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Emotions can be perceived from both facial and bodily expressions. Our previous
study has found the successful decoding of facial expressions based on the functional
connectivity (FC) patterns. However, the role of the FC patterns in the recognition of
bodily expressions remained unclear, and no neuroimaging studies have adequately
addressed the question of whether emotions perceiving from facial and bodily
expressions are processed rely upon common or different neural networks. To address
this, the present study collected functional magnetic resonance imaging (fMRI) data
from a block design experiment with facial and bodily expression videos as stimuli
(three emotions: anger, fear, and joy), and conducted multivariate pattern classification
analysis based on the estimated FC patterns. We found that in addition to the facial
expressions, bodily expressions could also be successfully decoded based on the large-
scale FC patterns. The emotion classification accuracies for the facial expressions were
higher than that for the bodily expressions. Further contributive FC analysis showed
that emotion-discriminative networks were widely distributed in both hemispheres,
containing regions that ranged from primary visual areas to higher-level cognitive areas.
Moreover, for a particular emotion, discriminative FCs for facial and bodily expressions
were distinct. Together, our findings highlight the key role of the FC patterns in the
emotion processing, indicating how large-scale FC patterns reconfigure in processing
of facial and bodily expressions, and suggest the distributed neural representation for
the emotion recognition. Furthermore, our results also suggest that the human brain
employs separate network representations for facial and bodily expressions of the same
emotions. This study provides new evidence for the network representations for emotion
perception and may further our understanding of the potential mechanisms underlying
body language emotion recognition.

Keywords: facial expressions, bodily expressions, functional magnetic resonance imaging, functional
connectivity, multivariate pattern classification
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INTRODUCTION

Humans can readily recognize others’ emotions and make the
corresponding reactions. In daily communications, emotions
can be perceived from facial and bodily expressions. The
ability to decode emotions from different perceptual cues is
a crucial skill for the human brain. In recent years, the
representation mechanisms of facial and bodily expressions have
been intensively explored, so as to deepen our understanding of
the neural basis underlying this brain–behavior relationship.

Using functional magnetic resonance imaging (fMRI),
neuroimaging studies have identified a number of brain regions
showing preferential activation to facial and bodily expressions.
An earlier model for face perception was proposed by Haxby
et al. (2000) and Gobbini and Haxby (2007), which consisted
of a “core” and an “extended” system. These face-selective
areas, especially the occipital face area (OFA), the fusiform
face area (FFA), and the posterior superior temporal sulcus
(pSTS), which together constituted the core face network,
have been considered as key regions in charge of processing
the identity and emotional features of the face (Grill-Spector
et al., 2004; Ishai et al., 2005; Lee et al., 2010; Gobbini et al.,
2011). Bodies and body parts are found to be represented in
the extrastriate body area (EBA) and the fusiform body area
(FBA) (Downing and Peelen, 2016). Particularly, the FBA
is partially overlapped with the FFA, and some similarities
have been found between the processing of bodies and faces
(Minnebusch and Daum, 2009; de Gelder et al., 2010). Because
the fusiform gyrus (FG) contains both FFA and FBA, this area is
considered to represent the characteristics of the whole person
(Kim and McCarthy, 2016). Studies in macaques and humans
have found that the STS, which acted as a crucial node for
processing of social information, exhibited sensitivity to both
faces and bodies (Pinsk et al., 2009). Recent studies have also
proposed that the STS participated in the processing of facial and
bodily motions, postures, and emotions (Candidi et al., 2011;
Zhu et al., 2013).

As a data-driven technique, multivariate pattern analysis
(MVPA) provides a promising method to infer the functional
roles of the cortical areas and networks from the distributed
patterns of the fMRI data (Mahmoudi et al., 2012). Recently,
using MVPA, a growing number of studies have explored the
emotion decoding based on the activation patterns. Said et al.
(2010) and Harry et al. (2013) revealed the successful decoding
of facial emotions in the STS and FFA, while Wegrzyn et al.
(2015) directly compared the emotion classification rates across
the face processing areas in Haxby’s model (Haxby et al.,
2000). Our previous studies respectively, identified the face- and
body-selective areas as well as the motion-sensitive regions
and employed activation-based MVPA to explore their roles in
decoding of facial and bodily expressions (Liang et al., 2017;
Yang et al., 2018). However, these studies mainly focused on
the emotion decoding from the activation patterns of specific
brain regions. Due to the expected existence of interactions
between different cortical regions, the potential contributions
of the connectivity patterns in the processing of emotional
information need to be further explored. In comparison with the

studies on specific brain regions, functional connectivity (FC)
analysis takes into account the functional interactions between
distinct brain regions and thus can provide new insights into how
large-scale neuronal communication and information integration
relate to the human cognition and behavior. Commonly, FC
can be effectively measured by the correlation analysis, which
characterizes the temporal correlations in the fMRI activity
between different cortical regions (Smith, 2012). In recent years,
there has been increasing interest in FC analyses, and studies
on the recognition of various objects have commonly observed
intrinsic interconnections between distinct brain regions (He
et al., 2013; Zhen et al., 2013; Hutchison et al., 2014). In
addition to analyzing several predefined regions of interest
(ROIs) or networks, whole-brain FC analysis can further ensure
the optimal employment of the wealth of information present in
the fMRI data (Zeng et al., 2012). Using whole-brain FC analysis
combined with MVPA, recent fMRI studies have demonstrated
the successful decoding of neurological disorders and various
object categories from the FC patterns (Zeng et al., 2012; Liu
et al., 2015; Wang et al., 2016). Inspired by these studies,
our recent study has further revealed the successful decoding
of facial expressions based on the FC patterns (Liang et al.,
2018). However, the potential contribution of the FC patterns
in the decoding of bodily expressions remains unclear, and no
neuroimaging studies have resolved the question of whether
emotions perceiving from facial and bodily expressions are
processed rely upon common or different neural networks.

This study aimed to explore the network representations
of facial and bodily expressions. To address this, we collected
fMRI data in a block design multi-category emotion classification
experiment wherein participants viewed emotions (anger, fear,
and joy) from videos of facial and bodily expressions. Dynamic
stimuli were employed in the present study as there was evidence
that suggested that dynamic stimuli had greater ecological
validity than their static counterparts and might be more
appropriate to investigate the “authentic” mechanism of the brain
(Johnston et al., 2013). We conducted whole-brain FC analysis to
estimate the FC patterns for each emotion in each stimulus type,
and employed multivariate connectivity pattern classification
analyses (fcMVPA). We calculated the classification accuracies
for facial and bodily expressions based on the FC patterns
and constructed emotion-preferring networks by identifying the
discriminative FCs.

MATERIALS AND METHODS

Participants
Twenty-four healthy, right-handed subjects (12 females, range
19–25 years old) participated in this study. All subjects had
normal or corrected-to-normal vision and with no history of
neurological or psychiatric disorders. Informed consents were
obtained from all individual participants included in the study.
This experiment was conducted in accordance to the local Ethics
Committee and was approved by the Research Ethics Committee
of Yantai Affiliated Hospital of Binzhou Medical University. Four
subjects were discarded due to the excessive head motion during
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the scanning (translation >2 mm, rotation >2◦, Liu et al., 2015).
Therefore, the final connectivity analysis included 20 subjects.

fMRI Data Acquisition
Functional and structural images were acquired by a 3.0-T
Siemens scanner with an eight-channel head coil in Yantai
Affiliated Hospital of Binzhou Medical University. Foam pads
and earplugs were used to reduce the head motion and scanner
noise. Functional images were acquired using a gradient echo-
planar imaging (EPI) sequence (TR = 2000 ms, TE = 30 ms, voxel
size = 3.1 × 3.1 × 4.0 mm3, matrix size = 64 × 64, slices = 33,
slice thickness = 4 mm, slice gap = 0.6 mm). In addition,
T1-weighted structural images were acquired using a three-
dimensional magnetization-prepared rapid-acquisition gradient
echo (3D MPRAGE) sequence (TR = 1900 ms, TE = 2.52 ms,
TI = 1100 ms, voxel size = 1 × 1 × 1 mm3, matrix
size = 256 × 256). In the scanner, participants viewed the stimuli
through the high-resolution stereo 3D glasses of the VisuaStim
Digital MRI Compatible fMRI system.

Facial and Bodily Expression Stimuli
Video clips of eight different individuals (four males and four
females) displaying anger, fear, and joy (Grezes et al., 2007;
de Gelder et al., 2012, 2015) were chosen from the Geneva
Multimodal Emotion Portrayals (GEMEP) corpus (Banziger
et al., 2012). Facial and bodily expression stimuli were created
by cutting out and obscuring the irrelevant part of the whole-
person videos using Gaussian blur masks (with Adobe Premiere
Pro CC) (Kret et al., 2011), and the acquired face clips were
magnified appropriately. All videos were edited to 2000 ms (25
frames/s) and were converted into grayscale using MATLAB
(Furl et al., 2012, 2013, 2015; Kaiser et al., 2014; Soria Bauser
and Suchan, 2015). Finally, video clips were resized to 720 × 576
pixels and presented on the center of the screen. All generated
stimuli were validated well, with recognition from another group
of participants before scanning. The exemplar stimuli are shown
in Figure 1A.

Experiment Paradigm
The experiment employed a block design, with three runs.
There were three emotions (joy, anger, and fear) in our
experiment, which were expressed by three stimulus types: facial
expressions, bodily expressions, and whole-person expressions.
Data from blocks of whole-person expressions were not analyzed
in this study, which were included for the purpose of another
study (Yang et al., 2018). The schematic representation of the
experiment paradigm is shown in Figure 1B. Each run contained
18 blocks (3 emotions × 3 types × 2 repetitions), presented
in a pseudo-random order to ensure that the same emotion or
stimulus type did not appear consecutively (Axelrod and Yovel,
2012; Furl et al., 2013, 2015). At the beginning of each run, there
was a 10 s fixation cross, followed by a stimulus block of eight
trials, and then a 2 s button task. Successive stimulus blocks were
separated by a fixation interval for 10 s. Each trial consisted of
a 2000-ms stimulus video and an interstimulus interval (ISI) of
500 ms. During the button task, participants were instructed to
press a button to indicate the emotion category they had seen in

the previous block. Stimulus presentation was performed using
E-Prime 2.0 Professional (Psychology Software Tools, Pittsburgh,
PA, United States) and the behavioral responses were collected
using the response pad in the scanner.

Network Node Definitions
Regions of interests were defined according to the Brainnetome
Atlas (Fan et al., 2016). The Brainnetome is generated using
a connectivity-based parcellation framework, which provides
fine-grained information on both anatomical and functional
connections. We employed this atlas to define the network nodes
in the FC analysis since it provided a stable starting point for
the exploration of the complex relationships between structure,
function and connectivity. There are 246 regions in this atlas, with
210 cortical and 36 subcortical subregions of the entire brain.
Details about the label and the MNI coordinates of each node can
be found at http://atlas.brainnetome.org/.

Data Preprocessing
The fMRI data were first preprocessed using SPM8 software1.
For each run, the first five volumes were discarded to allow
for T1 equilibration effects (Wang et al., 2016; Liang et al.,
2018; Zhang et al., 2018). The remaining functional images
were corrected for slice acquisition time and head motion.
Each participant’s structural image was co-registered with the
functional images and was subsequently segmented into gray
matter, white matter (WM), and cerebrospinal fluid (CSF). Then,
the generated parameters by unified segmentation were used
to normalize the functional images into the standard Montreal
Neurological Institute (MNI) space with voxel sizes resampled
into 3 × 3 × 3 mm. Finally, the functional data were spatially
smoothed with a 4 mm full-width at half-maximum (FWHM)
isotropic Gaussian kernel.

Estimation of the FC Patterns for Facial
and Bodily Expressions
The task-related whole-brain FC pattern estimation was carried
out in MATLAB using the CONN toolbox2 (Whitfield-
Gabrieli and Nieto-Castanon, 2012). CONN provides a common
framework to perform a large suite of connectivity analyses
for both resting and task fMRI data. For each subject, the
normalized structural volume and the preprocessed functional
images were submitted to CONN. A total of 246 network
nodes were defined according to the Brainnetome Atlas. In
FC analysis, it is critical to appropriately address noise in
order to avoid possible confounding effects. CONN employs a
component-based noise correction (CompCor) strategy (Behzadi
et al., 2007), which can be particularly useful to reduce non-
neural confounders in the context of FC analysis, increasing
not only the validity, but also the sensitivity and specificity of
the analysis. Before the FC calculation, standard preprocessing
and denoising procedures using the default settings of the
CONN toolbox were performed on the fMRI time series to
further remove unwanted motion (Power et al., 2012) and

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
2http://www.nitrc.org/projects/conn
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FIGURE 1 | Exemplar stimuli and schematic representation of the experiment paradigm. (A) Exemplar facial and bodily expression stimuli. All emotion stimuli were
taken from the GEMEP database. Videos of faces and bodies displaying three emotions (anger, fear, and joy) were used in the experiment. (B) Paradigm of the
experiment design. A cross was presented for 10 s before each block, and then eight emotion stimuli appeared. Subsequently, the participants completed a button
task to indicate their discrimination of the emotion category they had seen in the previous block.

physiological and other artificial effects from the BOLD signals.
Confounding factors were regressed out by adding covariates of
the six realignment parameters of head motion, the principal
components of WM and CSF, and the first-order linear trend.
The modeled task effects (box-car task design function convolved
with the canonical hemodynamic response function) were also
included as covariates to ensure that temporal correlations
reflected FC and did not simply reflect task-related co-activations
(Cole et al., 2019). Each of these defined confounding factors
was then regressed out from the BOLD time series, and the
resulting residual time series were temporally filtered using band-
pass filter 0.01–0.1 Hz (Wang et al., 2016; Liang et al., 2018).

The FC computation was conducted on the residual BOLD
time series. After these preprocessing, the BOLD time series
were divided into scans associated with each block presentation.
All of the scans with nonzero effects in the resulting time
series were concatenated for each condition (each emotion
category in each stimulus type) and across all runs. Mean
time series were obtained by averaging the time series of
all voxels within each ROI and an ROI-to-ROI analysis was
conducted to calculate the pairwise correlations between the
mean time series of ROIs. Then, the correlation coefficients
were Fisher z transformed, producing a connectivity map per
emotion for each stimulus type in each participant, which were
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FIGURE 2 | Flowchart of the experiment and data analysis procedure. (A) Experiment and fMRI data acquisition. (B) Brainnetome atlas for network nodes definition.
(C) Framework overview of the fcMVPA. Estimation of the FC patterns was carried out using CONN toolbox. Before the FC computing, BOLD time series were
denoising to further remove unwanted motion and physiological and other artifactual effects. Then, the whole-brain FC patterns for each emotion were constructed
using ROI-to-ROI analysis. Emotion classification was performed in a leave-one-subject-out cross-validation scheme with an SVM classifier. Multi-category and
pairwise emotion classifications for the facial and bodily expressions were conducted. Emotion-preferring networks were constructed based on the discriminative
FCs.
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used as features in the later multivariate connectivity pattern
classification analysis (fcMVPA).

FcMVPA Classification Implementation
Multivariate connectivity pattern classification was conducted on
the estimated FC patterns to explore their roles in decoding of
facial and bodily expressions. Figure 2 illustrates the flowchart of
the experiment and analysis procedures, in which Figures 2A,B
respectively show the fMRI data acquisition and the network
nodes definition, and Figure 2C shows the overall framework
of the fcMVPA. Due to the symmetry of the FC matrices,
we extracted the lower triangle values to generate initial FC
features. This procedure resulted in 30,135 [(246 × 245)/2]
features in total. As there was evidence that showed that the
interpretation of negative FCs remained controversial (Fox et al.,
2009; Weissenbacher et al., 2009; Wang et al., 2016; Parente et al.,
2018), in this study, we employed one-sample t tests to focus
on the positive FCs and explored their roles in the decoding of
facial and bodily expressions (Wang et al., 2016; Zhang et al.,
2018). That is, for the training data, we conducted one-sample
t test across participants for each of the 30,135 connections in
each emotion category, and retained the FCs that had values
significantly greater than zero [p values were corrected using
false discovery rate (FDR) q = 0.01 for multiple comparisons].
Then, for each stimulus type (facial and bodily expressions), we
pooled the positive FCs of the three emotions together to generate
features for classification, which were significantly positive for
at least one emotion category (Wang et al., 2016; Liang et al.,
2018; Zhang et al., 2018). For the classification analysis, a linear
support vector machine implemented in LIBSVM3 was employed
as classifier, and the classification performance was evaluated
with leave-one-subject-out cross-validation (LOOCV) scheme
(Liu et al., 2015; Wang et al., 2016; Zhang et al., 2018). For each
LOOCV fold, feature selection was only executed on the training
set to avoid peeking. We conducted multi-category and pairwise
emotion classifications for the facial and bodily expressions. The
implementation of the multi-category classification employed
a one-against-one voting strategy. In each LOOCV trial, the
classifier was trained on all but one subject, and was tested
on the remaining one. This procedure was repeated with 20
iterations; all subjects had been used as test data once, and the
decoding performance was generated by averaging the accuracies
of all iterations.

To evaluate the decoding performance, the statistical
significance of the classification accuracy was assessed using
permutation test (Liu et al., 2015; Cui et al., 2016; Wang
et al., 2016; Fernandes et al., 2017). Permutation test is a non-
parametric approach (Golland and Fischl, 2003), which is used
to test the null hypothesis that the computed result is obtained
by chance (Zhu et al., 2008). Thus, the same cross-validation
procedure was carried out for 1000 random shuffles of class labels
and the results were obtained across all permutations. If less than
5% of the accuracies from all permutations exceeded the actual
accuracy (using correct labels), the result was considered to be
significant (p < 0.05).

3https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Constructing Emotion-Preferring
Networks for Facial and Bodily
Expressions From Discriminative FCs
In this section, we identified the most contributive FCs in
the emotion-discriminative networks for the facial and bodily
expressions. We used the classification weights for each FC to
reflect its contribution to the classification (Liu et al., 2015; Cui
et al., 2016). Since feature selection was based on a slightly
different sample subset in each LOOCV fold, consensus FCs
that were selected on all folds were defined as the discriminative
features. The discriminative weight for each feature was defined
as the average of their absolute weights across all LOOCV
folds. FCs with higher discriminative weights were considered
to be more contributive to the emotion classification (Ecker
et al., 2010; Dai et al., 2012; Cui et al., 2016). We then defined
emotion-preferring network for each emotion category with
FCs exhibiting reliable discriminative power when classifying a
particular emotion with each of other two emotions.

RESULTS

Behavioral Results
We collected the behavioral data for the recognition of
facial and bodily expressions during the fMRI scanning.
The average classification accuracy for facial expressions
was 98.06% (SD = 3.73%) (Joy: mean = 100%, SD = 0;
Anger: mean = 97.5%, SD = 6.11%; Fear: mean = 96.67%,
SD = 6.84%), and that for bodily expressions was 97.22%
(SD = 4.6%) (Joy: mean = 97.5%, SD = 6.11%; Anger:
mean = 97.5%, SD = 6.11%; Fear: mean = 96.67%, SD = 6.84%).
These results verified the validity of the stimuli in our
experiment, where both facial and bodily expressions could
be successfully classified at high accuracies. Further repeated-
measures analysis of variance (ANOVA) for accuracies with
Condition (Facial and Bodily) × Emotion (Joy, Anger, and Fear)
revealed no significant effect for Condition [F(1,19) = 0.588,
p = 0.453] or for Emotion [F(2,38) = 1.498, p = 0.237],
and there was no significant interaction of Condition and
Emotion [F(2,38) = 1, p = 0.357]. Details for the recognition
accuracies and the corresponding reaction times can be found
in Table 1.

Emotion Classification Performance
Based on fcMVPA
In this section, we conducted fcMVPA to explore the
classification of facial and bodily expressions based on the
constructed FC patterns. Network nodes were defined by the
Brainnetome atlas and the fMRI time series were denoised
using CONN to further remove unwanted motion (Van Dijk
et al., 2012; Zeng et al., 2014) and physiological and other
artificial effects from the BOLD signals. Table 2 summarizes
the head motion parameters for different emotion categories.
ROI-to-ROI analysis was performed to generate the connectivity
map for each emotion in each stimulus type (facial and bodily
expressions). In the main fcMVPA classification, we focused on
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TABLE 1 | Behavioral accuracies and reaction times for facial and bodily
expressions [mean% and standard deviation (SD)].

Classification Reaction
accuracy (%) time (ms)

Mean SD Mean SD

Facial
expressions

Joy 100 0 713.74 163.39

Anger 97.5 6.11 808.22 235.30

Fear 96.67 6.84 809.54 234.73

Total 98.06 3.73 777.17 200.75

Bodily
expressions

Joy 97.5 6.11 669.36 160.87

Anger 97.5 6.11 762.83 227.69

Fear 96.67 6.84 825.16 220.20

Total 97.22 4.60 752.45 188.85

the positive FCs (using one-sample t test with FDR q = 0.01)
as features since the interpretation of negative FCs remained
controversial and unclear (Fox et al., 2009; Weissenbacher et al.,
2009; Wang et al., 2016; Parente et al., 2018). Table 3 shows the
multi-category and pairwise classification results for the facial
and bodily expressions based on the positive FCs. We also add
analyses of an additional feature selection with F score (Liu et al.,
2015), and these results are shown in Table 3 as F score results.
Using the positive FCs, we found that both facial and bodily
expressions could be successfully decoded for the multi-category
emotion classification (chance level: 33.33%, p < 0.05, 1000

permutation tests), and for the pairwise emotion classification
(chance level: 50%), all pairs of facial expressions (anger vs. fear,
anger vs. joy, fear vs. joy) and two pairs of bodily expressions
(anger vs. fear, fear vs. joy) could be significantly decoded
(p < 0.05, 1000 permutation tests). In addition, we verified our
analysis with two other parcellation schemes, the Harvard–
Oxford atlas and the 200-region parcellations in Craddock et al.
(2012), which were frequently used in previous fcMVPA studies
(Wang et al., 2016; Liang et al., 2018; Zhang et al., 2018). These
classification accuracies were generally similar to those from the
Brainnetome atlas and were significantly higher than chance
(decoding accuracies for the facial expressions were much higher
than that for the bodily expressions), indicating the robustness of
our results (Supplementary Table S1).

Moreover, we calculated the multi-category classification
accuracy as a function of the number of FC features used
in the classification procedure. In this step, FC features were
ranked according to their p values of one-sample t test in
ascending order. Results are shown in Figure 3. We found
that both facial and bodily expressions could be consistently
successful in decoding based on the large-scale FC patterns, and
the decoding accuracies were higher for the facial than for the
bodily expressions.

Discriminative Networks for Facial and
Bodily Expressions
To further understand the emotion-discriminative networks for
facial and bodily expressions, we identified the most contributive

FIGURE 3 | The changes of multi-category classification accuracies for facial and bodily expressions when different number of FC features were used.
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TABLE 2 | Head motion parameters for different emotion categories (mean and SD).

Translation Rotation

x (mm) y (mm) z (mm) Pitch (◦) Roll (◦) Yaw (◦)

Facial expressions Joy 0.15 (0.12) 0.06 (0.03) 0.27 (0.18) 0.25 (0.14) 0.15 (0.09) 0.13 (0.10)

Anger 0.13 (0.09) 0.06 (0.02) 0.23 (0.16) 0.24 (0.16) 0.13 (0.07) 0.11 (0.07)

Fear 0.16 (0.11) 0.07 (0.03) 0.29 (0.21) 0.29 (0.19) 0.16 (0.09) 0.14 (0.11)

Bodily expressions Joy 0.16 (0.11) 0.06 (0.03) 0.27 (0.18) 0.26 (0.14) 0.15 (0.08) 0.14 (0.10)

Anger 0.16 (0.12) 0.07 (0.03) 0.26 (0.15) 0.25 (0.14) 0.15 (0.08) 0.14 (0.10)

Fear 0.14 (0.10) 0.06 (0.03) 0.23 (0.17) 0.24 (0.15) 0.13 (0.07) 0.12 (0.09)

TABLE 3 | Accuracies of decoding facial and bodily expressions using fcMVPA.

Facial expressions Bodily expressions

Positive FCs F score Positive FCs F score

Multi-category classification (Chance level: 33.33%)

56.67%∗ 53.33%∗ 43.33%∗ 46.67%∗

Category pairwise classification (Chance level: 50%)

Anger–Fear 70%∗ 72.5%∗ 62.5%∗ 72.5%∗

Anger–Joy 60%∗ 60%∗ 52.5% 70%∗

Fear–Joy 77.5%∗ 80%∗ 70%∗ 75%∗

∗Significant results at p < 0.05 over 1000 permutation tests.

FCs based on the classifier weights. Consensus FCs were
firstly selected on all folds of LOOCV, and the discriminative
weight for each feature was defined as the average of their
absolute weights across all folds of classification (Ecker et al.,
2010; Dai et al., 2012; Cui et al., 2016). FCs with higher
discriminative weights were considered to be more contributive
to the emotion classification. Figures 4, 5 show the top 50
most contributive FCs (mapped onto the cortical surfaces using
BrainNet Viewer, Xia et al., 2013, and the connectogram is
created using Circos)4 based on the discriminative weights for
the pairwise emotion classifications (joy vs. anger, joy vs. fear,
anger vs. fear). Different colors are used to indicate different
modules (the frontal, temporal, parietal, insula, limbic, and
occipital lobes as well as the subcortical nuclei) according to the
Brainnetome atlas. Lines of the intra-module connections are
represented by the same color as the located module, while the
inter-module connections are represented by gray lines. With
insight into these emotion-discriminative networks, we found the
involvement of widespread brain regions in both hemispheres,
ranging from primary visual regions to higher-level cognitive
regions. Furthermore, we identified emotion-preferring network
for each emotion category based on these contributive FCs,
constituting with FCs that exhibited reliable discriminative power
when classifying a particular emotion with each of the other two
emotions (details of the discriminative FCs for each emotion
are summarized in Table 4). We found that, for both facial and
bodily expressions, fear engaged more discriminative FCs than
anger and joy. Moreover, we compared the emotion-preferring
networks between the facial and bodily expressions. We found
that, for a particular emotion, discriminative FCs for facial

4http://circos.ca/

and bodily expressions were distinct, suggesting that emotions
perceiving from different body cues are processed rely upon
different networks.

DISCUSSION

In the present study, we explored network representation
mechanisms for facial and bodily expressions based on the FC
analysis. We employed a continuous multi-category emotion
task paradigm wherein participants viewed emotions (joy, anger,
and fear) from facial and bodily expressions. We constructed
the FC patterns for each emotion in each stimulus type
and conducted multivariate connectivity pattern classification
analysis (fcMVPA). Results showed that the FC patterns
made successful predictions of emotion categories for both
facial and bodily expressions, and the decoding accuracies
were higher for the facial than for the bodily expressions.
Further discriminative FC analysis showed the involvement
of a wide range of brain areas in the emotion processing,
and the emotion-preferring networks for facial and bodily
expressions were different.

Successful Decoding of Facial and
Bodily Expressions Based on the
Large-Scale FC Patterns
Adopting FC-based MVPA, we showed that emotions perceiving
from facial and bodily expressions can be successfully decoded
from the large-scale FC patterns.

Regarding the exploration of the neural basis for the emotion
perception, most of the previous neuroimaging studies were
dominated by using activation-based univariate analysis to
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FIGURE 4 | Most discriminative FCs for pairwise facial expression classifications. Results are mapped onto the cortical surfaces using BrainNet Viewer. The
coordinates of each node are according to the Brainnetome atlas, and the brain regions are scaled by the number of their connections. The connectogram is created
using Circos. Different colors are used to indicate different modules (the frontal, temporal, parietal, insula, limbic and occipital lobes as well as the subcortical nuclei)
according to the Brainnetome atlas. Lines of the intra-module connections are represented by the same color as the located module, while the inter-module
connections are represented by gray lines.

identify brain regions showing significant responses to facial
or bodily expressions (Kanwisher and Yovel, 2006; de Gelder
et al., 2010; Kret et al., 2011; Pitcher, 2014; Henriksson et al.,
2015; Downing and Peelen, 2016; Tippett et al., 2018). Although
some recent studies employed machine learning algorithms

into fMRI analysis, they mainly focused on the activation-
based decoding of facial emotions in several predefined
ROIs (Said et al., 2010; Harry et al., 2013; Wegrzyn et al.,
2015; Liang et al., 2017). Due to the expected existence of
interactions between distinct cortical regions, FC analysis has
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FIGURE 5 | Most discriminative FCs for pairwise bodily expression classifications. Results are mapped onto the cortical surfaces using BrainNet Viewer. The
coordinates of each node are according to the Brainnetome atlas and the brain regions are scaled by the number of their connections. The connectogram is created
using Circos. Different colors are used to indicate different modules (the frontal, temporal, parietal, insula, limbic, and occipital lobes as well as the subcortical nuclei)
according to the Brainnetome atlas. Lines of the intra-module connections are represented by the same color as the located module, while the inter-module
connections are represented by gray lines.

recently attracted more and more interest. A growing body of
evidence suggests that distinct cortical regions are intrinsically
interconnected during the processing of high-level cognition
(Cole et al., 2013; Wang et al., 2016; Zhang et al., 2018).
One of our recent studies employed FC-based analysis and
showed successful decoding of facial expressions based on the
large-scale FC patterns (Liang et al., 2018). To date, however,

compared with facial expressions, bodily expressions have
received relatively little attention, and no fMRI studies have
adequately addressed the potential role of the FC patterns in
the decoding of bodily expressions. In the present study, using
whole-brain FC analysis and fcMVPA classification, we found
that in addition to the facial expressions, bodily expressions
could also be successfully decoded from the large-scale FC
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TABLE 4 | Discriminative FCs for the facial and bodily expressions.

Node A Node B

x y z Label x y z Label

Facial expressions

Joy

1 48 −70 −1 R Lateral Occipital Cortex 58 −16 −10 R Middle Temporal Gyrus

2 8 58 13 R Superior Frontal Gyrus −4 −23 61 L Paracentral Lobule

3 48 35 13 R Inferior Frontal Gyrus −51 −33 42 L Inferior Parietal Lobule

4 −6 −5 58 L Superior Frontal Gyrus −18 24 53 L Superior Frontal Gyrus

Anger

1 −7 −23 41 L Cingulate Gyrus −41 41 16 L Middle Frontal Gyrus

2 6 −20 40 R Cingulate Gyrus −36 −20 10 L Insular Gyrus

3 −11 −82 −11 L MedioVentral Occipital Cortex −27 −59 54 L Superior Parietal Lobule

4 −28 −30 −10 L Hippocampus −25 −25 −26 L Parahippocampal Gyrus

Fear

1 −27 −4 −20 L Amygdala −33 −16 −32 L Fusiform Gyrus

2 29 −75 36 R Lateral Occipital Cortex 31 −54 53 R Superior Parietal Lobule

3 57 −40 12 R Posterior Superior Temporal Sulcus 7 −76 11 R MedioVentral Occipital Cortex

4 57 −40 12 R Posterior Superior Temporal Sulcus −5 −81 10 L MedioVentral Occipital Cortex

5 −62 −33 7 L Superior Temporal Gyrus −52 −32 12 L Superior Temporal Gyrus

6 54 24 12 R Inferior Frontal Gyrus 48 35 13 R Inferior Frontal Gyrus

7 54 24 12 R Inferior Frontal Gyrus 45 16 25 R Inferior Frontal Gyrus

Bodily expressions

Joy

1 −54 −40 4 L Posterior Superior Temporal Sulcus 42 22 3 R Inferior Frontal Gyrus

2 −33 −47 50 L Superior Parietal Lobule −28 56 12 L Middle Frontal Gyrus

3 −27 −59 54 L Superior Parietal Lobule −49 36 −3 L Inferior Frontal Gyrus

4 −16 −24 6 L Thalamus −18 −23 4 L Thalamus

Anger

1 19 −2 −19 R Amygdala 9 20 −19 R Orbital Gyrus

2 7 −76 11 R MedioVentral Occipital Cortex 10 −85 −9 R MedioVentral Occipital Cortex

3 −15 −71 52 L Superior Parietal Lobule 42 44 14 R Middle Frontal Gyrus

4 −22 −47 65 L Superior Parietal Lobule −16 −60 63 L Superior Parietal Lobule

Fear

1 34 8 54 R Middle Frontal Gyrus 20 4 64 R Superior Frontal Gyrus

2 51 −4 −1 R Superior Temporal Gyrus 56 −10 15 R Postcentral Gyrus

3 −18 −99 2 L Lateral Occipital Cortex −6 −94 1 L MedioVentral Occipital Cortex

4 −18 −99 2 L Lateral Occipital Cortex −46 −74 3 L Lateral Occipital Cortex

5 22 −97 4 R Lateral Occipital Cortex −6 −94 1 L MedioVentral Occipital Cortex

6 29 −75 36 R Lateral Occipital Cortex −27 −59 54 L Superior Parietal Lobule

7 −30 −88 −12 L Lateral Occipital Cortex −46 −74 3 L Lateral Occipital Cortex

8 −30 −88 −12 L Lateral Occipital Cortex −6 −94 1 L MedioVentral Occipital Cortex

The label and MNI coordinates of each node are according to the Brainnetome Atlas.

patterns. These results add to the recently increasing number
of studies suggesting that significant amount of information
may also be represented in the FC patterns, which can be
successfully applied to distinguish social anxiety disorder and
major depression patients from the healthy controls (Zeng
et al., 2012; Liu et al., 2015), and differentiate among various
object categories (Wang et al., 2016), tasks (Cole et al., 2013),
mental states (Dosenbach et al., 2010; Pantazatos et al., 2012;
Shirer et al., 2012), and sound categories (Zhang et al., 2018).
Moreover, our results not only are in line with previous findings
on facial expressions but also further suggest the potential

contribution of the large-scale FC patterns in the processing of
bodily expressions.

Taken together, our results highlight the potential role
of the FC patterns in the neural processing of emotions,
suggesting that large-scale FC patterns may contain rich
emotional information to accurately decode both facial and
bodily expressions. Our study provides new evidence for the
distributed neural representations of emotions in the large-
scale FC patterns and further support that general interactions
between distributed brain regions may effectively contribute to
the decoding of human emotions.
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Network Representations for Facial and
Bodily Expressions
In this study, we identified the most contributive FCs in emotion
discrimination based on the classifier weights. Figures 4, 5
show the top 50 most discriminative FCs (mapped onto the
cortical surfaces using BrainNet Viewer, Xia et al., 2013, and the
connectogram is created using Circos, see text footnote 4) for
the pairwise emotion classifications (joy vs. anger, joy vs. fear,
anger vs. fear). Different colors are used to indicate different
brain modules (the frontal, temporal, parietal, insula, limbic, and
occipital lobes as well as the subcortical nuclei) according to
the Brainnetome atlas. Lines of the intra-module connections
are represented by the same color as the located module, while
the inter-module connections are represented by gray lines.
We found that these emotion-discriminative networks were
widely distributed in both hemispheres, containing FCs among
widespread brain regions in occipital, parietal, temporal, and
frontal lobes, ranging from primary visual areas to higher-level
cognitive areas. Particularly, these networks included classical
face- and body-selective areas, such as the FG and the posterior
superior temporal sulcus (pSTS). Additionally, regions that were
not classically considered sensitive by traditional activation-
based measures, such as the postcentral gyrus and the middle
frontal gyrus, were also included in the discriminative networks.
To some extent, these results were compatible with recent
fcMVPA studies on decoding of various object categories, sounds,
and facial expressions, suggesting the potential effects of the
activation-defined neutral areas on high-level cognition (Wang
et al., 2016; Liang et al., 2018; Zhang et al., 2018). Together, our
results from the discriminative network analysis indicate how
large-scale FC patterns reconfigure in the processing of facial and
bodily expressions and further corroborate the distributed neural
representation for the emotion recognition.

Furthermore, we constructed an emotion-preferring network
for each emotion category, composed of FCs that significantly
contributed to the classifications between a particular emotion
and the other two emotion categories (Table 4). With insight into
these emotion-preferring networks, we found that for the facial
expressions, joy evoked FCs across the occipital, the frontal, the
temporal, and the parietal lobes; fear evoked more FCs than joy
and anger, which is mainly across the occipital, the temporal, the
frontal, and the parietal lobes as well as the subcortical nuclei;
and anger evoked FCs across all seven modules. Our results were
compatible with previous studies on facial expression perception,
which demonstrated the involvement of anatomical regions, such
as the visual areas, the FG, the STS, the amygdala, the insula,
the middle temporal gyrus, and the inferior frontal areas, in
the processing, analyzing, and evaluating of the emotional facial
stimuli (Trantmann et al., 2009; Kret et al., 2011; Harry et al.,
2013; Furl et al., 2015; Henriksson et al., 2015; Wegrzyn et al.,
2015; Liang et al., 2017). Moreover, results of our emotion-
preferring networks may provide new evidence to indicate the
potential preference of a specific region in the processing of
particular emotions; for instance, in our study, amygdala was
involved in the discriminative network for fear, which was
consistent with previous findings that showed that amygdala

could enhance the encoding of fearful facial expressions using
dynamic causal modeling analysis (Furl et al., 2013, 2015).

For the emotion-preferring networks of bodily expressions,
however, we found that the networks for each emotion were
different from that for the facial expressions. When perceiving
emotions from bodily stimuli, joy mainly evoked FCs across
the temporal, the parietal, and the frontal lobes as well as
the subcortical nuclei; anger evoked FCs across the subcortical
nuclei, the occipital, the parietal, and the frontal lobes; and
fear mainly evoked FCs across the frontal, the temporal, the
occipital, and the parietal lobes. For fear, the bilateral lateral
occipital cortex served as the hub region (most densely connected
region). Previous studies using activation-based analysis have
found the preferential activations in the STS, the superior
parietal lobule, the superior temporal gyrus, and the thalamus
for the bodily expression perception (Kret et al., 2011; Yang
et al., 2018). Our results were consistent with these previous
findings, and may further our understanding of the neural basis
for decoding of bodily expressions. Moreover, for a particular
emotion, discriminative FCs for facial and bodily expressions
were distinct, suggesting that the human brain employs separate
network representations for facial and bodily expressions of the
same emotions. To sum, our results provide new evidence for the
network representations of emotions, and suggest that emotions
perceiving from different body cues may be processed rely upon
different networks.

The present study employed a similar sample size as those
reported in previous fMRI studies on facial emotion perception
and fcMVPA-based decoding analyses (Furl et al., 2013; Wegrzyn
et al., 2015; Wang et al., 2016; Zhang et al., 2018). The inclusion
of additional samples could further improve the statistical power
and boost the accuracy. Moreover, a larger number of participants
can better prove the effectiveness of our findings. Thus, it is
important to confirm our findings with a larger sample size in the
future study. Additionally, emotions can also be perceived from
sounds and other clues. Future studies on other perceptual cues
would be meaningful to help to further understand the neural
basis of emotion processing more fully and deeply.

CONCLUSION

Taken together, using fcMVPA-based classification analyses, we
show that rich emotional information is represented in the large-
scale FC patterns, which can accurately decode not only facial
but also bodily expressions. These findings further corroborate
the importance of the FC patterns in emotion perception. In
addition, we show that the emotion-discriminative networks
are widely distributed in both hemispheres, suggesting the
interactive nature of distributed brain areas underlying the
neural representations of emotions. Furthermore, our results
provide new evidence for the network representations of facial
and bodily expressions and suggest that emotions perceiving
from different body cues may be processed rely upon different
networks. This study further extends previous fcMVPA studies
and may be helpful to improve the understanding of the potential
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mechanisms that enable the human brain to efficiently recognize
emotions from body language in daily lives.
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