations, the evergreen species (fir) grows

at higher elevations (above 800 m). Several populations of these

species have been intensively studied along two valleys in the

Pyrenees (Vitasse et al. 2009a, 2009b, 2010; Firmat et al. 2017)

and were used as the reference sites for this study.

To reach broad conclusions about the spatial variation of

fitness landscapes, we simulated long-term daily meteorological
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data (minimum and maximum temperature, rainfall, relative hu-

midity, global radiation, and wind speed) from 1959 to 2012 on

two continuous elevation gradients, similar to the two Pyrenean

valleys. The elevation effects on temperature, relative humidity,

and rainfall were simulated using linear models and meteorolog-

ical data acquired from 2004 to 2012 at the reference sites corre-

sponding to the surveyed populations (see Vitasse et al. 2009b)

and from the closest grid points of the SAFRAN database (see

Part S1, Table S1, and Fig. S1). Global radiation and wind speed

were kept constant and equal to the closest SAFRAN grid point

value. We simulated local climate data every 100 m from 100 to

1700 m above sea level for beech and oak, and from 800 to 1700 m

above sea level for fir. We used a principal component analysis

(PCA) to describe the climatic space of the two valleys (Fig. S2).

CALIBRATION AND VALIDATION OF PHENOFIT

PHENOFIT is a process-based model developed for temperate tree

species, which mathematically formalizes causal relationships be-

tween some functional traits and environmental conditions on one

hand, and between these traits and fitness (survival and reproduc-

tive success) on the other hand. In other words, the model de-

scribes explicitly how functional traits vary with environmental

conditions because of their plasticity and how this variation im-

pacts survival and reproductive success. The input of the model

were the simulated daily meteorological data (see above). Func-

tional traits simulated in the version of the model used for the

study were phenological traits (leaf unfolding, flowering, fruit

maturation, leaf senescence dates) as well as resistance to frost

and to drought stress (Chuine and Beaubien 2001; Fig. 1A). The

model assumes that the fitness of an average adult tree individual

results from the synchronization between the timing of devel-

opment and abiotic constraints. It calculates the annual survival

probability and a proxy for the annual relative reproductive suc-

cess, as the proportion of uninjured fruits that reach maturity (Part

S2). The version of the model used for this study is distributed by

the CAPSIS platform (http://www7.inra.fr/capsis/).

PHENOFIT has been previously calibrated for oak and beech

using phenology observations and corresponding meteorological

observations from European populations (Duputié et al. 2015). We

similarly calibrated PHENOFIT for fir using phenology observations

from French populations (Part S2e; Table S2). Parameters of the

frost and drought resistance sub-models were determined using

data published in the literature (Table S2). For the three species,

the modeled fitness matched with a good accuracy the known

distribution of the trees (data not used to calibrate the model), at

the European scale for beech and oak, and French scale for fir

(AUC = {0.72; 0.84; 0.88}; Fig. S3; Part S2g).

For all species, we improved the calibration of the budburst

sub-model by using phenological observations from the refer-

ence populations in the Pyrenees (monitored from 2005 to 2012),

and from other French populations (http://www.gdr2968.cnrs.fr/).

This calibration, across a larger range of environmental conditions

than the Pyreneen ones, allowed us to maximize the robustness

of the models (Table S3). We checked that these species-specific

models performed well in predicting the observed spatio-temporal

variation in budburst dates in our reference sites in the Pyrenees

(R2 > 0.69; Fig. 1B; Fig. S3A).

Because of insufficient data to adjust population-specific re-

action norms, we used a single parameter set per species to run

the simulations. We thus assess the spatial variation of fitness

and budburst dates due to the spatial variation of climate only,

excluding other sources of variation in selection and the poten-

tial differentiation of reaction norms. The latter simplification is

however not a bad approximation of reality in our study sites and

species. Indeed, Vitasse et al. (2009a) found no spatial genetic

differentiation of phenology for fir in the Pyrenees. For oak and

beech, spatial genetic divergence of the budburst date was sig-

nificant, but explained only 2.5–3.5% of the spatial variation in

budburst dates while more than 76% was due to plastic response

to elevation (Vitasse et al. 2010; Firmat et al. 2017).

For this specific study, we chose as a fitness proxy the

predicted arithmetic mean reproductive success of an adult tree

over the 1960–2012 period because (1) the reproductive success

showed much larger variation than adult survival in our simu-

lations, as expected for long-lived species (Fig. S4), and (2) it

should reflect variation in the lifetime fitness of very long-lived

individuals, with many opportunities to reproduce and no major

incidence of rare reproductive failure.

We checked that the spatial variation of the predicted fitness

was comparable to the observed variations of growth (for oak

and beech) and acorn production (for oak) in the reference sites

(e.g., no seeds produced in oak populations above 1500 m; Part

S2g, Fig. S6). Note that these performance data were not used

to calibrate the models. This qualitative comparison suggests that

our model succeeds in capturing how climate constrains fitness for

these species at a local scale (though less so at low elevations for

beech) and provides another validation of our approach (Fig. 1B).

For fir, we lacked fitness components data in the Pyrenees to

perform such comparison.

PREDICTING FITNESS LANDSCAPES AND SELECTION

GRADIENTS

We made an original use of PHENOFIT to study the relationship

between budburst date (the phenotype z) and fitness (w), that is,

the fitness function w(z), in different climates (Fig. 1C). For all

species, we performed a sensitivity analysis of the model at each

elevation to predict an individual fitness function. We varied one

parameter of the bud growth reaction norm, previously identified

as the main driver of the budburst date variation (Gauzere et al.

2019; Fig. 1A), to obtain (1) different average budburst dates over
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A

B

C

Figure 1. Description of the PHENOFIT model and its calibration (A), its validation (B), and the modeling approach used to simulate the

fitness landscapes (C). In the first box, the grey filled boxes represent the PHENOFIT model. We performed a single calibration of the

reaction norms describing the response of phenological/resistance traits to climate using large-scale observations. Therefore, variation

in the predicted phenological dates and reproductive success are solely due to the plasticity of the traits captured by the model, and

not to potential genetic differentiation of reaction norms. We illustrate the main physiological response driving the budburst date in

response to temperature. The second box illustrates a large-scale and local-scale predictions of PHENOFIT that can be used to validate

the species-specific models. The third box represents the sensitivity analysis of PHENOFIT performed to predict fitness landscapes, optimal

budburst dates, phenotypic mismatch, and selection gradient for a given local climate. The variation of one parameter of a PHENOFIT

sub-model (other parameters remaining set to the adjusted values) allows to model the relationship between budburst date (z) and

reproductive success (W). Note that these schematics are for illustration purpose and do not represent the calibration or the validation

outputs (results can be found in Part S2e and g).
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the 1960–2012 period in a biological credible range (z), and (2)

the resulting average reproductive success over that same period

w(z) for a tree with that reaction norm (Fig. 1C; Part S2h). The

other parameters of the reaction norms were kept at the value cali-

brated for each species. Evolutionary predictions however require

fitness landscapes relating mean reproductive success (w̄) to the

mean trait value (z̄) of a population (Lande 1976). We therefore

simulated populations of 1000 individuals, varying their mean

budburst dates (z̄), with z̄ ∈ [60; 170] days of year (DOY) for oak

and beech and z̄ ∈ [100; 220] DOY for fir. For each population,

individual budburst dates were drawn from a normal distribution

with mean z̄ and a standard deviation estimated from the ob-

served budburst dates in the reference natural populations (σfir =
4.5, σbeech = 5, and σoak = 5.5; Vitasse et al. 2009b). We com-

puted the fitness of each individual using the individual fitness

function w(z), and from them the mean fitness of the population.

This process was repeated 100 times per elevation to account for

the uncertainty associated with population sampling.

We characterized the fitness landscapes by their maximal

fitness value, optimal budburst date (i.e., the mean trait value pro-

viding the highest mean fitness) and optimal window of budburst

dates (i.e., the range of budburst dates for which the fitness is

higher than 95% of the maximal mean fitness). If several bud-

burst dates produced the maximal fitness, optimal budburst date

was defined as the median of these dates. We measured a proxy

of the width of the fitness landscape, reflecting how slowly the

fitness declines when the budburst lags away from the optimum,

and thus inversely related to the strength of stabilizing selection

around the optimal phenotype, as:

WFL =
∑z̄max

z̄=z̄min
(z̄ − θ)2.w̄(z̄)

∑z̄max
z̄=z̄min

w̄(z̄)

with z̄ ranging from z̄min = 60 to z̄max = 170 for beech and oak,

and from 100 to 220 for fir, and θ the optimal budburst date.

At each elevation, we then predicted the average budburst

date over the 1960–2012 period (hereafter called “predicted

dates”), assuming the same reaction norm to temperature at all

elevations, which had been adjusted for each species. This species-

specific model of plasticity captured between 74% and 99% of

the observed spatial variation in budburst dates in the reference

sites (Fig. S3B). The mismatch between the predicted average

budburst date and the optimal date was then used to evaluate the

adaptive value of plasticity.

To predict the strength of directional selection on budburst

date, we calculated variance-scaled linear selection gradients (βσ,

defined by Lande and Arnold 1983) using the delta method to

approximate it:

βσ = w̄1 − w̄0

�z̄.w̄0
.σ

with w̄0 the mean reproductive success of a population with a

mean date corresponding to the predicted budburst date (z̄0), w̄1

the mean reproductive success of a population with a slightly

different date (z̄0 + �z̄), with �z̄ = 1, and σ the phenotypic

standard deviation of the trait in the population, used to produce

a standardized measure of selection.

For each of these variables, variation due to sampling was

represented by the interval [x̄ − 2 σe√
100

; x̄ + 2 σe√
100

], with x̄ the

mean and σe the standard deviation of the variable among the 100

replicate populations.

For each species, we used linear models to estimate the pro-

portion of variation in the optimal and predicted dates, maximal

fitness, width of the fitness landscape, and directional selection

gradient explained by temperature and rainfall, by using the two

PCA axes defining the climatic space. In these analyses, we pooled

populations from different valleys in order to infer general pat-

terns of variation with elevation and climate (following Vitasse

et al. 2009a).

RESPONSE TO SELECTION AND EVOLUTION OF

GENETIC CLINES

From the estimated variation in directional selection with eleva-

tion, we used a simple model to predict the response to selection

and change in genetic values after one generation of selection.

The predicted genetic cline was qualitatively compared to the

species-specific empirical clines (Vitasse et al. 2009a, b) to pro-

vide another validation of our approach. Vitasse et al. (2010)

showed that beech, oak, and fir reference populations present no

significant differences in the slope of the linear reaction norm of

the budburst date to temperature, and that the genetic divergence

of the budburst date emerges from different intercepts of these

reaction norms. We similarly assumed a linear reaction norm re-

lating budburst date (z) to the environment at a given elevation (ε),

and that solely the intercept of that reaction norm was genetically

variable within each elevation (i.e., no evolution of the slope of

the reaction norm):

z̄i = ḡ0 + b.εi

with ḡ0 the initial genetic value at elevation 0 (the intercept) and

b the slope of the linear relationship between the trait and the

environment at each elevation i .

We assumed that a population with an initial reaction norm,

corresponding to the one calibrated using empirical observations,

had colonized the elevation gradient, and that there was no gene

flow among populations. While tree species are known to have

large levels of gene flow, this simplification gives us an upper

bound about the level of genetic differentiation that may be

expected (see however Soularue and Kremer 2012). Given the

Breeder’s equation, and assuming that all the phenotypic variance
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is heritable (so as to yield an upper bound for the response

to selection), the genetic value after one generation would be

equal to:

ḡi = ḡ0 + βσi .σ

with βσi the standardized selection gradient at elevation i and σ

the phenotypic standard deviation of the trait, assumed to be the

same at all elevations.

We then compared how phenotypic and genetic values varied

across elevations, considering that co-gradient variation occurred

when variation in z̄ and ḡ with elevation were in the same di-

rection, and counter-gradient variation when variation in z̄ and ḡ

with elevation were in opposite directions. When the phenotypic

differentiation across gradients is mostly due to environmental

effects and in a smaller extent to genetic differentiation, as ob-

served in the case of the budburst date in our reference populations

(Vitasse et al. 2010; Firmat et al. 2017), this definition of co- and

counter-gradient variation matches the one proposed by Conover

and Schultz (1995).

Results
SPATIAL VARIATION OF THE FITNESS LANDSCAPES

For all species, the simulated fitness landscapes included a single

optimum, which varied with elevation (Figs. 2 and 3). Both the

optimal and the predicted budburst dates were later at higher

elevations (Figs. 3, and 4A and B). At lower elevation, a larger

range of budburst dates was associated with optimal fitness values.

The width of this optimal window of budburst dates decreased

with increasing elevation (Fig. 3). For all species, this variation in

the shape of the fitness landscapes would result in an increasing

strength of the within-population stabilizing selection around the

optimum with elevation (Fig. 4D). The maximal fitness value also

decreased with elevation in all species (Fig. 4C). All these trends

were mainly explained by the variation in temperature along the

elevation gradient (Table 1).

Additionally, our results highlighted some species-specific

patterns (Fig. 4). The variation in budburst dates with elevation

due to plasticity was predicted to be higher for oak and fir (3.0

and 2.8 days/100 m, respectively) than for beech (1.6 days/100 m;

Fig. 4A), consistently with the observed patterns (Fig. 3). Varia-

tion in the optimal date with elevation was more than twice greater

for beech and fir (1.9 and 2.2 days/100 m, respectively) than for

oak (0.9 days/100 m; Fig. 4B). The average strength of stabiliz-

ing selection, as inversely reflected by the width of the fitness

landscape, and its variation across elevation were higher for the

deciduous than the evergreen species (Fig. 4D). The maximal fit-

ness also decreased more steeply with elevation for the deciduous

than evergreen species (Fig. 4C). Note that because oak popula-

tions at the highest elevations had null reproductive success for

all possible budburst dates (Fig. 2), no optimal trait value could

be defined for them.

PHENOTYPIC MISMATCH AND THE ROLE OF

PLASTICITY

For all species, the variation in the optimal budburst dates with

elevation was in the same direction as the predicted dates (Fig. 4A

and B). But the extent to which the plastic response allows fol-

lowing changes in the optimal date varies among species. For fir,

the predicted and optimal dates were almost perfectly identical,

with predicted budburst dates always included in the optimal win-

dow of trait values (Fig. 3). For beech, the predicted and optimal

dates were also very close, but with a constant lag, the optimum

being earlier (Fig. 3). For oak, the predicted date was always far

too late, especially at high elevations. The average phenotypic

mismatch was higher for oak (22–56 days) than for beech (2–13

days), and almost negligible for fir (–4 to 7 days; Fig. 4F). The

plasticity of the budburst date was thus found to be more adaptive

for beech and fir than for oak. Using the average budburst dates

observed over the recent years in the reference sites, instead of

the predictions derived from the plastic model, does not modify

our qualitative conclusions about the adaptive value of plasticity

and strength of the phenotypic mismatch among species (Fig. 3).

SPATIAL VARIATION IN DIRECTIONAL SELECTION

For all species, we predicted stronger directional selection toward

earlier budburst date at higher elevation, and low or no directional

selection gradients at low elevation (Fig. 4E). The average di-

rectional selection gradient (β̄oak = −0.34, β̄beech = −0.07, and

β̄ f ir = −0.002; variance standardized measures) and its variation

across elevation (oak: −0.0303/100 m; beech: −0.0121/100 m;

fir: −0.0007/100 m) were higher for oak than for beech, and very

low for fir (Fig. 4E). For all species, variation in the linear selec-

tion gradient was mainly driven by the temperature (22–55% of

variance explained; Table 1). Using the estimated directional se-

lection gradients, we predicted the evolution of counter-gradient

variation for oak and beech, and a negligible genetic evolution for

fir after one generation of selection (Fig. 5).

Discussion
CAUSES AND CONSEQUENCES OF SPATIAL

VARIATION IN FITNESS LANDSCAPES

The approach we developed here allowed us to predict the shape

of the fitness landscape and the spatial variation in selective pres-

sures on the budburst date of tree species. Within populations, the

simulated fitness landscape, with a single optimum, reflected the

trade-off between maximizing growing season length and mini-

mizing frost injuries on vegetative and reproductive organs. The

predicted stabilizing selection on the budburst date is consistent
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Figure 2. Representation of the adaptive landscapes simulated by the PHENOFIT model at different elevations (in meters above sea

level), across the two valleys, for each species. The adaptive landscapes represent the average relationship between mean population

budburst date and reproductive success obtained from 100 repetitions. The dotted lines represent the predicted local budburst dates

at each elevation. Depending on the species, some early and late budburst dates cannot be predicted due to specific constraints in the

phenological models. Note that for oak at high elevations the simulated adaptive landscapes are null and flat. The rectangle along the

x-axis indicates the width of the phenotypic distribution for the lowest elevation population (as two times the phenotypic standard

deviation).

with empirical estimates in trees (Bontemps et al. 2017). Our sim-

ulated asymmetrical fitness landscapes, with stronger decline in

fitness with later dates, are also similar to recent predictions and

observations on flowering dates in an annual plant (Weis et al.

2014).

We found strong variation in the shape of the fitness land-

scapes with elevation, in terms of optimal trait value, width of

the fitness peak, and maximal fitness. In particular, the predicted

delay in the optimal budburst date with elevation is consistent

with the observation of later frost occurrence at higher eleva-

tion in the reference populations used in this study (Dantec et al.

2015). The sharp decline in fitness when slightly moving away

from the optimal budburst date and the low maximal fitness

at high elevation are consistent with empirical observations of

low fecundity in the populations at the highest elevations in oak

(Fig. S6). When the fitness landscape has a Gaussian shape, the
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Figure 3. Variation in optimal and predicted budburst dates with elevation (in meters above sea level) within each valley for the three

species studied. The red crosses represent the local budburst dates predicted with the phenological model calibrated for each species, that

is, the response of the trait based on plasticity solely. The black points represent the budburst date providing the maximal fitness, that is,

optimal date. The grey area represents the range of budburst dates covering 95% of the maximal fitness, that gives a view on the width

of the adaptive peak. The blue crosses represent the observed average budburst date (2005–2012) in the reference populations. Although

the predicted and observed dates are overall very similar, they are not strictly comparable as the study periods are not equivalent, and

the climate along the simulated elevation gradients is not strictly identical to the climate in the reference sites.
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A
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D
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Figure 4. Variation of the adaptive landscapes and selective pressures acting on the budburst date with elevation for the three studied

species. The unfilled points give the average parameter value and the errors bars give the uncertainty of this prediction based on 100

repetitions of the population-level simulations. The within-plot legends provide the species-specific slope coefficient of linear regression

with elevation. Units: predicted and optimal dates in DOY; maximal fitness a relative measure ranging from [0; 1]; width of the fitness

landscape in days; standardized linear selection gradient in units of phenotypic standard deviation; absolute phenotypic mismatch in

days.

directional selection gradient can be expressed as the phenotypic

mismatch scaled by the width of the fitness landscape (Lande and

Arnold 1983). Although predicted fitness landscapes here deviate

from a Gaussian shape, variation in selection gradients with ele-

vation was consistent with this expectation. Indeed, we predicted

stronger directional selection for earlier budburst at higher ele-

vation, because of a narrower fitness peak for all species, and a

higher phenotypic mismatch for oak. The much stronger selection

for earlier budburst in oak compared to the other species may be

explained by a longer maturation time of its large fruits, consis-

tent with the observation that fruit size is a critical determinant of

northern range limits in trees (Morin and Chuine 2006). Contrarily

to the meta-analysis by Siepielski et al. (2017), we predicted that

the variation in the shape of the fitness landscape and resulting

directional selection gradients were mainly driven by the tem-

perature, and not precipitation. Empirical estimates of selection

gradient on the budburst date in the same oak populations also

suggest selection for increased precocity, which increases with
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Table 1. Variation of the adaptive landscapes and selective pressures on the budburst date with the climatic variables.

F. sylvatica Q. petraea A. alba

Axis 1 Axis 2 Axis 1 Axis 2 Axis 1 Axis 2

Variable Effect η2 Effect η2 Effect η2 Effect η2 Effect η2 Effect η2

Predicted date −3.47 0.96 −0.92 0.01 −6.38 0.98 −1.18 0.01 −3.76 0.99 −0.43 0.00
Optimal date −4.04 0.90 −2.07 0.03 −1.99 0.44 −0.66 0.01 −3.06 0.82 1.07 0.03
Wmax 0.12 0.84 0.05 0.02 0.16 0.92 0.03 0.01 0.02 0.78 0.01 0.14
WFL −0.004 0.76 −0.003 0.07 −0.003 0.75 −0.002 0.07 −0.001 0.89 −0.0004 0.03
βσ 0.03 0.55 0.01 0.003 0.08 0.22 −0.01 0.001 0.0008 0.32 0.0007 0.06
Mismatch 0.57 0.21 1.14 0.12 −4.26 0.76 −0.38 0.001 −0.70 0.21 −1.49 0.27
Average 0.74 0.04 0.55 0.01 0.64 0.10

We tested the effect of the first two axes of the PCA describing the climatic space over the elevational gradients using an ANOVA on a linear model. The

table details the main effect and proportion of variance explained by each of the PCA axis, with η2 = SSvar/(SSvar + SSres). Axis 1 is mainly driven by the

temperatures and axis 2 by the precipitations. With Wmax the maximal fitness, WF L the width of the fitness landscape and βσ the standardized linear

selection gradient.
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Figure 5. Variation of the phenotypic and genetic values for the budburst date with elevation gradients for the three studied species.

Red symbols represent the predicted budburst dates based on plasticity (phenology model detailed in Part S2). Grey symbols represent

the genetic values after one episode of selection, given the breeder equation and the predicted linear selection gradient. The slope

coefficients (b) are provided over each linear regression line.

elevation (Caignard, Delzon and Kremer, pers. comm.). Compar-

ison of predicted and empirically measured selection gradients

should help validate our modeling approach (e.g., Weis et al.

2014) and, ultimately, a combination of modeling and empiri-

cal estimates should lead to greater insights about the causes of

variation in selection. However, empirical estimates of selection

gradients in adult trees, integrating climatic variation over years,

are still very scarce.

While we predicted stronger directional selection on the bud-

burst date at higher elevations for beech and oak, we also pre-

dicted a strong decrease of the maximal fitness with increasing

elevation. This result suggests that, even if populations at high

elevations evolved to their optimal budburst date, they may not

be demographically viable in such environments (Chevin et al.

2010). Finally, our predictions suggest that care should be taken

when applying predictions from simple theoretical models of
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phenotypic adaptation to specific empirical contexts. Even though

basic aspects of these models were verified here (e.g., gradual shift

in the optimum phenotype with the environment), we found that

the tree species did not conform to the common assumption of in-

variable width or height of the fitness landscape along ecological

gradients (Chevin et al. 2010; Gienapp et al. 2013).

ADAPTIVE PLASTICITY AND GENETIC EVOLUTION OF

PHENOLOGY

The role of plasticity in the adaptive response to environmental

variation at short time and fine spatial scales is increasingly ac-

knowledged (Baythavong 2011; Vedder et al. 2013; Merilä and

Hendry 2014; Phillimore et al. 2016). Variation in mean phe-

notypes along environmental gradients, resulting from both phe-

notypic plasticity and genetic differentiation, is often assumed to

reflect variation in optimal phenotypes through space (e.g., Tansey

et al. 2017). Whether such an equilibrium has been reached for

long-lived tree species is however questionable (Savolainen et al.

2004). Here, instead of assuming that the observed clinal vari-

ation was optimal, we predicted the optimal phenotypes with a

process-based model, and compared them to the local phenotypes

also predicted by the model. We found that plasticity would be

almost perfectly adaptive in fir, and partially adaptive in the two

deciduous species, although more adaptive in beech than oak, the

latter exhibiting hyperplasticity (i.e., its environmental response

is too high to track the optimum). This result is consistent with

previous studies looking at the adaptive value of the budburst date

plasticity in beech and oak at larger spatial scales (Tansey et al.

2017), and particularly with the study by Duputié et al. (2015),

which relied on the same type of modeling as ours.

We used our model to predict how directional selection may

shape the evolution of budburst along environmental gradients

after one generation. Genetic clines in budburst date along ele-

vation gradients, measured in common gardens, indicate counter-

gradient variation in beech, co-gradient variation in oak, and neg-

ligible genetic differentiation in fir (Vitasse et al. 2009a; Alberto

et al. 2011). Similar patterns have been reported for fir and beech

across other elevation gradients (Gauzere et al. in review, Latreille

et al. pers. comm.). Our predictions in fir and beech are consistent

with these observations, which provides empirical support for the

biological relevance of our approach. Interestingly, predictions

for beech suggested that a pattern of counter-gradient variation

may evolve even in the absence of hyperplasticity, contrary to the

expectation that counter-gradient variation is caused by excessive

plasticity (Conover and Schultz 1995). The discrepancy between

simulated and measured genetic clines in oak may be explained

by the fact that we do not simulate assortative mating and gene

flow among populations. Indeed, nonrandom mating can generate

patterns of co-gradient variation even in the absence of divergent

selection on spring phenology (Soularue and Kremer 2012).

ADVANTAGES AND LIMITS OF THE PROCESS-BASED

MODELING APPROACH

The modeling approach developed and used in this study allows

simulating fitness landscapes that are particularly difficult to es-

timate in natural populations. While empirical measurements are

essential, such a process-based modeling approach can be used

to predict the long-term consequences of trait variation on fit-

ness, and explore larger temporal and spatial scales than exper-

imental studies. This approach has the potential to explore the

consequences of future environmental changes, such as climate

change, on trait maladaptation and its consequences on popu-

lation persistence (e.g., Phillimore et al. 2016; Kingsolver and

Buckley 2017), when empirical estimates of selection in future cli-

mates generally rely on the problematic space for time paradigm.

Predicting fitness landscapes from process-based models also

has the main advantage that it does not require any assump-

tions about the shape of selection on traits (see also Weis et al.

2014).

While this approach is based on our eco-physiological un-

derstanding of tree performance and extensive observations from

natural populations, our conclusions depend nevertheless on the

accuracy of the predictions of the model used. For this reason, a

thoughtful prior validation of the model predictions is necessary.

Although model predictions generally agreed with observations

in this study, our understanding of selection could be improved

by exploring other physiological processes and life-history com-

ponents. For example, carbon uptake and allocation might also

affect fitness (Delpierre et al. 2016), and were crudely mod-

eled in the present version of PHENOFIT. A promising prospect

would be to apply the approach developed here to other process-

based models that focus on other physiological processes and

fitness components (e.g., Davi et al. 2009). Strength of selec-

tion and optimal values may differ across life-history components

(e.g., juvenile stages, growth, survival, and fecundity) with com-

plex consequences for eco-evolutionary dynamics (Cotto et al.

2019).

We assumed a dominant effect of plasticity over genetic dif-

ferentiation in driving the initial phenotypic variation among pop-

ulations. This simplification was acceptable for the study species

and sites (see Vitasse et al. 2010; Firmat et al. 2017). However,

when genetic divergence has strong effects on phenotypic varia-

tion across sites compared to environmental effects, different reac-

tion norms should be used for the different populations to predict

patterns of local selection, which require more observational and

experimental data (e.g., Chuine et al. 2000; Fournier-Level et al.

2016). A better knowledge of natural variation in physiological

responses across species distributions is currently one of the main

challenges that needs to be addressed to properly integrate genetic

evolution in process-based models (Liang 2019; Benito Garzón

et al. 2019).
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Conclusion
We predicted that plasticity of the budburst date in fir, oak, and

beech helps them adapt to climatic gradients. However, in de-

ciduous species, plasticity was not sufficient to perfectly track

the spatial variation in the optimal date, resulting in selection for

increased precocity with elevation. Most importantly, our study

suggests that focusing only on changes in optimal trait values,

and neglecting other changes in the shape of the fitness landscape,

may be misleading about the role of plasticity and evolution in

heterogeneous environments. The approach developed here could

be applied to other species and other functional traits, owing to

the growing panel of process-based models developed for plants

and animals that explicitly relates environment, traits, and fitness

(Kearney and Porter 2004; Weis et al. 2014; Burghardt et al. 2015;

Kingsolver and Buckley 2017). They could especially be used to

examine the evolutionary and population dynamics underlying

range limits in changing climates.
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