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An Analysis of Individual Differences in
Recognizing Monosyllabic Words Under
the Speech Intelligibility Index Framework
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Abstract

Individual differences in the recognition of monosyllabic words, either in isolation (NU6 test) or in sentence context (SPIN

test), were investigated under the theoretical framework of the speech intelligibility index (SII). An adaptive psychophysical

procedure, namely the quick-band-importance-function procedure, was developed to enable the fitting of the SII model to

individual listeners. Using this procedure, the band importance function (i.e., the relative weights of speech information

across the spectrum) and the link function relating the SII to recognition scores can be simultaneously estimated while

requiring only 200 to 300 trials of testing. Octave-frequency band importance functions and link functions were estimated

separately for NU6 and SPIN materials from 30 normal-hearing listeners who were naı̈ve to speech recognition experiments.

For each type of speech material, considerable individual differences in the spectral weights were observed in some but not

all frequency regions. At frequencies where the greatest intersubject variability was found, the spectral weights were

correlated between the two speech materials, suggesting that the variability in spectral weights reflected listener-originated

factors.
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Introduction

The recognition of speech in a noisy background is a
comprehensive process that involves peripheral, central
auditory, and cognitive factors (e.g., Committee on
Hearing and Bioacoustics and Biomechanics, 1988;
Humes et al., 2012). Although audibility is important
for understanding speech, individual listeners exhibit dif-
ferences in speech recognition performance even when
audibility is controlled for (e.g., Humes, Kidd, &
Lentz, 2013). The current study investigates the possibil-
ity of analyzing individual differences in speech recogni-
tion using the Speech Intelligibility Index (SII, American
National Standards Institute [ANSI], 1997) model.

The SII reflects the proportion of total speech infor-
mation available to the listener. It is given by:

SII ¼
X

i

wiAi ð1Þ

where wi is the band importance function, which repre-
sents the relative importance of speech information,

or the spectral weight, for the ith frequency band. Ai is
the band audibility function, which represents the audi-
bility of speech signal in the ith frequency band. The
spectral weights across all frequency bands sum to 1,
and the value of Ai ranges between 0 and 1. Therefore,
the SII is constrained to be between 0 and 1. Previous
studies have demonstrated that the SII is capable of pre-
dicting average speech-recognition scores in quiet and in
steady-state noise for a variety of test materials, includ-
ing nonsense syllables (French & Steinburg, 1947;
Pavlovic & Studebaker, 1984), monosyllabic words
(e.g., ANSI S3.5-1969; Black, 1959; Duggirala,
Studebaker, Pavlovic, & Sherbecoe, 1988; Tillman &
Carhart, 1966), spondees (Dubno, Dirks, & Morgan,
1984), and sentences (Grant & Braida, 1991; Healy,
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Yoho, & Apoux, 2013; Kalikow, Stevens, & Elliott,
1977; SPIN; Studebaker, Pavlovic, & Sherbecoe, 1987;
Studebaker, Sherbecoe, & Gilmore, 1993). The core
assumption underlying the SII is that audibility in vari-
ous frequency regions contributes to speech understand-
ing differentially according to the band importance
function. The band importance function is a function
relating spectral weights to frequency. If a certain fre-
quency region exhibits a high weight, then it means
that this frequency region is relatively more essential
for speech intelligibility. Otherwise, if a frequency
region has a low weight, then this frequency region car-
ries less importance.

Although the SII model is predictive of average
speech recognition performance, it is known that homo-
geneous performance would not be expected across
listeners, especially hearing-impaired listeners. In par-
ticular, a number of studies have suggested large vari-
ability in the benefits from high-frequency (i.e., >3 kHz)
speech audibility (e.g., Amos & Humes, 2007; Ching,
Dillon, & Byrne, 1998; Hogan & Turner, 1998;
Horwitz et al., 2008). For some hearing-impaired lis-
teners, high-frequency amplification can even lead to
performance degradation (e.g., Amos & Humes, 2007).
Ching et al. (1998) systematically explored the
approaches of extending the SII model to improve its
predictive power to individual data. These authors sug-
gested that a proportion of individual differences in
speech recognition may be modeled using a multiplica-
tive, frequency-dependent proficiency factor fitted for
each individual listener (i.e., Equation (9) in Ching
et al., 1998). That is,

SIIm ¼
X

i

wiAi,mLiPi,m ð2Þ

where SIIm is the SII for the mth individual listener; wi is
the band importance function; and Ai,m is the band audi-
bility function, which represents the audibility of speech
signal in the ith frequency band according to the mth
listener’s audiogram and the relative intensity between
the target speech and masker (i.e., Target-to-Masker
ratio or TMR). Li is a level-dependent distortion factor
to account for the phenomenon that speech understand-
ing degrades at high speech levels. Pi,m is the proficiency
factors for the ith band and mth listener. As an alterna-
tive to the formulation of Ching et al. (1998), one can
treat wi, Li, and Pi,m as components of an individualized
band importance function w0i,m:

SIIm ¼
X

i

w0i,mAi,m ð3Þ

This individualized band importance function reflects
suprathreshold factors related to the type of speech

material, speech level, and listening proficiency or
strategy.

To apply the individualized version of the SII model
to predict variations in speech understanding across lis-
teners for various types of speech materials, an appro-
priate approach to estimate the band importance
function and fit the SII model to individual listeners’
speech-recognition performance is required. The classic
approach for estimating the band important function
(e.g., French & Steinberg, 1947) involves the following
steps. First, speech recognition is measured at high
signal-to-noise ratio under both low-pass and high-pass
conditions. As the cutoff frequency of the low-pass filter
increases, the performance increases due to the availabil-
ity of more frequency bands. On the other hand, as the
cutoff frequency of the high-pass filter increases, the per-
formance decreases. At a certain intermediate cutoff fre-
quency, equal performance is achieved for the low- and
high-pass conditions, which can be considered as the per-
formance associated with half of the speech information
(i.e., an SII of 0.5). Repeating the aforementioned pro-
cedure provides a function relating the SII to speech-
recognition performance, that is, a link function.
Second, using the obtained link function, the relation-
ship between performance and cutoff frequency is con-
verted into a function that describes how the SII
accumulates (for the low-pass condition) or dissipates
(for the high-pass condition) as the cutoff frequency
increases. Third, differentiating the aforementioned func-
tion and then averaging across the low- and high-pass
conditions lead to the final estimate of the band import-
ance function.

Calandruccio and Doherty (2007) pointed out that the
low- and high-pass filtered speech used to derive the
band importance function does not represent realistic
listening scenarios. In an effort to probe spectral weights
while utilizing relatively less artificial stimuli,
Calandruccio and Doherty (2007) adopted a correl-
ational method that obtained spectral weights based on
the correlation between the signal-to-noise ratio within
each frequency band and the correctness in recognizing
keywords in sentences. These authors showed that the
spectral weights obtained using the correlational
method deviated from those expected using low- and
high-pass stimuli. There were also noticeable differences
between spectral weights for nonsense syllables and sen-
tences. Apoux and Healy (2012) developed another tech-
nique, namely the compound technique, to obtain
estimates of the band importance function while address-
ing issues associated with the classic approach of
high-pass and low-pass filtering speech materials. This
technique assessed the importance of each frequency
band in turn. For each target band, the speech stimulus
was presented through the target band and four other
frequency bands drawn at random on a trial-by-trial
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basis. These authors reevaluated the band importance
functions reported for the W22 words (Hirsh et al.,
1952) and the SPIN sentences (Kalikow et al., 1977)
using the compound technique and found that the
band importance functions differed substantially
depending on the method used (Healy et al., 2013).

Bosen and Chatterjee (2016) were among the first to
estimate band importance functions from individual lis-
teners. These authors filtered speech into 20 frequency
bands and selected a subset of the bands (7 out of 20
bands) to be presented on each trial. The selection of the
presentation bands was governed by rules to ensure that
(a) the selected bands spread across a wide frequency
range; (b) each band occurred equal number of times
within an experimental run; and (c) the co-occurrences
of pairs of bands were balanced. Using noise-vocoded
sentences, the band importance functions estimated
from normal-hearing listeners were qualitatively similar
to those reported for speech presented in quiet by Healy
et al. (2013).

Based on previous research efforts, the individualized
band importance function provides a framework to
investigate the source of individual differences in
speech recognition. With an individually fitted SII
model, it is possible to assess whether individual differ-
ences are mainly governed by audibility, spectral
weights, or general speech-recognition proficiency.
Therefore, it may be beneficial to develop a relatively
rapid experimental procedure for routine estimation of
the individualized band importance function. For this
purpose, the aforementioned approaches to evaluate
spectral weights are limited in that they typically require
a time-consuming process for data collection. In some
cases, due to the limited number of unique tokens in
the speech corpuses, each estimate of the spectral weights
requires combining data from multiple listeners to pre-
vent repeating tokens for each listener. For the classic
approach, for example, Studebaker et al. (1993) obtained
their estimates of the band importance function using
6,400 experimental trials pooled across 12 listeners.
The correlational method used by Calandruccio and
Doherty (2007) required 600 sentences (3,000 keywords)
to obtain weight estimates, which took approximately 3
hours. Each of the band importance functions reported
by Healy et al. (2013) using the compound technique
(Apoux & Healy, 2012) were based on 1,176 trials
pooled over three groups of listeners, which took
approximately 6 hours. The laborious process involved
in the estimation of the spectral weights prevents con-
ducting the aforementioned approaches to be on a rou-
tine basis.

In the current study, a new adaptive procedure,
namely the quick-band-importance-function (qBIF) pro-
cedure, is used similar to the approaches used by
Calandruccio and Doherty (2007), Healy et al. (2013),

and Bosen and Chatterjee (2016) with modifications to
shorten the required testing time. One of these modifica-
tions is to limit the resolution of the band importance
function so that it only includes six octave bands. This
compromise in spectral resolution allows the weight esti-
mates to converge more rapidly since only a small
number of free parameters are estimated. Another modi-
fication is that the qBIF procedure uses a Bayesian adap-
tive algorithm to iteratively optimize the stimulus for
each test trial. This algorithm omits stimulus configur-
ations that are not informative to the spectral weights,
which aims to improve the test efficiency. In the follow-
ing, the qBIF procedure will be first described in detail,
then an initial feasibility study using the qBIF procedure
to analyze individual differences in speech recognition
performance will be presented. In the feasibility study,
the parameters for the SII model were estimated using
two different types of speech materials. Whether the vari-
ability in the parameter estimates is merely random
measurement errors or they reflect factors inherent to
individual listeners was investigated. It will be shown
that correlations were found between the two sets of par-
ameter estimates using two different speech materials.
The observed within-subject consistency demonstrates
the potential for characterizing individual differences
for speech recognition in noise using the parameters of
the SII model.

The QBIF Procedure

Rationale

The qBIF procedure is similar to previous approaches to
estimate the band importance function using the com-
pound technique (e.g., Bosen and Chatterjee, 2016;
Healy et al., 2013) with a few modifications. First, the
qBIF procedure varies not only the frequency bands to
be presented but also the TMR on a trial-by-trial basis.
Instead of randomly running through a predetermined
stimulus set, the qBIF procedure optimizes the stimulus
choice iteratively based on the previously collected
responses on the same qBIF run. The optimization algo-
rithm maximizes the expected information gain for each
trial, which leads to two potential benefits. First, it may
improve the test efficiency by not sampling stimuli that
are not informative to the estimated parameters of the
SII model. Second, the optimization algorithm can adapt
to individual listeners’ level of performance, so that the
overall speech-recognition score after a qBIF run would
be relatively consistent across listeners. On the other
hand, if a predetermined stimulus set is used, it is pos-
sible that the stimuli selected may be too easy for some
listeners while too difficult for others.

A second noticeable difference between the qBIF and
many previous procedures is that the qBIF procedure
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estimates the band importance function with a small
number of frequency bands (i.e., six octave bands).
Consequently, the qBIF procedure is not able to estimate
some of the fine variations in the spectral weights. The
rationale for this compromise in spectral resolution is
twofold. First, the reduced total number of free param-
eters means that a smaller number of experimental trials
may be required to estimate the BIF. Second, as the
number of frequency bands (Nband) increases, the
number of potential stimulus choices increases. When
Nband is too large, the computational effort of the itera-
tive stimulus optimization algorithm may be too high so
that a significant delay is required between consecutive
experimental trials. The effect of Nband will be explored
further below using computational simulations.

Implementation

During the qBIF procedure, the stimulus presented on
each trial is optimized iteratively following each trial,
which maximizes the expected information gain from
the following trial. Before each trial, the stimulus opti-
mization algorithm selects one stimulus from a pool of
all possible stimuli. Figure 1 illustrates how the stimuli in
the qBIF procedure are generated. The target speech and
competing masker are first mixed together at the speci-
fied TMR and then the target-masker mixture is passed
through a filter bank. The filter bank consists of six
octave-frequency bands (i.e., Nband¼ 6), centered at
250, 500, 1000, 2000, 4000, and 8000Hz. Each of the
filters is constructed as 12th-order butterworth filters
(using the MATLAB command fdesign.octave included

in the DSP Systems Toolbox) with 36 dB/oct roll-off at
each of its cutoff frequencies. The outputs from these
filters are used to reconstruct the target-masker mixture,
but with the signals from a subset of the frequency bands
omitted during reconstruction. Therefore, the stimulus
on a given trial is determined by the TMR and a
switch vector n that governs which of the six octave
bands that allows the target and masker to pass (i.e.,
ni¼ 0 or 1, i¼ 1,. . .,6). To construct the pool of possible
stimuli, the possible TMR values are from �5 dB to
15 dB with 5-dB spacing; and the possible values for n

is limited so that the number of bands included for
speech presentation ranged from two to five bands.
This leads to 56 possible values for n and 280 unique
combinations of TMR and n in the pool of possible
stimuli.

In the qBIF procedure, speech recognition perform-
ance is described by a logistic link function:

p ¼ 1þ e�� 30SII-15�SRTð Þ
� ��1

ð4Þ

In Equation (4), p is the probability of correctly recog-
nizing a keyword in speech; the speech recognition
threshold (SRT) indicates the TMR corresponding to
50% correct recognition; � is the slope parameter of
the link function with greater � values indicating steeper
slopes; and the SII is given by Equation (3). At supra-
threshold speech levels, the band audibility function Ai is
given by:

Ai ¼
TMR0i þ 15

30
ð5Þ

Figure 1. The schematic for the signal processing stages in the qBIF procedure.
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where TMRi
0 is the TMR in the ith frequency band and

bounded between �15 and 15 dB, such that 04Ai4 1.
The current implementation of the SII model has a

total of eight free parameters (spectral weights in the six
octave bands, SRT, and �). These parameters can be
estimated using logistic regression following each experi-
mental trial of the qBIF procedure. In the following, the
parameter estimates following the kth trial are written as
a Vector rk in an eight-dimensional parameter space.
The covariance matrix for rk, provided by the logistic
regression, will be noted as Pk. Note that rk and Pk

describe a multivariate posterior parameter distribution
with rk being the mean of the distribution and Pk

describing the covariance matrix of the distribution.
Assuming that the distribution takes the form of a multi-
variate Gaussian distribution, the spread of the posterior
parameter distribution can be quantified as the entropy,
which is proportional to the determinant of the covari-
ance matrix Pk.

Following the kth trial, the qBIF procedure optimizes
the stimulus choice within the pool of possible stimuli. The
optimization algorithm is based on an entropy-based cri-
terion, such that the expected entropy for the posterior
parameter distribution following the kþ 1th trial would
be minimized (see also Kontsevich & Tyler, 1999;
Lesmes, Lu, Baek, & Albright, 2010; Shen & Richards,
2013a, 2013b; Shen, Sivakumar, & Richards, 2014)

TMR, nf g ¼ arg min
TMR

0
, n0

E ln P
0

kþ1

�� ��� �� �
ð6Þ

where jPkþ10j is the determinant of the covariance matrix
for the parameter distribution following the kþ 1th trial
with the hypothetical stimulus specified by TMR0 and n0;
and E(.) indicates the expected value across the two pos-
sible responses (i.e., correct or incorrect) collected from
the kþ 1th trial.

In practice, the performance of the aforementioned
one-step-ahead search algorithm (Equation (6)) depends
on the accuracy of the interim parameter estimate rk.
However, at the beginning of data collection, there
may not be sufficient data to establish a reasonable
interim estimate and to direct the stimulus sampling in
a meaningful manner. To address this issue, the one-step-
ahead search algorithm is not activated until some initial
training data is collected. Here, training refers to the
training of the qBIF algorithm, not the listener. The ini-
tial TMR is 15 dB and only one frequency band is
omitted. Therefore, during the first six trials, each of
the six bands is omitted once in random sequence, fol-
lowed by 15 trials with pairs of bands omitted, also in
random sequence. This procedure is repeated for com-
binations of three, and then four, omitted bands until (a)
the number of training trials is greater than 10 and the
performance score drops below 65% or (b) the number

of training trials is greater than 50. These early trials are
sequenced so that each qBIF run always starts from rela-
tively easy conditions (a 15-dB TMR with only one band
omitted), and the training data set contains sufficient
incorrect responses to enable a meaningful logistic
regression. The one-step-ahead search algorithm
(Equation (6)) is activated once the collection of the
training data is complete.

Simulations

To validate the implementation of the qBIF procedure,
as described earlier, and to assess its efficiency, compu-
tational simulations were conducted. In these simula-
tions, simulated listeners were constructed using the
standard SII model and the band importance functions
were estimated from the simulated listeners. The simula-
tions focused on: (a) the effect of the total number of
frequency band Nband on the accuracy and computa-
tional efforts of the qBIF procedure and (b) the efficiency
of the one-step-ahead search algorithm (Equation (6)) as
compared with other stimulus sampling strategies.

The simulated listeners produced responses, in terms
correct or incorrect keyword recognition, according to a
link function:

p ¼ 1� 10�SII P=Q
� �N

ð7Þ

where P, Q, and N are the three free parameters of the
link function (e.g., Dirks, Bell, Rossman, & Kincaid,
1986; Fletcher & Galt, 1950; Studebaker & Sherbecoe,
1991; Kates, 2013; Jin, Kates, Lee, & Arehart, 2015; Jin,
Kates, & Arehart, 2017). The link function for the simu-
lated listeners (Equation (7)) was different from the logis-
tic link function used for the qBIF procedure (Equation
(4)). This was implemented to verify that the qBIF pro-
cedure was relative robust against specific formulations
of the link function. The SII in Equation (7) was calcu-
lated based on the stimulus parameters TMR and n for
each simulated trial. For each simulated listener, P was
set to 1 and all other model parameters (spectral weight
in each of the Nband frequency bands, Q, and N) were
randomly determined. The spectral weights were con-
structed by first randomly drawing Nband candidate
values from a uniform distribution spanning 0 and 1
and then normalizing the drawn values so that they
summed to 1. The value for Q was randomly drawn
from a uniform distribution spanning 0.2 and 0.5. The
value for N was randomly drawn from a uniform distri-
bution spanning 2 and 12.

For the effect of Nband, four values of Nband, 4, 6, 8,
and 10, were tested. For each of the Nband values, 100
simulated listeners were constructed. For each simulated
listener, the band importance function was estimated
using a qBIF run containing 500 simulated trials.
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The accuracy of the qBIF procedure was quantified as
the root-mean-squared (RMS) deviation from the esti-
mated spectral weights to the true weights, that is, the
RMS error. The RMS errors were normalized so that
they reflected the error within an octave frequency
range. This normalization procedure was used to counter
balance the fact that as Nband increases the spectral
weights decreases on average because they sum to 1.
Therefore, the expected RMS errors without normaliza-
tion are expected to be smaller for higher values of Nband.

The upper left panel of Figure 2 plots the normalized
RMS error, averaged across the 100 simulated listeners,
as a function of the number of trials for the four values
of Nband. As the number of trials increases, the normal-
ized RMS error decreases. As Nband increases, the nor-
malized RMS error increases; therefore, the accuracy of
the band importance function estimated using the qBIF
procedure becomes poorer for a larger number of imple-
mented frequency bands. The lower left panel of Figure 2
plots the standard deviation of the normalized RMS
errors across simulated listeners. As the trial number
increases, the standard deviation decreases, indicating

that the qBIF procedure is more robust to listener vari-
ations as more trials of data are collected. Below 250
trials, the standard deviation tends to be larger for
higher values of Nband, suggesting that the robustness
of the qBIF procedure is greater for smaller values of
Nband. Above 250 trials, the standard deviation becomes
similar across Nband.

The simulations also showed that as Nband increases,
the qBIF procedure required greater computational
resources. For 4, 6, 8, and 10 bands, the average comput-
ing time for the one-step-ahead search algorithm running
at a processor speech of 3.60GHz were 0.16, 0.75, 3.62,
and 8.73 s per trial, respectively. This means that for
standard personal computers, the qBIF procedure may
require a considerable amount of computing time
between consecutive trials for a large Nband. As stated
earlier, one of the reasons that the qBIF procedure was
implemented with six octave bands in the current study
was to prevent the computational delay from undermin-
ing the efficiency of data collection.

For the effect of stimulus sampling strategies, the
number of frequency bands Nband was fixed to be six.
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Figure 2. The mean (top panels) and standard deviation (bottom panels) of the normalized RMS errors across 100 simulated listeners as

functions of trial number. In the left panels, results are plotted for the qBIF procedures implemented with the total number of frequency

bands being 4, 6, 8, and 10 bands (different line styles). In the right panels, results are plotted for three stimulus sampling strategies

(different line styles). RMS¼ root-mean-squared; qBIF: quick-band-importance-function; quick-band-importance-function.
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Besides the one-step-ahead search algorithm in the qBIF
procedure, two other strategies were considered, namely
the Compound strategy and the Random strategy. The
Compound strategy was inspired by the compound tech-
nique developed by Apoux and Healy (2012). The
Compound strategy identifies one of the six frequency
bands as the target band. For each pair of trials, two
bands other than the target band were randomly drawn
and were used to present the speech on both of the trials.
The two trials in the pair were different in that the target
band was included to present the speech in one trial while
it was not included for stimulus presentation on the other
trial. For each target band, the Compound procedure
ran through all 10 possible band combinations (i.e., 20
trials) in random order before a new target band was
identified. Each of the six frequency bands was served
as the target band one at a time (from band 1 to band
6 in that order), and this process was repeated until a
total of 500 trials were reached. For the Compound
strategy, speech was only presented to the simulated lis-
teners in quiet.

The Random strategy was akin to the procedure
developed by Bosen and Chatterjee (2016). It presented
speech in a subset of the six bands, and the number of
bands included for speech presentation was from 2 to 5.
This means that there were a total of 56 possible band
combinations. These 56 combinations were tested in
random order and repeated until a total of 500 trials
were reached. As for the Compound strategy, only
speech-in-quiet was presented to the simulated listeners.
For each of the three stimulus sampling strategies, 100
simulated listeners were constructed. The band import-
ance functions for all simulated listeners were estimated
using logistic regression, and the accuracy of the esti-
mates was quantified using the RMS error as before.

The upper right panel of Figure 2 plots the normalized
RMS error, averaged across the 100 simulated listeners,
as a function of the number of trials for the three stimu-
lus sampling strategies. As the number of trials increases,
the normalized RMS error decreases for all three strate-
gies. Above approximately 100 trials, all three strategies
leads to similar RMS errors, with the qBIF procedure
performs slightly better than the other two. For example,
to reach a normalized RMS error of 0.05, about 113
trials are required for the qBIF procedure, 130 trials
are required for the Random strategy, and 160 trials
are required for the Compound strategy on average.
For trial numbers less than 100, the accuracy of the
Compound strategy was poorer than the other two stra-
tegies, which may be because that the Compound strat-
egy ran through target bands in a sequential fashion. The
lower right panel of Figure 2 plots the standard deviation
of the normalized RMS errors across simulated listeners.
The standard deviation decreases as the trial number
increases, indicating that the robustness against

variations among simulated listeners improves with a
greater number of trials for all three stimulus sampling
strategies. The standard deviation of the normalized
RMS errors is the highest for the Compound strategy.
Below 200 trials, the standard deviation is lower for the
qBIF procedure than the Random strategy, while above
200 trials, these two strategies lead to similar standard
deviations.

The recognition score across the 500 simulated trials
for each of the three stimulus sampling strategy reveals
whether the most informative stimuli were selected by
the strategy. In principle, an efficient strategy should
sample stimuli near a performance level of 50%, while
sampling stimuli that lead to performance ceiling or floor
would not be efficient. The simulated recognition scores
averaged across the 100 simulated listeners were 53.7%,
53.1%, and 65.8% and the standard deviations were
5.1%, 15.1%, and 12.3% for the qBIF procedure, the
Compound strategy, and the Random strategy, respect-
ively. This suggests that the qBIF procedure concentrates
stimuli consistently near 50% correct, while for the other
two strategies, the recognition scores depend on individ-
ual simulated listeners since these two strategies do not
adapt to individual listeners’ levels of speech-recognition
proficiency.

Overall, the simulations presented earlier show that
the qBIF procedure implemented with six octave bands
can provide efficient estimation of the band importance
function with satisfactory robustness against listener
variations. Below, results will be presented for the
band importance functions estimated from a group of
normal-hearing listeners using the qBIF procedure.

Methods

Listeners

Thirty listeners (16 females and 14 males) were recruited
for the current study, all of whom were native speaker of
English but naı̈ve to speech recognition experiments.
The listeners were between the ages of 18 and 26 years.
All listeners had audiometric thresholds at or lower than
15 dB HL between 250 and 8000Hz in both ears. The ear
with lower pure-tone average thresholds, that is, the
average threshold across 500, 1000, and 2000Hz, was
chosen as the test ear. In cases where the PTA thresholds
from the two ears were identical, the left ear was used as
the test ear. The experimental protocol was approved by
the institutional review board at Indiana University.
Informed consent was obtained from all listeners.

Stimuli

The target speech stimuli included words from the NU6
list corpus (Studebaker et al., 1993) recorded by Auditec
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of St. Louis and the Revised SPIN sentence list recorded
by Bilger, Nuetzel, Rabinowitz, and Rzeczkowski (1984)
at the University of Illinois. Both lists were spoken by an
adult male speaker with an American accent. The NU6
word list consisted of four lists of 50 test items each.
Each test item contained a carrying phrase followed by
a keyword (i.e., 50 keywords per list). Lists 1 through
3 were used in the current study. The SPIN sentences
consisted of eight lists of 50 sentences. Each list con-
tained 25 high-context (SPIN-High) and 25 low-context
(SPIN-Low) sentences. The high-context sentences from
Lists 1 through 8 were used in the current study. The
masker presented was a multitalker babble from the ori-
ginal test materials. For the NU6 material, the babble
noise consisted of 20 young adults (including both male
and female talkers) who were recorded simultaneously
reading different passages. For the SPIN material, the
noise was a 12-talker babble, including both male and
female talkers. The target speech and babble noise were
combined using the procedure described in the previous
section (also see Figure 1). The filtering of the stimuli was
applied to the entire stimulus for each trial, including the
carrying phrase for NU6 and the entire sentence for
SPIN, not just to the keywords.

All stimuli were presented at a sampling rate
of 44100Hz. They were presented to the listeners via a
24-bit soundcard (Microbook II, Mark of the Unicorn,
Inc.) and a headphone (HD280 Pro, Sennheiser elec-
tronic GmbH & Co. KG). During the experiment, the
listeners were seated in a sound-attenuating booth.

Procedures

Following audiometric threshold measurements, half of
the listeners were tested using the NU6 lists first followed
by the SPIN lists, while the other half began with the
SPIN material. For NU6, the listener was presented with
a sentence that consisted of a carrier phrase: ‘‘Say the
word,’’ and a monosyllabic keyword. The listener’s task
was to verbally repeat the keyword. The experimenter
was seated outside of the sound-attenuating booth and
monitored the listener’s verbal responses via a talk-back
microphone, which was a part of a clinical audiometer
(GSI Pello, Grason-Stadler, Inc.). The responses were
scored in terms of correctness. When a response was
not clear to the experimenter, the listener was instructed
to repeat the response. The Lists 1 to 3 of the NU6
corpus were tested in random order, and repeated once
in the same random order, leading to a total of 300 trials.
For each of the NU6 lists, the order of the keywords was
shuffled, so even though each list was repeated twice, the
listener was not able to identify the keyword based on
the memorized word order. During the 300 trials, the
stimulus was adaptively modified on a trial-by-trial
basis by the qBIF procedure. For SPIN, a sentence

with high semantic context was presented on every trial
and the listener was instructed to repeat the last word of
the sentence. Lists 1 to 8 of the SPIN corpus were tested
in random order, leading to a total of 200 trials. As for
NU6, the keywords from each of the lists were presented
in random order. The experiment was conducted in a
single session of 1.5 to 2 hours in duration.

Results

Intersubject Variability

For the majority of the listeners, the percentage correct
in recognizing the keywords was between 60% and 70%
for both types of speech materials (see Figure 3). The
one-step-ahead search algorithm of the qBIF procedure
selected stimulus parameters that associated with 50%
correct; therefore, the deviation from 50% observed
here was mainly due to the recognition performance
during the collection of the training data set at the begin-
ning of the qBIF procedure. The overall recognition
scores were correlated between the two test materials
(r¼ .71, p< .001). This significant correlation suggests
that the initial test condition of the qBIF procedure
(with a TMR of 15 dB and one frequency band omitted)
tends to be of different difficulties for different listeners.
Moreover, the overall recognition score was higher for
SPIN-High (65.9%) than NU6 (61.4%), t(29)¼ 4.55,
p< .001. This difference in the overall score is dominated
by the initial training portion of the qBIF procedure,
t(29)¼ 5.38, p< .001, but not the trials after the stimulus
optimization algorithm is activated, t(29)¼ 1.50,
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Figure 3. The scatterplot of the overall recognition scores from

the qBIF procedure using the NU6 and SPIN-High test materials.
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p¼ .144. This indicates that the initial test condition is
associated with higher performance level for SPIN-High.

Figure 4 plots the spectral weights as functions of
frequency bands (i.e., the band importance function)
for the NU6 (left panel) and SPIN-High (right panel)
materials. The overall shape of the band importance
function was similar for both types of materials.
The median spectral weights were the lowest in the
0.25-kHz and 8-kHz frequency bands, while the 0.5 -,
1 -, and 2-kHz bands exhibited the higher median
weights.

Considerable individual differences in the spectral
weights were observed. The range of the estimated
weights across listeners was as much as 0.43 (NU6,
1 kHz), and the standard deviation, averaged across the
six bands, was 0.07 for NU6 and 0.05 for SPIN-High.
The frequency bands that exhibited the greatest variabil-
ity were the 4-kHz band for NU6 (with a standard
deviation of 0.078) and the 0.5-kHz band for SPIN-
High (with a standard deviation of 0.072). These two
bands are marked with arrows in Figure 3, and the
spectral weights in these bands will be used to quantify
the individual differences in the band importance
functions.

Besides the band importance function, the SRT and
the slope parameter � of the link function (as in
Equation (4)) were also estimated. The average SRTs
were �1.80 dB for NU6 and �2.70 dB for SPIN-High.
The average � estimates were 0.15 (i.e., 3.85%/dB) for
NU6 and 0.29 (i.e., 7.34%/dB) for SPIN-High.
Therefore, the NU6 material led to higher SRTs,
t(29)¼ 2.90, p¼ .007, and shallower link-
function slopes, t(29)¼ 4.96, p< .001. For both types

of speech materials, the estimated SRT and � were
highly correlated, r¼�.66, p< .001 for NU6 and
r¼�.88, p< .001 for SPIN-High. That is, lower SRTs
are associated with steeper link-function slopes. For sim-
plicity, the SRT will be used to quantify the individual
differences in the link function.

The key hypothesis of the current study is that the
individual differences in the estimated parameters of
the SII models are not random but consistent across
measurements under different test conditions. Here, the
individual differences are quantified using three metrics:
(a) the spectral weights in the band with greatest vari-
ability (arrows in Figure 4), (b) the spectral centroid of
the band importance function, and (c) the SRT. The
spectral centroid is included to capture the shifts in the
high-weight region in the band importance function. It is
calculated as the average deviation from the center fre-
quencies of the six bands to 1 kHz (in octaves), weighted
by the spectral weights. If the hypothesis holds, then
these metrics of individual differences should correlate
across the two tests using two different speech materials.
The correlations across the two test materials for the
three metrics are represented in the three panels of
Figure 5 as scatterplots.

Significant correlations were found for all three met-
rics of individual differences (r¼ .42, p¼ .022 for the
spectral weights, r¼�.51, p¼ .004 for the spectral cen-
troid, and r¼ .39, p¼ .034 for the SRT). This means that
at least a portion of the variability in the parameter esti-
mates is based on the inherent characteristics of the lis-
teners and these inherent characteristics tend to maintain
themselves across different test conditions. Therefore, fit-
ting the SII model to individual listeners using the qBIF
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Figure 4. The band importance functions estimated using the qBIF procedure for the NU6 (left panel) and SPIN-High (right panel)

materials. In each panel, the distributions of the estimated spectral weights across all listeners are plotted as a function of frequency bands.
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procedure may improve the prediction of speech-recog-
nition performance from individual listeners.

The Effect of Different Speech Materials

Both types of speech materials used in the current study
contained monosyllabic keywords. The main difference
between them was in that the SPIN-High material pro-
vided semantic context, which could potentially facilitate
the recognition of the keywords and change the way lis-
teners weigh information across the spectrum.

Although correlations were found between the param-
eter estimates from the measurements using the two
speech materials, there were some noticeable material-
dependent effects. For example, as described earlier,
the SPIN-High materials corresponded to lower
SRTs and steeper link-function slopes than NU6.
Close inspections to individual data (e.g., see the right
panel of Figure 5), however, suggests that not all lis-
teners followed the trend of the average SRT and �.
A k-means cluster analysis was performed based on the
SRT and � estimates using both materials, which identi-
fied two listener groups. The estimates of the SRT and
link-function slope are plotted in Figure 6 separately for
the two listener groups. Listeners in Group 1 (unfilled
symbols) had SRT and slope estimates that were very
close for NU6 and SPIN-High (close to the diagonal
dashed line), while listeners in Group 2 (filled symbols)
had lower SRTs and steeper link-function slopes for
SPIN-High compared with NU6. Therefore, the differ-
ences in the average SRT and slope estimates were
mainly driven by Group 2.

To investigate the effect of speech material on the
band importance function, a repeated measures analysis
of variance was conducted, treating speech material and
frequency bands as the two independent variables and
spectral weight as the dependent variable. The spectral

weights in the 0.25 - and 8-kHz bands were omitted from
the analysis because they were very close to zero and not
normally distributed. A significant main effect of fre-
quency was found, F(3, 87)¼ 47.48, p< .001. The effect
of speech material was not significant, F(1, 29)¼ 0.29,
p¼ .592, neither was there a significant interaction
between frequency and speech material, F(3, 87)¼ 1.87,
p¼ .140. The lack of a significant interaction may be due
to the poor spectral resolution of the qBIF procedure.
The octave-frequency bands implemented in the qBIF
procedure may be too coarse to reveal the effects of
speech material on the shape of the band importance
function.

As shown in the middle panel of Figure 5, the spectral
centroids for the band importance functions are nega-
tively correlated between the NU6 and SPIN-High
materials. Moreover, this negative correlation was
observed for both groups of listeners identified by the
cluster analysis, (r¼�.46, p¼ .035 for Group 1, and
r¼�.81, p¼ .001 for Group 2). This could be interpreted
as that listeners who shift their spectral weights to higher
frequencies for one material shift the spectral weights to
lower frequencies for the other material. It is not clear
whether these shifts in spectral weights are caused by
contextual cues, since other differences between the two
speech materials (e.g., acoustic differences between the
two materials) could also contribute to such shifts. The
current result warrants further systematic investigations
on the effects of different speech materials.

Discussion

Comparison to Previous Studies

The band importance function is an essential component
of the SII model and it has been reported for vari-
ous speech materials in the corresponding ANSI
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standard (1997). Figure 7 plots the average band import-
ance function estimated in the current study (filled dia-
monds) with the band importance functions from the
standard (upward triangles) for the NU6 (left panel)
and SPIN-High (right panel) materials. For both mater-
ials, the band importance functions from the standard
had lower spectral weights at 0.5 and 1 kHz and higher
weights at 2 and 4 kHz.

The band importance function reported by Healy
et al. (2013) for the SPIN-High material is also plotted
in the right panel of Figure 7 (downward triangles).
Healy et al. (2013) obtained their band importance

function in 21 frequency bands for the SPIN-High
material. To enable direct visual comparisons, the spec-
tral weights for octave bands were derived from the
21-band data through summing spectral weights within
an octave. Although the band importance function
obtained by Healy et al. (2013) for the SPIN-High mater-
ial exhibits a similar general shape as those in the stand-
ard and the current study, it has a lower weight at
0.5 kHz than the qBIF estimate and a lower weight at
4 kHz than the ANSI standard.

Differences in methodology are known to influence
the estimates of the band importance function.
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The band importance functions in the ANSI standard
were estimated by systematically low-pass and high-
pass filtering the speech stimuli. As pointed out by a
number of previous studies (e.g., Healy et al., 2013;
Humes & Kidd, 2016; Warren, Bashford, & Lenz,
2005), this classic approach depended on the assumption
that individual frequency bands contribute to speech
intelligibility independently, but this assumption is fre-
quently violated because adjacent frequency bands often
share redundant speech information. As a work-around
of this problem, the compound technique (e.g., Apoux &
Healy, 2012) randomly presents a subset of the frequency
bands without requiring the presented bands to be con-
tiguous. Healy et al. (2013) have shown that the band
importance functions estimated using the compound
technique exhibited some noticeable differences from
those in the ANSI standard. Most notably, for phonet-
ically balanced words (CID-W22, Hirsh et al., 1952),
large differences in spectral weights were observed
across most of the frequency bands below 2 kHz.

Similar to the compound technique (Apoux & Healy,
2007; Healy et al., 2013), the qBIF procedure does not
require the presented frequency bands to be adjacent to
one another. On the other hand, the classic low-pass or
high-pass approach (French & Steinberg, 1947;
Studebaker et al., 1987) contributed to the data in the
ANSI standard (1997) only presents adjacent bands.
Therefore, it is expected that the band importance func-
tions collected using the qBIF procedure are more akin
to those collected using the compound technique than
the low-pass or high-pass, classic approach. For each
listener, the RMS deviations relative to the Healy et al.
(2013) data and ANSI data were computed for the SPIN-
High material. A paired t-test showed that the RMS
deviation was smaller for the Healy et al. data than
the ANSI data, t(29)¼ 5.86, p< .001. This suggests
that the band importance function estimated in the cur-
rent study for SPIN-High was closer to the correspond-
ing band importance function reported by Healy et al.
(with an average RMS deviation of 0.059) compared
with the ANSI standard (with an average RMS deviation
of 0.076).

The Limitations of the qBIF Procedure

The qBIF procedure presented in the current study
enables the estimation of the band importance function
and the parameters of the SII model from individual
listeners. This means that the SII model can be used to
not only account for stimulus-originated effects, such as
the effects of different speech materials, but also listener-
originated effects, which provides a tool for modeling
individual differences in speech recognition. On the
other hand, the qBIF procedure does have a few
limitations.

First, to gain computational efficiency and stability,
the implementation of the SII model in the qBIF proced-
ure has been kept very simple. In particular, the octave-
frequency bands are used, which is quite coarse
compared with the one-third-octave band importance
functions available in the ANSI standard. Using the
compound technique, Healy et al. (2013) showed that
when the band importance functions are estimated at
high resolution, they exhibit fine structures that could
potentially improve the predictive power of the SII
model. The octave bands adopted in the qBIF procedure
are insufficient in capturing the fine spectral details in the
band importance functions.

Second, due to the use of logistic regression in the
qBIF procedure, the link function has been modeled as
a logistic function (Equation (4)). Although this formu-
lation is common for describing speech recognition per-
formance (e.g., Brand and Kollmeier, 2002; MacPherson
& Akeroyd, 2014), this is different from the SII model
implemented in many previous studies. Traditionally, the
link function in the SII model is frequently described by
Equation (7). This formulation of the link function and
its similar varieties (e.g., Boothroyd, 2008) are different
from the logistic function, in that the function specified
in Equation (7) is asymmetric for high and low SII
values. That is, the slope of the link function for the
formulation given in Equation (7) is asymmetric about
the SRT, while for the logistic link function, the slope is
symmetric about the SRT. The asymmetric link function
agrees very well with behavioral results, potentially
because it can partially capture the contextual effect in
speech recognition (e.g., Boothroyd & Nittrouer, 1988).
Therefore, it is possible that the performance of the qBIF
procedure can be improved by adopting a generalized
linear regression that uses an asymmetric link function
rather than using a logistic function.

Finally, although the qBIF procedure is an adaptive
procedure that determines the stimulus iteratively based
on the previously collected responses, it is not completely
free of a priori knowledge about the speech material or
the listener. This is mainly because an initial training
data set needs to be collected first. To ensure that this
initial training set is sufficiently informative, the experi-
menter needs to select the initial TMR carefully. An ini-
tial TMR that is too high (i.e., the speech recognition is
too easy) or too low (i.e., the speech recognition is too
difficult) would lead to ceiling or floor performance for
the training data, respectively. Consequently, the logistic
regression would be ill-posed once the one-step-ahead
search algorithm is activated, which would severely
undermine the efficiency of the qBIF procedure.
Therefore, the current implementation of the qBIF pro-
cedure requires the experimenter to have a rough esti-
mate of the expected performance range for the speech
material and listener. Although the selection of the initial
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TMR can be supported by previously reported results in
the literature, the procedure to collect the initial training
data may be modified in the future to reduce the amount
of a priori knowledge required so that the qBIF proced-
ure can be more easily applied to a wide range of speech
materials and clinical populations.

Summary

A Bayesian adaptive procedure, the qBIF procedure, was
presented and utilized to fit the SII model to individual
listeners’ speech recognition performance. Octave-
frequency band importance functions for monosyllabic
words (NU6) and monosyllabic words in high context
sentences (SPIN-High) were estimated for each individ-
ual listeners. The spectral weights in the frequency bands
that exhibited the greatest intersubject variability, the
spectral centroids of the band importance functions, as
well as the estimated SRTs were correlated between the
two test materials. These results suggest that the variabil-
ity in the estimated parameters of the SII model not only
reflects stimulus differences but also differences inherent
to individual listeners. Therefore, the SII framework can
be useful in capturing individual differences in speech
recognition.
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