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Polar pelagic microbial communities access a narrower range of polysaccharide substrates
than communities at lower latitudes. For example, the glucose-containing polysaccharide
pullulan is typically not hydrolyzed in fjord waters of Svalbard, even though pullulan is
rapidly hydrolyzed in sediments from Svalbard fjords, other polysaccharides are hydrolyzed
rapidly in Svalbard waters, and pullulan is hydrolyzed rapidly in temperate waters. The
purpose of this study was to investigate potential factors preventing hydrolysis of pullulan
in Svalbard fjord waters. To this end, in two separate years, water from Isfjorden,
Svalbard, was amended with different carbon sources and/or additional nutrients in order
to determine whether increasing the concentration of these potentially-limiting factors
would lead to measurable enzymatic activity. Addition of nitrate, phosphate, glucose, or
amino acids did not yield detectable pullulan hydrolysis. The only treatment that led to
detectable pullulan hydrolysis was extended incubation after the addition of maltotriose
(a subunit of pullulan, and potential inducer of pullulanase). In these fjords, the ability
to enzymatically access pullulan is likely confined to numerically minor members of the
pelagic microbial community.These results are consistent with the hypothesis that pelagic
microbial communities at high latitudes exhibit streamlined functionality, focused on a
narrower range of substrates, than their temperate counterparts.
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INTRODUCTION
Surface ocean microbial communities differ systematically in
their abilities to enzymatically hydrolyze high molecular weight
organic matter, and thus to initiate remineralization of high
molecular weight substrates (Arnosti et al., 2011). Pelagic micro-
bial communities at high latitude are capable of hydrolyzing
a narrower spectrum of soluble substrates than their tem-
perate counterparts, although the underlying reasons for this
substrate selectivity are unknown. This narrowing of micro-
bial community function at high latitude parallels decreases in
microbial diversity and/or species richness at high latitude (Bald-
win et al., 2005; Pommier et al., 2007; Fuhrman et al., 2008;
Wietz et al., 2010). Nevertheless, Arctic pelagic heterotrophic
microbial communities are active players in the marine carbon
cycle, transforming, and respiring a wide range of substrates,
despite permanently cold temperatures (Wheeler et al., 1996;
Kirchman et al., 2009a). Substrate consumption in Arctic micro-
bial communities is affected by a wide range of factors, including
season, location, and nutrient levels (Kirchman et al., 2009b;
Nikrad et al., 2012). The functional difference in enzyme activi-
ties observed over latitudinal gradients, and the narrow spectrum
of substrates hydrolyzed by Arctic microbial communities, may
thus be driven by a lack of a nutrient or co-factor required
to induce production of specific enzymes by organisms pos-
sessing them, or conversely by a lack of organisms with the
genes to synthesize the enzymes required to hydrolyze specific
substrates.

The supply of labile DOM has been suggested to play a key role
in controlling bacterial growth at high latitude (e.g., Kirchman
et al., 2009b). Substrate availability in ocean waters is also highly
variable: transient events, such as phytoplankton blooms or physi-
cal mixing can rapidly change the set of organic substrates present,
requiring changes in expression of genes related to organic matter
metabolism (Teeling et al., 2012). Here, we investigated whether
an expansion in enzymatic capabilities of pelagic microbial com-
munities in waters of the Svalbard archipelago could be achieved
through addition of a factor potentially lacking in the water col-
umn: mineral nutrients (nitrate and/or phosphate), labile organic
carbon or nitrogen, or a specific inducer that might be expected to
activate enzyme production. As a test case, we focused on trying
to enhance the activity of enzymes that hydrolyze pullulan, a sol-
uble, glucose-containing polysaccharide. Pullulan [α(1,6)-linked
maltotriose; maltotriose is α(1,4)-linked glucose], was selected as
a test case because in repeated investigations over the past decade,
we have not detected pullulanase activity in the water column of
the fjords of Svalbard, although it is readily hydrolyzed at a num-
ber of sites in temperate waters. Its basic constituent, glucose, is
also is found in laminarin, a substrate readily hydrolyzed in Sval-
bard waters (Arnosti et al., 2005, 2011; Arnosti, 2008; Teske et al.,
2011). The lack of hydrolysis of pullulan in the water column at
Svalbard is particularly intriguing because pullulanase activity in
underlying sediments is high (Arnosti, 2008; Teske et al., 2011),
and bacterial isolates have been obtained from Svalbard sea-ice
using pullulan as a growth substrate (Groudieva et al., 2004).
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MATERIALS AND METHODS
SEAWATER COLLECTION
Surface seawater for the pullulanase induction experiments was
obtained from Isfjord, Svalb ard (78◦ 16.55′ N, 15◦ 10.1′ E) on
29 June 2005, and on 3 August 2006. Samples were kept on ice
in the dark during transit (ca. 48 h) to the shore-based lab in Ny
Ålesund, Svalbard. In order to assess hydrolysis rates of a broad
range of polysaccharides, surface, and bottom seawater was also
collected from Station J, Smeerenburgfjord (79◦ 42.8′ N, 011◦
05.2′E) in 2006 and transported back to Ny Ålesund. Previous
work in Svalbard indicates that pelagic extracellular enzyme activ-
ities are stable over a timescale of several days (Steen and Arnosti,
2011).

PULLULANASE INDUCTION EXPERIMENTS
In order to investigate whether addition of carbon or nutrient
compounds potentially influenced pullulanase expression, sam-
ples were “pre-incubated” with different carbon and/or nutrient
compounds prior to addition of fluorescently labeled (fl)-pullulan.
In 2005, pre-incubation periods were 24 h and 5 days. In 2006, due
to logistical constraints, pre-incubation periods were shortened to
12 h and 3 days. After the pre-incubation period, fl-pullulan or fl-
xylan was added to each treatment, and polysaccharide hydrolysis
rates were measured as described below. The experimental design
in each year is summarized in Table 1.

In 2005, experimental treatments consisted of additions of glu-
cose (potentially a labile source of organic carbon; 0.875 μM-C),
maltotriose (a trimer of glucose and a constituent of pullulan;
0.875 μM-C), nitrate (potentially a limiting nutrient; 40 μM),
phosphate (potentially a limiting nutrient; 16 μM), and nitrate
plus phosphate (potentially limiting nutrients; 40 and 16 μM,
respectively). Maltotriose and glucose were selected because they
have been observed to induce and repress pullulanase activity,
respectively (Hope and Dean, 1974; Antranikian, 1990; Nair et al.,
2007). Nutrient amendments were included because low nutri-
ent conditions can lead to low pullulanase activity even in the
presence of pullulanase inducers (Nair et al., 2007). Addition-
ally, a treatment with no addition was included as a control,
and a treatment with no addition, but in which hydrolysis of
fl-xylan rather than fl-pullulan was measured, was included as
a positive control for microbial hydrolysis of polysaccharides.

Xylan was chosen as the positive control since previous work
on Svalbard had repeatedly demonstrated rapid hydrolysis of this
polysaccharide (e.g., Arnosti et al., 2011). In 2006, experimen-
tal treatments consisted of additions of glucose (0.875 μM-C),
maltotriose (0.875 μM-C), unlabeled pullulan (0.875 μM-C),
an equimolar mix of the 20 genetically-encoded amino acids
(as sources of labile carbon and nitrogen; total concentration
5.25 μM-C) and nitrate plus phosphate (40 and 16 μM, respec-
tively). These nutrient concentrations were likely high compared
to in situ nutrient concentrations, which were previously been
observed in the range of 0–10 μM NH+

4 + NO−
3 and 0.1–0.7 μM

PO3−
4 in Svalbard waters (Owrid et al., 2000; Iversen and Seuthe,

2011).

PROTOCOL FOR MEASURING POLYSACCHARIDE HYDROLYSIS RATES
Fl-polysaccharides (pullulan, xylan, arabinogalactan, chondroitin
sulfate, fucoidan, and laminarin,) were synthesized as described
by Arnosti (Arnosti, 1996, 2003). For each hydrolysis rate mea-
surement, polysaccharides were added to a 50 ml sample, which
was divided into three biological replicates. Samples were then
incubated at 7 ◦C (2005) or 4 ◦C (2006). Subsamples were taken
after 3, 8, and 21 days (2005 Isfjorden samples); 3, 7, and 14 days
(2006 Isfjorden samples) or 2, 4, 6, 10, and 16 days of incuba-
tion (2006 Smeerenburgfjorden samples). Fl-polysaccharide size
distributions and hydrolysis rates were calculated as described
previously (Arnosti, 1996, 2003).

HYDROLYSIS OF A BROAD RANGE OF POLYSACCHARIDES IN
SMEERENBURGFJORDEN
In 2006, hydrolysis rates of arabinogalactan, chondroitin sulfate,
fucoidan, laminarin, pullulan, and xylan were assessed in surface
(1 m depth) and bottom (ca. 200 m depth) at station, J, Smeeren-
burgfjorden. Polysaccharide hydrolysis rates were measured with
no pre-incubation period, and without amendments of substrates
other than the fl-polysaccharides, as described above.

RESULTS
Heterotrophs capable of hydrolyzing polysaccharides were active
in the pullulan induction experiments, as shown by maximum
xylan hydrolysis rates (measured in a single replicate after 21 days
incubation) of 4.3 nM L−1 h−1 in the 24 h pre-incubation

Table 1 | Hydrolysis rates for xylan and pullulan under different experimental treatments, nmol L−1 h−1.

Year Pre-incubation period Xylan Pullulan

2005 No amendment No amendment +glucose +maltotriose +NO−
3 +PO3−

4 +NO−
3 +PO3−

4

24 h 4.3 0 0 0 0 0 0

5 days 6.8 0 0 0.86 ± 0.13 0 0 0

2006 No amendment +glucose +maltotriose +pullulan +AA +NO−
3 +PO3−

4

12 h n.m. 0 0 0 0 0 0

3 days n.m. 0 0 0 0 0 0

Glucose, maltotriose, and unlabeled pullulan concentrations were 0.875 μmol L−1 monomer-equivalent. NO−
3 concentration was 40 μM as KNO−

3 ; PO3−
4 concentration

was 16 μM as Na2HPO4. +AA treatment included all 20 genetically-encoded amino acids at equimolar concentrations, for a total concentration of 5.25 μM-C. n.m.
indicates that xylan hydrolysis in 2006 was not measured in Isfjorden waters.
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no-addition samples and 6.8 nM L−1 h−1 in the 5-day pre-
incubation no-addition samples (Table 1). Moreover, four distinct
polysaccharide substrates were hydrolyzed in surface and bottom
waters from Station J in Smeerenburgfjord (Figure 1), consis-
tent with previous results that pelagic microbial communities in
Svalbard are readily capable of accessing specific polysaccharides
(Arnosti, 2008; Teske et al., 2011).

Efforts to stimulate use of pullulan as a substrate, how-
ever, showed that pullulan is microbially-inaccessible for most
of the pelagic community (Table 1). Only a single set of
treatments—the 5 days pre-incubation with maltotriose—led to
hydrolysis of fl-pullulan during the subsequent incubation. Even
in this case, substantial incubation time (21 days) was required
before detectable hydrolysis of pullulan occurred. Addition of glu-
cose, pullulan, nitrate, phosphate, nitrate, and phosphate, and free
amino acids did not lead to measurable pullulanase activity, nor
did addition of maltotriose on timescales shorter than the 5 days
pre-incubation + 21 days incubation (Table 1).

DISCUSSION
The observation that addition of maltotriose led to measurable
pullulanase activity after sufficient pre-incubation is consistent
with biochemical control of pullulanase expression, since pullulan
is composed of repeating units of maltotriose. Many extracel-
lular polysaccharide hydrolases are regulated by a scheme in
which the hydrolase is expressed constitutively at a low level
(Béguin and Aubert, 1994). Oligomers of the polysaccharide
induce further expression of the hydrolase, while monomers
of the polysaccharide (glucose, in this example) repress expres-
sion of the homologous hydrolase. This regulation mecha-
nism has been demonstrated for thermophilic bacteria that
hydrolyze pullulan (Antranikian, 1990); the current data sug-
gest that pullulanase activity in Svalbard waters may be regu-
lated in a similar manner. The fact that hydrolysis was only
detected after 21 days in the +maltotriose, 5-days pre-incubation

FIGURE 1 | Hydrolysis rates of six polysaccharides in surface and

bottom waters at Station J, Smeerenburgfjord, August 2006. Bars
represent SD. of triplicate incubations. Ara, arabinogalactan; chn,
chondroitin sulfate; fuc, fucoidan; lam, laminarin; pul, pullulan; xyl, xylan.

treatment from 2005 (and was not detectable with shorter pre-
incubation periods with either maltotriose or pullulan) further
suggests that the microorganisms in fjord waters capable of
hydrolyzing pullulan were likely slow-growing as well as initially
rare.

Induction of enzymatic pathways can occur on timescales of
hours or faster in the lab (Madigan et al., 2000); and less than
2 days for hydrolysis patterns consistent with pullulanase induc-
tion in seawater at lower latitudes (Steen et al., 2012). Substrates
for which the corresponding extracellular enzyme must be induced
may therefore be hydrolyzed quite rapidly, if the final activity
of the induced enzyme is high. The combined requirements of
growth of a relatively rare member of the microbial community
and induction of enzymes, however, could lead to the pattern
observed in this study. Slow growth of bacteria in Svalbard waters
is consistent with the results of Vadstein (2011), who found no
increase in cell numbers over 22 h bioassay experiments in which
carbon and nutrients were added to Svalbard fjord water. It is
also consistent with results of very long-term incubations of sur-
face water from Station J, in which hydrolysis of Isochrysis extract
was first observed only after 70 days’ incubation, activity also
attributable to initially rare and slow-growing bacteria (Arnosti,
2008).

In many respects, the general absence of pullulanase activity
in Svalbard waters is quite surprising, given that it is a solu-
ble, linear polysaccharide composed of glucose. Furthermore,
pullulanase functions as a debranching enzyme of starch (Ball
and Morell, 2003), a common algal energy storage polysaccha-
ride (Painter, 1983). Hydrolysis of pullulan in Svalbard sedi-
ments is rapid (Arnosti, 2008; Teske et al., 2011), and a diverse
range of bacterial isolated from sea ice in Svalbard’s fjords can
hydrolyze pullulan (Groudieva et al., 2004). In addition, Aure-
obasidium pullulans, a fungus which produces pullulan, has
been isolated from Svalbard fjord water (Zalar et al., 2008), so
there is very likely a source of pullulan to the water we stud-
ied. Furthermore, pelagic communities in Svalbard’s fjords can
hydrolyze a number of other polysaccharide substrates, as demon-
strated by the incubations carried out with water from Station J
(Figure 1). The observation that pullulan and arabinogalactan
were not hydrolyzed over the time course of incubation in the
waters of Station J, however, demonstrates that specific solu-
ble, carbohydrate-containing substrates are unavailable to pelagic
microbial communities in these polar waters. The observation
that these same substrates were also not hydrolyzed in incu-
bations carried out in other years in this same fjord (Arnosti
et al., 2011; Teske et al., 2011) demonstrates that the inability
to hydrolyze specific substrates is a consistent feature of these
communities.

Polar microbial communities are composed of different species
than those at lower latitudes (Bano et al., 2004), and exhibit
enzymatic activity patterns distinct from their temperate coun-
terparts (Arnosti et al., 2011). In order to cope with the
rhythms of primary productivity and plankton succession that
are unique to high-latitude environments (Hop et al., 2002),
Arctic microbial communities may specialize in terms of sub-
strate sets or controlling mechanisms for key carbon cycling
processes. The observation that some soluble substrates readily
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hydrolyzed in lower latitude environments are only microbially
available under a very specific set of circumstances supports
the view that most members of Arctic pelagic microbial com-
munities focus on a more limited range of substrates than
their temperate counterparts. These substrates are hydrolyzed
at considerable rates (Figure 1; Arnosti et al., 2011), perhaps
at the expense of the ability to access a wider range of sub-
strates, including a fraction of freshly-produced phytoplankton-
derived organic matter in Svalbard waters (Thingstad et al.,
2008). This streamlining of metabolic function may help explain
how polar communities are able to rapidly mineralize spe-
cific organic substrates (e.g., Rich et al., 1997), even at low
temperatures.
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