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Several molecular patterns have been identified that recognize pattern recognition receptors. Pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are commonly used terminologies to classify molecules
originating from pathogen and endogenous molecules, respectively, to heighten the immune response in sepsis. Herein, we focus
on a subgroup of endogenous molecules that may be detected as foreign and similarly trigger immune signaling pathways. These
chromatin-associated molecules, i.e., chromatin containing nuclear DNA and histones, extracellular RNA, mitochondrial DNA,
telomeric repeat-containing RNA, DNA- or RNA-binding proteins, and extracellular traps, may be newly classified as chromatin-
associated molecular patterns (CAMPs). Herein, we review the release of CAMPs from cells, their mechanism of action and
downstream immune signaling pathways, and targeted therapeutic approaches to mitigate inflammation and tissue injury in
inflammation and sepsis.
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FACTS

● Extracellular nucleic acids (DNA and RNA) and their associated
molecules present distinct molecular patterns that activate
immune cells.

● Increased blood levels of CAMPs correlate with the severity of
sepsis.

● Extracellular TERRA could be a novel CAMP.
● Targeting CAMPs with neutralizing antibodies, receptor

inhibitors, and small molecule inhibitors attenuate inflamma-
tion in sepsis.

OPEN QUESTIONS

● Do extracellular histones and eCIRP exist in different post-
translational forms?

● Do epigenetic changes influence the release and functions
of CAMPs?

● Can glycoRNAs induce or regulate inflammation in sepsis?
● Are ribosomes released to act as CAMPs in sepsis?

INTRODUCTION
Sepsis is a complex inflammatory disorder initiated by a
dysregulated host immune response to infection [1]. In the United
States, approximately 1.7 million adults are affected each year
causing more than 250,000 deaths [2, 3]. The innate immune

system is activated by pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns (DAMPs),
triggering inflammation [4, 5]. Intracellular proteins, nucleic acids,
and lipids originating from the nucleus, cytoplasm, mitochondria,
and granules fall into the broad category of DAMPs [4, 6, 7].
PAMPs can be further separated into MAMPs and NAMPs,
containing the molecular patterns derived from microbes and
nematodes, respectively [8, 9]. In addition, lifestyle-associated
inflammatory diseases and their corresponding molecular patterns
(LAMPs) have been distinguished from conventional DAMPs [10].
Self-associated molecular patterns (SAMPs) maintain cellular
homeostasis and regulate innate immune cells when they become
activated [11]. To simplify this broad area of DAMPs, the molecules
derived from the nucleus or molecules associated with chromatin
can be designated as chromatin-associated molecular patterns
(CAMPs). Thus, by name, CAMPs refer to chromatin made up of
nucleosomes containing DNA and histones. However, several
nucleic acids and proteins, i.e., mitochondrial DNA, cell-free (cf)
RNAs, microRNAs, telomeric repeat-containing RNA (TERRA),
extracellular traps (ETs), and RNA- or DNA-binding proteins can
also be included in this group, given their similar origins’
contribution to inflammation and organ dysfunction in sepsis.
Increased levels of CAMPs, i.e., cfRNA, cfDNA, histones, extra-
cellular cold-inducible RNA-binding protein (eCIRP), high mobility
group box 1 (HMGB1), and ETs in blood have been shown to
correlate with disease severity in sepsis (Table 1) [12–17].
CAMPs are released from cells through active and passive

release pathways. Among the active release processes, exosomal,
lysosomal, and gasdermin D (GSDMD) pores (pre-pyroptotic)
comprise the primary mechanisms for CAMP release while
keeping cells alive [18–21]. By contrast, passive release
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mechanisms include secondary necrosis, necroptosis, pyroptosis,
and NETosis [18, 22, 23]. In septic conditions, once released from
cells, CAMPs recognize their receptors, i.e., Toll-like receptor 4
(TLR4), TLR2, TLR7, TLR9, receptor for advanced glycation end
products (RAGE), triggering receptor expressed on myeloid cells-1
(TREM-1), CD24, and cytosolic DNA sensors absent in melanoma 2
(AIM2), and cyclic GMP-AMP synthase (cGAS)-stimulator of
interferon genes (STING) to activate immune cells, causing
inflammation and tissue injury. [6, 7, 24–26] Conversely, neutraliz-
ing antibodies or antagonists against those receptors have been
shown to attenuate CAMP-induced inflammation [6, 7]. In this
review we will discuss molecules related to CAMPs, how CAMPs
are released from cells during inflammation, and the signal
transduction pathways involving CAMP-mediated inflammation in
experimental and clinical sepsis (Fig. 1; Table 2). Finally, we will
emphasize targeting CAMPs to abrogate inflammation in pre-
clinical conditions (Fig. 2; Table 3).

CHROMATIN-ASSOCIATED MOLECULAR PATTERNS (CAMPS)
Chromatin is a structural complex of DNA with various basic and
acidic proteins. Histones are basic, positively charged proteins that
associate with negatively charged DNA, thereby organizing DNA
into structures called nucleosomes [27, 28]. A nucleosome consists
of a 147 bp DNA sequence wrapped around a set of eight histones
called an octamer. Each histone octamer consists of two copies of
each of the histone proteins, H2A, H2B, H3, and H4. The linker
histones, H1, sit on the ends of DNA, keeping DNA correctly
wrapped with core histones [27, 28]. Chromatin’s primary function
is to compress DNA into a compact unit that fits within the cell’s

nucleus. Chromatin increases genome stability and hinders the
enzymes needed for gene transcription [27–29]. The phenomena
of chemical modifications of histones and DNA, called epigenetic
marks, change chromatin structure and expose regulatory
elements for transcription factors to bind and impact gene
expression [29, 30]. Chromatin modifications link with various cell
processes, including DNA replication, transcription, DNA repair,
genetic recombination, and cell division [29–31]. Following stress,
infection, injury, or other inflammatory stimuli, chromatin (and
associated states of nucleic acids) are released from cells, acting as
CAMPs to augment inflammation and tissue injury. CAMPs include
but are not limited to extracellular DNA, histones, RNA, microRNA
(miRNA), mitochondrial DNA, eCIRP, HMGB1, and ETs.

EXTRACELLULAR DNA
During cell death, such as apoptosis, necrosis, or ETosis, DNA exits
the cell. Extracellular or cell-free DNAs (cfDNAs), including
pathogen-derived CpG, damaged cell-released nuclear or mito-
chondrial DNA, and ETs, have been reported to not only represent
biomarkers of sepsis but also contribute to the length and severity
of the inflammatory response in immune cells [32]. While bacterial
DNA can activate the immune system through its CpG motifs,
mammalian DNA is ordinarily inactive and only acquires activity
once released extracellularly [32]. DNA can be associated with
nuclear, cytoplasmic and serum proteins, which can promote its
uptake intracellularly to stimulate internal DNA sensors [33].
The effect of DNA to serve as a CAMP necessitates the transfer

of DNA from one cell to the extracellular space and then uptake
into another cell [34]. There are various mechanisms by which

Table 1. CAMPs in Experimental and Clinical Sepsis.

CAMPs Sepsis

Experimental Clinical

cfDNA Plasma cfDNA is increased in E. Coli-injected and CLP-induced septic
mice [159, 160].

Plasma cfDNA correlated with severity of septic patients
and ICU mortality [50].
Serum levels of cfDNA are elevated and predict prognosis
and ICU mortality in sepsis [13, 161].
cfDNA levels correlated with sepsis severity and organ
dysfunction [12].
cfDNA marker of sepsis severity and prediction of
inflammatory second hit in ICU patients [162].

mtDNA mtDNA induces systemic and lung inflammation when administered
intravenously in rats [68].

Elevated in the plasma of septic patients and correlated
with disease severity [70].

ETs Neutrophil, basophil, eosinophil, and macrophage ETs have been
implicated in pathologic inflammation [73, 91, 163].
NETs are increased in alveolar spaces and microvasculature in murine
LPS-induced endotoxemia [164].

Increased plasma levels of NETs correlated with organ
dysfunction in septic patients [12].

Histones H3 is released in LPS-induced endotoxemia, and increased plasma
levels are associated with severity of shock [165].

Increased circulating levels in septic patients [15].

exRNA exRNAs induce inflammatory responses in inflammatory models [116]. Levels of exRNA are elevated in the serum of septic
patients [16].

miRNA In the serum of CLP mice, exosomes showed elevated levels of miR-16,
miR-17, miR-20a, miR-20b, miR-26a, and miR-26b [166].

Elevated circulating levels of miRNAs in patients with
sepsis [167].

eCIRP Mediator of injury and inflammation in preclinical models of sepsis and
shock [20].

Serum levels are elevated in septic patients and
predictive of sepsis severity and overall mortality [17].

HMGB1 Increased levels in LPS-induced endotoxemia [168].
Significantly increased in CLP-induced sepsis and associated as a late
mediator of inflammation with inflammatory cytokines [150].

Serum levels are elevated in human patients with
bacteremia and sepsis-induced organ dysfunction [14].
Elevated in pneumonia-induced sepsis and associated
with mortality [169].

TERRA cfTERRA stimulates inflammatory cytokines when incubated with
immune-responsive cells [129].

Identified in human blood and tissue [170].

cfDNA Cell-free DNA, mtDNA Mitochondrial DNA, ETs Extracellular traps, NETs Neutrophil extracellular traps, exRNA Extracellular RNA, miRNA Micro-RNA, eCIRP
Extracellular cold-inducible RNA-binding protein, HMGB1 High mobility group box 1, TERRA Telomeric repeat-containing RNA.
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DNA may then be recognized and trigger downstream signaling
pathways that lead to inflammation. The three major receptors
responsible for DNA-driven immune responses include toll-like
receptor 9 (TLR9), absent in melanoma 2 (AIM2) and cyclic-GMP-
AMP synthase (cGAS). TLR9 is expressed on the endosomal
membrane. It functions as a DNA receptor that specifically
recognizes hypomethylated CpG motifs and induces type-I
interferon (IFN) as well as other inflammatory genes [35]. The
coupling mechanisms of cytosolic DNA to its downstream pro-
inflammatory signaling cascades is multifold. Cytosolic DNA can
drive the Nlrp3 inflammasome or PYHIN inflammasomes assembly
and activation, including AIM2, and interferon-inducible protein
16 (IFI16). Upon inflammasome activation, DNA sensors recruit
adaptors to activate caspase-1, leading to proteolytic cleavage and
release of active forms of IL-1β and IL-18 [36, 37]. Perhaps most
significant in cytosolic DNA sensing is the DNA-binding protein,
cGAS. cGAS is responsible for recognizing self- verse other sources
of chromatin (i.e., CAMPs) and initiating a robust response to their
accumulation in the cytosol through activation of STING [38, 39].
Recent work has highlighted the integral role of cGAS in
distinguishing sources of DNA. For example, the binding of
nuclear chromatin to histones H2A and H2B, and through selective
suppression of cytosolic cGAS through the cell cycle have been
shown to prevent aberrant activation of cGAS [38, 40]. For non-
self-DNA in the cGAS-STING pathway, DNA binding activates
cytosolic cGAS to generate the second messenger cyclic GMP-
AMP (cGAMP), which binds to the endoplasmic reticulum-localized
adaptor protein STING. After activation, STING translocates to the
Golgi and recruits kinases such as TANK-binding kinase 1 (TBK1)
and IkB kinase (IKK) which phosphorylate interferon regulatory
factor 3 (IRF3) and the NFkB inhibitor IkBα. TBK1 acts as a

convergence point for multiple PRR-driven pathways in IRF3
phosphorylation and eventual transcriptional activation of type-I
IFN and related genes. Notably, besides acting as an adaptor for
DNA sensing, STING is also capable of acting as a direct sensor for
secondary messenger molecules including cyclic di-AMP (c-di-
AMP) and cyclic di-GMP (c-di-GMP), thereby serving as a strong
inducer of type-I IFN [33]. Other known DNA-binding proteins may
similarly mediate DNA-induced type-I IFN and pro-inflammatory
cytokine production. These DNA-binding proteins include DNA-
dependent activator or IRFs (DAI) [41], RNA polymerase III [42],
IFI16 [43], oligodeoxynucleotides (including DHX36 and DHX9)
[44, 45], and DDX41 [46]. Finally, additional DNA binding proteins
may be involved in cytosolic DNA sensing leading to production
of type 3 interferon and IFNβ, including Ku70 and leucine-rich
repeat in flightless-I interacting protein (LRRFIP1), respectively
[47–49].
In human sepsis, plasma levels of cfDNA are elevated, and high

plasma DNA is linked to increased mortality in sepsis [50].
Endogenous DNases comprise the first line of defense against
DNA functioning as a CAMP. Studies of mice lacking these
enzymes demonstrated overexpression of type-I IFNs in macro-
phages and led to embryonic lethality in mice in STING-
dependent manner, suggesting potential therapeutic strategies
targeted at DNA as a CAMP in sepsis [51]. Further, experimental
models targeting components of these signaling pathways has
been shown to have beneficial effect. For example, STING
knockout mice were protected in CLP-induced sepsis through
reduced coagulation [52]. Similarly, models utilizing mice deficient
in AIM2 [53], TLR9 [54], TLR4 [55], IRF3 [56], and related proteins
were protected in experimental sepsis models, suggesting further
therapeutic potential. Other strategies have investigated the use
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Fig. 1 Release of CAMPs in sepsis. Septic insults, PAMPs, and other noxious stimuli activate immune cells (macrophages) to increase the
expression and release of CAMPs, i.e., nuclear and mitochondrial DNAs, histones, RNAs, miRNAs, extracellular traps, HMGB1, and eCIRP. CAMPs
are released through active processes like exosomes and GSDMD-mediated pores and passive release mechanisms like pyroptosis,
necroptosis, ETosis, and secondary necrosis. PRR Pattern recognition receptor, GSDMD Gasdermin D, HMGB1 High mobility group box 1, eCIRP
extracellular CIRP, CAMPs chromatin-associated molecular patterns, exDNA extracellular DNA, mtDNA Mitochondrial DNA, TERRA Telomeric
repeat-containing RNA.
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of ~40 nm cationic nanoparticles (cNP) to scavenge cfDNA and
inhibit the activation of primary monocytes [57]. In the context of
sepsis, nucleic acid-binding nanoparticles (NABPs) aiding cfDNA
clearance exhibited beneficial outcomes [58]. This suggests a
different direction of nanomedicine in treating inflammatory
pathologies, including sepsis [57, 58].

MITOCHONDRIAL DNA
Mitochondrial DNA (mtDNA) is another source of extracellular
DNA that serves as a CAMP [59]. mtDNA released from the
mitochondrial compartment to the cytoplasm sense intracellular
DNA sensors to induce inflammation [60, 61]. Human mitochon-
dria have evolved from endosymbiotic bacteria and thus may
express molecules that resemble bacterial products [62]. Because
of this resemblance, extracellular mtDNA whose CpG motifs are
also unmethylated can serve as mediators of inflammation. As a
result of cell death or cell activation, whole mitochondria

(including proteins and DNA) can be released extracellularly in a
process termed extrusion and thereafter elicit an immune
response [63, 64]. mtDNA repair mechanisms are essential to
cope with mtDNA damage. mtDNA degradation may contribute to
the exaggerated innate immune response by fragmented mtDNA.
Several components of the mtDNA replication machinery, such as
DNA polymerase γ, helicase Twinkle, and exonuclease (EXOG,
ENDOG, or MGME1), as well as a major DNA-packaging protein
mitochondrial transcription factor A (TFAM) play critical roles in
maintaining mtDNA integrity [65].
Recent studies have further characterized the inflammatory

cascade caused by mitochondrial extrusion, as it has been shown
that mitochondria may act as a CAMP when released from cells
undergoing necroptosis induced by TNFα [66]. For example,
outside the cell, mtDNA causes mouse splenocytes to produce
TNFα and bone marrow-derived macrophages to secrete IL-1β
[59, 67]. mtDNA can stimulate various PRRs, including TLR9
[59, 67]. This endosomal receptor activates NF-κB- and IRF-

Table 2. CAMPs Signal Transduction Pathways.

CAMPs Sensors Subcellular Localization of Sensors Signaling Pathways/ Transcription Factors References

cfDNA TLR9 Endosomes NF-κB/AP1/CREB/IRF3/IRF7 [34, 171, 172]

AIM2 Cytosol ASC/Caspase-1 [34, 171]

IFI16 Nucleus/cytosol IRF3/IRF7 [34, 43]

cGAS Cytosol NF-κB/IRF3/IRF7 [34, 173]

STING Endoplasmic reticulum NF-κB/IRF3/IRF7 [34, 173, 174]

RAGE Plasma membrane NF-κB/AP1/STAT3 [171]

mtDNA TLR9 Endosomes NF-κB/AP1/CREB/IRF3/IRF7 [171, 172]

cGAS Cytosol NF-κB/IRF3/IRF7 [173]

STING Endoplasmic reticulum NF-κB/IRF3/IRF7 [173, 174]

NETs cGAS Cytosol NF-κB/IRF3/IRF7 [173]

Histones TLR2 Plasma membrane NF-κB/AP1/CREB [34, 171, 172]

TLR4 Plasma membrane NF-κB/AP1/CREB/IRF3/IRF7 [34, 171, 172]

TLR9 Endosomes NF-κB/AP1/CREB/IRF3/IRF7 [34, 171, 172]

NLRP3 Cytosol ASC/Caspase-1 [34, 171]

exRNA TLR3 Endosomes NF-κB/ATF2/c-Jun/IRF3 [171, 172, 175]

TLR7 Endosomes NF-κB/ATFs/c-Jun/IRF7 [171, 172, 176]

TLR8 Endosomes NF-κB/ATFs/c-Jun/IRF7 [171, 172, 176]

NLRP3 Cytosol ASC/Caspase-1 [171]

RAGE Plasma membrane NF-κB/AP1/STAT3 [171]

RIG1 Cytosol NF-κB/IRF7/IRF3 [177]

MDA5 Cytosol NF-κB/IRF7/IRF3 [177]

TERRA TLR9 Endosomes NF-κB/AP1/CREB/IRF3/IRF7 [171, 172]

glycoRNAs Siglecs Plasma membrane SHP-1/SHP-2/NF-κB [131]

eCIRP TLR4 Plasma membrane NF-κB/AP1/CREB/IRF3/IRF7 [171, 172]

TREM-1 Plasma membrane NF-κB/AP1/NFAT [171]

NLRP3 Cytosol ASC/Caspase-1 [171]

HMGB1 TLR2 Plasma membrane NF-κB/AP1/CREB [34, 171, 172]

TLR4 Plasma membrane NF-κB/AP1/CREB/IRF3/IRF7 [34, 171, 172]

TLR9 Endosomes NF-κB/AP1/CREB/IRF3/IRF7 [34, 171, 172]

RAGE Plasma membrane NF-κB/AP1/STAT3 [34, 171]

TREM-1 Plasma membrane NF-κB/AP1/NFAT [171, 178]

cfDNA Cell-free DNA, TLR toll-like receptors, NF-kB Nuclear factor kappa B, IRF Interferon regulatory factor, AIM2 Absent in melanoma 2, IFI16 Interferon-
inducible protein 16, cGAS Cyclic guanosine monophosphate-adenosine monophosphate synthase, STING Stimulator of interferon genes, mtDNA
Mitochondrial DNA, NETs Neutrophil extracellular traps, NLRP3 NLR family pyrin domain containing 3, exRNA Extracellular RNA, RAGE Receptor for advanced
glycation end products, RIG1 Retinoic acid inducible gene I, MDA5 Melanoma differentiation-associated protein-5, miRNA micro-RNA, eCIRP Extracellular cold-
inducible RNA-binding protein, TREM-1 Triggering receptors expressed on myeloid cells-1, HMGB1 High mobility group box 1, TERRA Telomeric repeat-
containing RNA.
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mediated pro-inflammatory responses upon recognizing mtDNA
and has been shown in animal models to induce inflammatory
cytokine secretion by macrophages and neutrophil chemotaxis
[68]. In addition to activation through TLR9, degraded intracellular
mtDNA can also engage the cytosolic sensor, cGAS, and initiate
STING signaling to trigger IFN responses [60, 69]. Furthermore,
DNA has been shown to extend neutrophils lifespan. When
stimulated with mtDNA, neutrophils have increased viability,
which may contribute to excessive accumulation in tissues and
initiate uncontrolled inflammation, causing poor outcomes in
sepsis [70, 71]. Engulfment of released mitochondria has also been
shown to alter macrophage production of cytokines and lead to
dendritic cell maturation [34].

EXTRACELLULAR TRAPS
Extracellular traps (ETs) refer to the process of chromatin
reduction, breakdown of the nuclear envelope, and subsequent
disruption of the extracellular membrane due to reactive oxygen
species, resulting in the release of DNA structures [72, 73]. The
most widely studied form of ET release is by neutrophils, the
contents of which herein are referred to as neutrophil extracellular
traps (NETs). One pathway involving NET formation by PAMPs and
DAMPs is the activation of peptidyl arginine deaminase 4 (PAD4)
via the TLR4 receptor [6, 74]. However, aside from TLR4/PAD4
pathway, NET formation is also mediated by Rho activation, cell
cycle protein cyclin-dependent kinases 4 and 6 (CDK4/6)
expression, and gasdermin D (GSDMD) pores [21, 75, 76]. Once
released, various proteins can adhere to NETs, including CAMPs,
such as histones, HMGB1, CIRP, myeloperoxidase (MPO), LL37, and
over 30 components of primary and secondary granules, among
which confer bactericidal activity [77–79].
ET’s role in maintaining host homeostasis is twofold. On the one

hand, they can protect hosts from infectious diseases; however, on
the other hand, they may cause pathologic alterations to induce

tissue injury [6, 74]. During sepsis for example, neutrophil-
endothelial cell interaction is crucial for promoting neutrophil
infiltration into tissues; however, this interaction leads to increased
NET formation [6, 74, 80]. Co-culture of neutrophils with
endothelial cells has been shown to cause endothelial cell
damage, which is attributed in part to excessive NETs, as NADPH
oxidase inhibitors or DNase ameliorate endothelial dysfunction
and cell damage [80]. NETs have been shown to play a crucial role
in the pathogenesis of various pro-inflammatory conditions,
including the promotion of intravascular thrombosis in dissemi-
nated intravascular coagulation, which has been shown to
increase the morbidity and mortality in sepsis [6, 74, 81]. In
various murine models of acute lung injury (ALI), increased levels
of NETs, as well as histones H3 and H4, were found in the
bronchoalveolar fluid [6, 74]. Administration of extracellular
histones contained in NETs has been shown to increase damage
to alveolar epithelial cells and the magnitude of ALI [6, 82]. Recent
discovery has also shown NET-associated RNA to be a physiolo-
gically significant component of NETs. Specifically, RNA-LL37
sensing, subsequent cytokine release and self-propagating NET
formation was shown to contribute to disease exacerbation in the
inflammatory condition of psoriasis [83]. Along with NETosis,
enzymes are released and have detrimental effects in promoting
inflammation. Neutrophil elastase, a key component of chromatin
degranulation, has been shown to increase the permeability of
alveolar epithelial cells, whereas inhibiting this enzyme is beneficial
in animal models of inflammation and associated ALI [84]. Serine
proteases have also been shown to break down surfactants which
are involved in the clearance of inflammatory cells and residual
inflammation after ALI [82]. Finally, NETs can bind to the cytosolic
DNA sensor, cGAS. Macrophages phagocytose NETs, and subse-
quently intracellular NETs’ DNA activates cGAS and induces type-I
IFN production as previously described [85].
Akin to neutrophils, although comparatively fewer reports are

available, recent studies have revealed ET formation by other
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Fig. 2 Targeting CAMPs to attenuate inflammation and acute lung injury (ALI) in sepsis. Several inhibitors, i.e., neutralizing antibodies
targeting CAMPs or their receptors, small molecule inhibitors, like C23 and M3, CI-Amidine, endogenous inhibitor like miRNAs, RNases, DNase,
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immune cells including eosinophils, basophils, and macrophages
upon induction with various stimuli including PAMPs, DAMPs, and
cytokines. These forms of ETosis similarly involve the pathways
used for NETosis [73, 86, 87]. Granulocytes including eosinophils
and basophils exhibit similar release mechanisms and contents as
NETs. Extracellular DNA released from eosinophils, or eosinophil
extracellular traps (EETs) have been shown to be triggered by
clinically relevant allergens and amplify inflammation. Clinically,
EETs have demonstrated to be elevated in bronchoalveolar lavage
fluid and associated with asthma severity in patients and are likely
involved in triggering of other immune responses [73, 87].
Basophil extracellular traps (BETs) contain mitochondrial DNA,
granule proteins and proteases and are released upon cytokine
priming and complement activation [88]. Noting that BETs have
been found in both human and mouse inflamed tissues, it is
conceivable that they also play a role in inflammatory conditions
[88].
Finally, macrophage extracellular traps (METs), have also been

shown to entrap and kill microbes [89–91]. METs contain nuclear
and mitochondrial DNA, MPO, and lysozyme proteins similar to
NETs, EETs, and BETs [91–93]. Although MET release has been
demonstrated in murine primary macrophages and macrophage
cell lines, the release and impact of METs in human conditions is
largely underexplored, however similar to NETs, METs likely play a
role in disease pathologies [91].
Strategies to address excessive ET formation have demon-

strated therapeutic potential in acute inflammatory conditions. For
one, inhibition of NETosis via PAD4 deficiency or inhibition
reduces the release of extracellular DNA, resulting in improved
outcomes in sepsis [94]. PAD4 inhibitors, similar to chloroquine
and APC, are early inhibitors targeting NET formation. On the
other hand, late inhibitors of NETs, such as DNase or anti-histone
antibodies have also been explored and demonstrated therapeu-
tic potential. [6, 74, 94–96]

EXTRACELLULAR HISTONES
Histones are cationic, intra-nuclear proteins that maintain the
normal structure of chromatin [29–31]. In acute sterile organ
injury, various toxic stimuli, including ischemic, traumatic, and
hemorrhagic pathologies can result in cell death. Through this
process and similar to DNA, histones and DNA-bound histones
(nucleosomes) are released into the extracellular space by
necrosis, apoptosis, and ETosis. Extracellular, DNA-free histones
may be associated with histone chaperones or histone-
associated factors to maintain their DNA-free form. Once in
the extracellular space, histones (and related components) act
as CAMPs, thereby promoting inflammation. Although Xu et al.
demonstrated that intravenous injection of histones was lethal
in mice [15], incredibly, little distinction has been made
between the different forms of extracellular histones. This is
in large part due to the limitations of available techniques to
differentiate between free versus DNA-bound forms of histones.
Importantly, the cytotoxicity and proinflammatory signaling
induced by free histones compared to nucleosome-associated
histones differ [97, 98].
Inflammatory phenomena of extracellular histones have been

explored in various experimental conditions. For one, the toxic
effect of histones has been demonstrated when added to
endothelial cells [82, 97]. In experimental models of murine
sepsis, in vivo studies have shown intravenously injected histones
were lethal, whereas anti-histone antibodies reduced mortality
[15]. Furthermore, sublethal doses of intravenously administered
histones were pro-inflammatory, resulting in high levels of TNFα,
IL-6, and IL-10 in a TLR4-dependent manner [15]. In human sepsis,
levels of histones are significantly increased [99], and consistent
with experimental murine models, appear to cause cellular injury
in a TLR4-dependent manner [15, 100].Ta
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EXTRACELLULAR RNA
Extracellular RNAs (exRNAs) are a heterogeneous group of
ribonucleic acids, including messenger (m), ribosomal (r), micro
(mi), long non-coding (lnc), and circular (circ) RNAs. These RNAs
can be released from cells into the extracellular space in free form,
bound to proteins or phospholipids, or in association with
extracellular vesicles (EVs) [101–103]. Analyses of EV-associated
exRNAs revealed that miRNAs together with rRNAs comprise the
most prevalent form of exRNA; however, by weight, rRNAs are the
most abundant type in human plasma [104–107]. exRNAs
associate with several proteins or ribonucleoprotein complexes
and bind to high-density lipoproteins that protect them from
degradation by extracellular RNases [108, 109]. More importantly,
however, these protein interactions can impact the immunogeni-
city of exRNAs [109, 110]. Although in physiologic conditions only
low levels of circulating exRNA can be detected in extracellular
fluids, in acute states of cellular stress (such as in hypoxia,
infection, and inflammation), the concentration of exRNAs is
dramatically increased [107, 109, 111].
While different forms of exRNAs, including miRNAs and lncRNAs

have been implicated in influencing inflammatory processes at
different levels, recent work has revealed the influence of
ribosomal exRNA as an important DAMP on cellular processes
for leukocyte recruitment [101, 112]. For example, ribosomal
exRNA may induce vascular hyper-permeability and vasogenic
edema. This may be accomplished through activation of the
vascular endothelial growth factor (VEGF) receptor-2 system, as
well as through recruitment of leukocytes to the inflamed
endothelium through M1-type polarization of inflammatory
macrophages, or through exRNA serving as a pro-thrombotic
cofactor thereby promoting thrombosis [101, 113]. In addition to
sterile inflammation, exRNAs also augment the linking of bacteria
to host cells, facilitating microbial invasion [114]. exRNAs function
as CAMPs in a typical manner through recognition by membrane-
bound PRRs including TLRs and RAGE as well as cytosolic
receptors including retinoic acid-inducible gene-I (RIG-I), and
melanoma differentiation-associated protein-5 (MDA-5) [115, 116].
The binding of exRNAs by such PRRs leads to the induction of
different signaling pathways, resulting in the activation of
transcription factors like c-Jun-N-terminal kinase or NF-κB and
release of pro-inflammatory cytokines [117, 118]. Interestingly,
ribosomal exRNAs fulfill several additional extracellular functions
independent of recognition by PRRs, including the progression of
cardiovascular diseases [101].
miRNAs are small endogenous non-coding RNAs that play a

critical role in post-transcriptional regulation of gene expres-
sion by binding to complementary target mRNAs [119, 120].
miRNAs have been reported to affect immune processes, for
example by inhibiting of NF-κB expression and modulating
immune cell proliferation and differentiation [121]. Although
the focus of miRNAs has revolved around their intracellular role,
miRNAs have been readily found in the blood, with changes
associated with acute physiologic stressors [105, 122, 123].
Many circulating miRNAs are bound to protective proteins
(high-density lipoprotein and argonuate protein) or packaged
into protective microvesicles (exosomes), as unbound miRNAs
are rapidly degraded in the bloodstream [105, 108]. Compared
to non-exosome associated miRNA, circulating miRNA found in
exosomes are more likely modulated by stressor exposure.
Stress-induced exosomal miRNA reductions have been corre-
lated with increases in inflammatory proteins, thereby suggest-
ing stress-modulated exosomes may be immune-stimulatory
[105]. In a murine sepsis model, several miRNAs were found to
be released into the blood via EVs. Compared to sham EVs, in
septic EVs several miRNAs exhibited >1.5-fold increase. Speci-
fically, these miRNAs included miR-126-3p, miR-122-5p, miR-
146a-5p, miR-145-5p, miR-26a-5p, miR-150-5p, miR-222-3p, and
miR-181a-5p. Furthermore, septic EVs were proinflammatory

and increased IL-6, TNFα, IL-1β, and MIP-2 production via TLR7-
and MyD88-dependent pathways [122].
In human sepsis, it has been demonstrated that miR-182, miR-

143, miR-145, miR-146a, miR-150, and miR-155 were dysregulated
in septic patients, and downregulation of specific miRNAs
correlated with increased inflammatory cytokine production and
monocyte proliferation [123, 124]. However, recently Guerin et al.
revealed an unconventional function of extracellular miRNA to
neutralize the action of a CAMP, eCIRP, because CIRP has a
housekeeping role in interacting with RNAs [125]. Extracellular
miRNA 130b‐3p mimic inhibited eCIRP‐induced inflammation in
experimental models of sepsis. Although the damaging effect of
eRNA can be counteracted by endogenous circulating RNase1,
under acute inflammatory states, only the administration of
exogenous, non-toxic RNase1 provides an effective and safe
therapeutic regimen. Thus, novel in vitro and in vivo strategies,
including natural endonucleases or synthetic nucleic acid binding/
neutralizing polymers as antagonists, have been explored and
show promise in combatting the destructive nature of eRNA
[126, 127].

TERRA, GLYCORNAS, AND EXTRACELLULAR RIBOSOMES
Telomeres are the repetitive nucleotide regions found on
chromosomal ends that protect DNA from decay. Telomeric
repeat-containing RNA (TERRA), a lncRNA transcribed from
telomeres, has been identified as a telomere-associated regulator
of chromosome end protection [128]. Thus, intracellularly, TERRA
plays a crucial role in telomere length homeostasis. A recent study
reported that TERRA can be found in extracellular fractions in
mouse tumor and embryonic brain tissue, as well as in human cell
cultures that may stimulate the innate immune response [129].
Cell-free TERRA (cfTERRA) is a shorter form (∼200 nucleotides) of
cellular TERRA and copurifies with CD63- and CD83-positive
exosome vesicles. cfTERRA can also be found as a complex with
histone proteins. Incubation of cfTERRA containing exosomes with
peripheral blood mononuclear cells stimulated the expression of
TNFα, IL-6, and C-X-C chemokine 10 (CXCL10) [129]. Although
these findings with extracellular TERRA implicate a novel extrinsic
function in tumor microenvironments, elucidation of extracellular
TERRA in sepsis will direct a novel pathophysiology of inflamma-
tory diseases.
Recently, highly conserved small lncRNAs, named glycoRNAs,

were discovered [130]. These RNAs bear N-glycans in their
structural backbone that are highly sialylated and fucosylated.
GlycoRNAs are present in multiple cell types on the cell surface.
They can interact with anti-dsRNA antibodies and members of the
sialic-acid-binding immunoglobulin-like lectins (Siglecs) receptor
family. Siglecs are expressed in various immune cells that
recognize the sialic acid-containing ligands and initiate down-
stream signaling by activating Shp1 to negatively regulate TLR4
and B cell receptor (BCR) signaling pathways [131]. Since
glycoRNAs are exposed to the external environment of cells, their
interaction with various proteins could be possible, pinpointing
their novel role in the immune system. A recent study identified
the presence of small ribosomal subunit 40 S by negative stain
transmission electron microscopy and velocity sedimentation in
sucrose gradients of concentrated extracellular fractions [112].
Improved understanding of extracellular ribosomes could possibly
implicate them as damage-associated molecular patterns or
subclassify them as CAMPs.

ECIRP
The RNA chaperone protein, CIRP, plays a critical role in
upregulating the inflammatory cascade when released from cells
as eCIRP in acute inflammatory conditions, including sepsis.
Elevated plasma levels of eCIRP have been independently
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correlated with worse prognosis in human sepsis [20, 125].
Intracellular CIRP can be released outside the cell through various
pathways. For one, CIRP can be released passively during necrotic
cell death. In addition, in times of cellular stress, CIRP can be
translocated from the nucleus to cytoplasmic stress granules and
released extracellularly through exosome-mediated pathways,
inflammasome-mediated GSDMD activation, pyroptosis, or
necroptosis [18, 20]. Once released extracellularly, eCIRP recog-
nizes its cognate receptor TLR4/MD2 complex expressed in several
cell types, activating downstream NF-κB pathways and stimulating
the release of pro-inflammatory cytokines [20, 132]. eCIRP has also
been shown to stimulate the Nlrp3 inflammasome, leading to
caspase-1 activation and subsequent expression of IL-1β and IL-18
and pyroptosis [6, 7, 132]. In addition to increasing pro-
inflammatory cytokines, eCIRP has been shown to contribute to
end-organ injury in sepsis and other acute inflammatory condi-
tions [132].
In many cell types, including macrophages, lymphocytes, and

neutrophils, eCIRP has been demonstrated to act as a CAMP in the
context of cellular activation, cytokine and chemokine production,
and NET formation. For example, injection of recombinant mouse
(rm) CIRP leads to ALI in mice via macrophage, neutrophil, and
endothelial cell activation and cytokine production in the lungs
[133]. Furthermore, beneficial outcomes have been demonstrated
through CIRP inhibition by using newly identified antagonists, C23
and M3, targeting its binding to TLR4 and TREM-1, respectively, or
in CIRP knockout mice in various murine models of acute
inflammatory conditions [6, 7, 132, 134]. In sepsis, therapeutic
potential has been demonstrated by using anti-CIRP antibodies or
CIRP-derived inhibitory peptides (C23 and M3) to prolong survival
and attenuate end-organ injury [6, 7, 132, 134].

HMGB1
The nuclear nonhistone chromatin-binding protein, HMGB1, plays
a critical role in many intracellular functions, including the DNA
replication and repair, regulation of transcriptional activity, and
nucleosome formation [135]. When mobilized from the nucleus to
the cytoplasm and then released extracellularly, HMGB1 becomes
pro-inflammatory [14, 136]. The extracellular release of HMGB1
can occur actively through cytoplasmic vesicles or passively from
necrotic cells (either alone or in complex with RNA, DNA, or
nucleosomes) or through pyroptosis [14, 23, 136, 137]. Double-
stranded RNA-dependent protein kinase (PKR) induces inflamma-
some activation and subsequent release of HMGB1 [137].
Extracellular HMGB1 activates innate immune cells to propagate

pro-inflammatory signaling cascades. This occurs through recruit-
ment of neutrophils to the site of tissue injury and through
HMGB1 binding of other PAMPs, (including DNA, LPS, and
lipoteichoic acid), which serves to potentiate their inflammatory
impact [6, 7, 136, 138]. Furthermore, HMGB1 has been shown to
bind to numerous cell surface receptors, including RAGE, TLR2,
TLR4, TLR9, and TREM-1 [6, 7]. Binding of HMGB1 to these
receptors leads to the activation of macrophages and endothelial
cells and downstream production of pro-inflammatory chemo-
kines, cytokines, and endothelial adhesion molecules [6, 7].
HMGB1 is markedly elevated in human sepsis and is widely
known as a late mediator of sepsis, leading to greater morbidity,
and mortality [135, 139]. HMGB1 has been shown to significantly
attenuate erythropoietin (EPO)-mediated phosphorylation of the
JAK2/STAT5 and mTOR signaling pathways, contributing to the
chronic phase of anemia of inflammation [140]. As released
extracellular HMGB1 can induce considerable inflammation and
has demonstrated to cause detrimental effects globally in various
disease states [141], many therapeutic strategies have been
employed, supporting that targeting HMBG1 can improve out-
comes in sepsis (including neutralizing antibodies, HMGB1
antagonists, and small inhibitory peptides) [6, 7].

DETECTION OF CAMPS IN SEPSIS
Since CAMPs play a critical role in the immune response to
infection, and elevated levels of CAMPs serve as diagnostic and
prognostic markers in sepsis, assessment of CAMPs in biological
fluids, i.e., the blood of experimental and clinical sepsis samples, is
vital in determining the extent of the inflammation and tissue
injury, monitoring disease progression, and elucidating potential
treatment effects (Fig. 3). The levels of cfDNA in the plasma of
sepsis patients are determined by real-time quantitative PCR
(qPCR), quantitative PicoGreen fluorescence assay, and anti-
dsDNA ELISA [142, 143]. Moreover, next-generation sequencing
technology may be used to identify pathogens from cell-free
plasma DNA of septic patients to overcome the shortcomings of
traditional bacterial culture [144]. The presence of extracellular
nuclear DNA (nDNA) and mtDNA in septic patients’ plasma are
determined by qPCR using specific primers for nDNA and mtDNA
[145]. Fragmented mtDNA in cells can be determined by staining
cells with MitoTracker Red (mitochondria), TUNEL (fragmented
DNA), and Hoechst (nucleus) [60]. Acknowledging that NETs
contain DNA, citH3, and MPO, the plasma contents of NETs in
sepsis and COVID-19 patients can be determined by PicoGreen
fluorescence assay and ELISA by detecting citH3 and MPO using
dsDNA Abs [146]. Immunohistochemistry can also be used to
reveal NETs in lung samples, as was demonstrated in autopsy lung
samples of COVID-19 patients to be exaggerated [147]. Circulating
histones in septic patients’ sera are determined by ELISA [148].
Although it is tricky to distinguish the free verse nucleosomal
histones, subtracting the values of DNA containing histones
(determined by using dsDNA ELISA assays) from the values of total
histones may indirectly provide amounts of free histones in the
blood of septic patients. Extracellular RNA, especially the miRNA as
free form or in EV contained form, are mainly detected by qPCR
and microarray after isolating the total RNA from plasma samples
[125, 149]. TERRA can be determined by RNA in situ hybridization
assay [129]. Moreover, RNA-seq analyses revealed TERRA to be
among the most highly represented transcripts in extracellular
fractions extracted from normal and cancer patient blood plasma
[129]. It has also been reported that cfTERRA can be identified by
cyro-electron microscopy and ChIP assays [129]. The plasma levels
of the DNA- and RNA-binding proteins HMGB1 and eCIRP in septic
patients are measured by ELISA [20, 125, 150].

SCAVENGING CAMPS TO REGULATE INFLAMMATION
CAMPs may be released passively from necrotic cells. Since
inefficient clearance of apoptotic cells may lead to necrosis and
augmented CAMP release, molecules that contribute to apoptotic
cells’ phagocytic clearance may help reduce circulating CAMPs.
Milk fat globule-EGF factor VIII (MFG-E8) plays a critical role in
efferocytosis, and thus may be implicated in the regulation of
CAMPs [151]. Intracellular DNase and nucleic acid-binding
polymers (NABPs) have also been shown to play a pivotal role in
the degradation of DNA in apoptotic cells or engulfed cells
[58, 152]. Furthermore, other scavenging molecules, as have been
described in their role for scavenging dead cells, debris, and
DAMPs from the extracellular compartment, may also be
implicated in the regulation and removal of CAMPs as means for
ameliorating inflammation [58, 151].
Other therapeutic strategies to target CAMP-induced inflamma-

tion have been extensively studied, as depicted in Fig. 2 and
summarized in Table 3. For example, the neutralization of cfDNA
through DNase and scavenger-molecule based approaches have
been utilized. Previously, NABPs have been shown to scavenge
proinflammatory nucleic acids and modulate inflammation at
injured sites [153]. Specifically, third generation polyamidoamine
dendrimer (PAMAM-G3) is a widely studied NABP that has
demonstrated ability to prevent TLR activation in target immune
cells through scavenging nucleic acid and nucleic-acid proteins in
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a multitude of acute inflammatory disease states, including liver
failure, influenza infection, and cancer metastasis. To address the
limitation of unwanted, in vivo cytotoxic effects of PAMAM-G3, a
mesoporous silica nanoparticle functionalized with polyethyleni-
mine (MSN-PEI), a nucleic acid-biding nanoparticle (NABN), was
synthesized with the intent of improving toxicity profiles. Novel
synthesized nanoparticles have similarly demonstrated the ability
to scavenge cfDNA and ameliorate septic injury in experimental
models of sepsis, including cecal ligation and puncture (CLP) [58].
Thus, further nanoparticulate NABNs-based scavenging
approaches may provide a promising future therapeutic avenue
for addressing cfDNA in lethal inflammatory disorders, including
sepsis.
A different strategy that has been investigated is the use of

membrane-coated cartridges to scavenge dead cells, pathogens,
or specifically DAMPs from circulation. Early employment of this
technique utilized polymyxin B immobilized to a polystyrene-
derived fiber to remove circulating LPS. Using this scavenger
cartridge, blood if filtered outside the patient using an extra-
corporeal circuit, thereby detoxifying blood and removing nearly
90% of circulating LPS. This therapeutic strategy has been
implemented in septic patients with little reported adverse events,
however further studies are needed to determine true clinical
efficacy in improving outcomes [154]. Utilizing a similar strategy,
certain types of NABPs, e.g., PANAM-G3, beta-cyclodextrin-
containing polycation (CDP) and hexadimethrine bromide
(HDMBr), immobilized onto an electrospun microfiber mesh were
capable of capturing and removing extracellular DNAs as well as
HMGB1 from circulation. NABP-immobilized mesh also neutralized
the ability of DAMPs generated by ex vivo cell culture or DAMPs
circulating in the blood of trauma patients to stimulate multiple

TLRs in vitro and in vivo [155]. Thus, therapeutic approaches
utilizing membranes coated with CAMP-capturing polymers may
be a promising strategy during hemofiltration, extracorporeal
membrane oxygenation (ECMO) and continuous renal replace-
ment therapy (RRT) to scavenge CAMPs and ameliorate CAMP-
induced inflammation in septic patients.
A broad variety of proteins can promote internalization of

harmful molecules with subsequent pro- and anti-inflammatory
impacts. Previously, it has been shown that HMGB1 can bind LPS
and target macrophage internalization and delivery to lysosomes
via the RAGE receptor. Although HMGB1 is permeabilized in the
acidic environment of the lysosome, the impact of cytosolic LPS in
this mechanism results in the activation of caspase-11, pyroptosis,
and cell death in endotoxemia and bacterial sepsis [156]. DAMPs
(such as HMGB1 and peroxiredoxins) are ligands for many other
scavenger receptors that similarly promote internalization. For
example, class A scavenger receptors (including MSR1) have been
shown to facilitate macrophage internalization of HMGB1, but also
that these receptors (MSR1 and MARCO) served as co-receptors for
pro-inflammatory TLR4 signaling. In this same work, however,
double scavenger receptor-(MSR1 and MARCO)-deficient mice still
internalize HMGB1 efficiently, suggesting that other scavenger
receptors or related molecules play a role in macrophage
internalization [157]. On the other hand, it has been reported
that clearance of DAMPs by class A scavenger receptors may
provide anti-inflammatory impacts. For example, scavenger
receptor-mediated clearance of DAMPs in a murine ischemic
cerebral stroke model, largely mediated by MSR1, served to
attenuate DAMP-mediated inflammatory signaling, thereby
improving cerebral pathology [158]. Broadly, the role of class A
scavenger receptors in inflammation is controversial, and likewise
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the resulting sequelae of this receptor-ligand interaction of
scavenger receptors to DAMPs is not fully understood. Regardless,
better understanding of these interactions and their relationship
to the clearance of CAMPs in acute disease states may promote
discovery of new therapeutic strategies in regulating CAMP-
induced inflammation. Along with these scavenging mechanisms,
a summary of methods for targeting CAMPs to attenuate
inflammation and ALI in sepsis is shown in Fig. 3, and the
preclinical evidence for each CAMP-specific therapeutic strategy is
summarized in Table 3.

CONCLUSIONS AND FUTURE DIRECTIONS
Sepsis is a multifactorial inflammatory disease condition whose
pathophysiology is enigmatic. Distinguishing CAMPs from the
broad area of DAMPs may establish the notion that the source/
origin of DAMPs matters for the differential intensities of
inflammation in sepsis, further directing source control to regulate
the release of CAMPs during sepsis. Given that various infectious
insults can contribute to the progression of inflammation to
sepsis, elucidating the unique roles of CAMPs in other modes of
inflammation, including sterile inflammation, bacterial and viral-
based inflammation, and disease-specific inflammation, are
worthy areas of continued research. Furthermore, the number of
molecules considered to be DAMPs is increasing, as a recent study
unveiled a myriad of intracellular molecules released during LPS
stimulation of macrophages through active and pyroptotic path-
ways. Our approach of grouping DAMPs into the unique category
of CAMPs will further stimulate the creation of other new
subcategories based on the characteristics or size of released
molecules. Studies on the release and functions of CAMPs are
mainly focused on immune cells in terms of inducing cytokine
production and cellular heterogeneity. Future studies focused on
the role of CAMPs on non-immune cells may also reveal new
directions on cell-type specific effects of CAMP release and their
mode of action in sepsis.
Several post-translational forms of HMGB1 have been

identified, relying on the extracellular environmental pH among
other factors. Modified extracellular HMGB1 (the redox state of
cysteines 23, 45, and 106) exhibit different functions compared
to their parent form [7]. Future studies on whether other CAMPs
(like eCIRP and histones) show similar post-translational
modifications induced by external environments will be of
great value. During transcription, several transcriptional factors
bind to regulatory elements. As ETs or cfDNA are released, there
is a possibility that these transcriptional factors may also be
released along with bound DNA. Identification of extracellular
transaction factors and their functions on the immune system
may uncover greater understanding in the disease pathophy-
siology of sepsis. Furthermore, during inflammatory responses,
epigenetic changes of DNA and histones in cells are altered.
Epigenetically modified CAMPs may exhibit differential out-
comes in sepsis pathophysiology. Finally, these identified
CAMPs may interact with one another (and other proteins) to
form complexes once released extracellularly, in addition to the
crosstalk between their downstream signaling pathways.
Regarding the interplay of CAMPs, it has previously been
shown that targeting one CAMP could abrogate inflammation
and tissue injury by inhibiting pro-inflammatory mediators and
other CAMPs [20]– highlighting the importance of the inter-
relationship among various CAMPs in sepsis. As CAMP interac-
tions may confer great inflammatory consequences, studying
these interactions may provide new targets in preventing
dangerous inflammatory cascades in sepsis. Unveiling the
unique category of these important endogenous molecules,
CAMPs, in sepsis defines the pathophysiology of inflammatory
disease and provides new therapeutic avenues in preventing
and treating uncontrolled inflammation.
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