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MuSyC is a consensus framework that unifies
multi-drug synergy metrics for combinatorial
drug discovery
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Carlos F. Lopez 3,4,5✉

Drug combination discovery depends on reliable synergy metrics but no consensus exists on

the correct synergy criterion to characterize combined interactions. The fragmented state of

the field confounds analysis, impedes reproducibility, and delays clinical translation of

potential combination treatments. Here we present a mass-action based formalism to

quantify synergy. With this formalism, we clarify the relationship between the dominant drug

synergy principles, and present a mapping of commonly used frameworks onto a unified

synergy landscape. From this, we show how biases emerge due to intrinsic assumptions

which hinder their broad applicability and impact the interpretation of synergy in discovery

efforts. Specifically, we describe how traditional metrics mask consequential synergistic

interactions, and contain biases dependent on the Hill-slope and maximal effect of single-

drugs. We show how these biases systematically impact synergy classification in large

combination screens, potentially misleading discovery efforts. Thus the proposed formalism

can provide a consistent, unbiased interpretation of drug synergy, and accelerate the

translatability of synergy studies.
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Throughout the preceding century, two principles have been
used to quantify synergy of drug combinations: the Dose
Equivalence Principle (DEP), introduced by Loewe1,2, and

the Multiplicative Survival Principle (MSP), introduced by Bliss3.
In 1992, a committee was convened in Saariselkä, Finland seeking
to find a consensus between these principles and unify the field4,5.
Unable to reconcile their differences, the committee’s conclusion
(The Saariselkä Agreement) did not reach a consensus and simply
recommended that drug combination studies explicitly state how
synergy was calculated4,5. Multiple synergy models have since
emerged, often derived as extensions of either the DEP or MSP,
further splintering the field6–12. In the absence of a consensus
framework for drug synergy, discovery efforts for combinations
often calculate all available synergy metrics13–15, as first recom-
mended by Greco and colleagues following Saariselkä16. However,
there remains no basis for choosing one metric over another,
which becomes particularly problematic when synergy metrics
conflict. This “calculate everything” paradigm thus hampers
reproducibility between studies, delays progress in the discovery
of synergistic drug combinations, and negatively impacts the
translatability of combination discovery efforts.

Despite the lack of consensus on how to quantify synergy, drug
combination screens remain essential to both pharmaceutical and
academic discovery efforts, as shown by recent studies by
AstraZeneca and the NCI-DREAM consortia17,18, as well as
combinatorial CRISPR screens19. Yet, the paucity of successful
clinical combinations explicable by true pharmacological inter-
action, rather than patient-to-patient variability20, is symptomatic
of the challenges facing the field. Therefore, the need identified at
Saariselkä still exists: a consensus framework to interpret drug
combination pharmacology.

We recently introduced a framework to quantify synergy based
on the Law of Mass Action, named Multi-dimensional Synergy of
Combinations (MuSyC)21, that distinguishes between different
synergy types (e.g., potency, efficacy). In the present work, we build
upon our previous findings to show how MuSyC generalizes the
DEP and MSP, thereby unifying the field of drug synergy, as sought
at Saariselkä. Further, we map the landscape of current synergy
metrics, including: Bliss Independence3, Loewe Additivity1, Com-
bination Index (CI)22, Highest Single Agent (HSA)23, Effective Dose
model6, ZIP7, a partial differential equation (PDE) Hill model by
Schindler8, BRAID11, and the General Pharmacodynamic Interac-
tion (GPDI) model24. In mapping relationships between these
various frameworks, we identified systematic differences impacting
the interpretation of synergy in drug combination experiments.
Specifically, we found: (1) the conflation of synergistic potency and
efficacy masks synergistic interactions; (2) MSP-based frameworks
are biased toward antagonism for drugs with intermediate efficacy;
and (3) DEP-based frameworks contain a Hill-slope dependent bias.
The Hill-slope bias results from satisfying the famous “sham”
combination thought experiment, thus arguing against the merit of
sham-compliance as a measure of validity for synergy frameworks.
Using five large combination datasets25–29, MuSyC identifies real-
world examples where the conflicting assumptions of previous drug
synergy frameworks misleads or impedes drug discovery efforts
through these pervasive and predictable biases. Additionally, we
show that MuSyC uncovers two consequential errors in the highly
cited CI22,30 which has been proposed as the standard Mass Action-
based, synergy framework31. We therefore propose MuSyC as a
consensus framework to interpret combination pharmacology and
signify its broad applicability to the study of drug mixtures.

Results
A state-transition model to measure multi-drug synergistic
effects. The 4-parameter Hill equation is commonly used to fit

dose-response data from in vitro and in vivo assays (see Box 1 Eq.
(10) and Table 1 for parameter annotation). Here we derive this
equation from the equilibrium of a two-state transition model of
drug effect based on the Law of Mass Action (Fig. 1A, left).
Traditionally, the parameters of the Hill equation are interpreted
as a drug’s efficacy (E0− E1), potency (C), and cooperativity (h),
also known as the Hill slope. These parameters correspond to
three possible geometric transformations of a dose-response
curve (Fig. 1A, right). To generalize this one-drug formalism to
two concurrent drugs, we developed a four-state transition model
of combination pharmacology (Fig. 1B, left)21. From this model,
we derive a two-dimensional (2D) Hill equation for two drugs
(Box 1, Eq. (15)) defining a dose-response surface (Fig. 1B,
middle). The 2D Hill equation contains five additional para-
meters, not present in the single-drug Hill equation, which
measure different types of drug interactions. These additional
parameters measure changes in a drug’s efficacy (β), potency (α12
and α21), and cooperativity (γ12 and γ21) in a combination—
corresponding to three distinct types of synergy (Fig. 1B, right,
Table 1). See Supplemental Code 1 and Supplemental Section
Interactive MuSyC Jupyter Notebook for an interactive demon-
stration of the 2D Hill equation parameters. As we show below,
these parameters are conflated in traditional synergy metrics (e.g.
Loewe, Bliss, and HSA), as well as in recently proposed ones
obscuring the true origin and magnitude of drug synergy or
antagonism.

Mapping the landscape of prominent synergy models within a
consensus framework. Multiple alternative synergy models have
been proposed, most broadly derived from one of two guiding
principles: the Multiplicative Survival Principle (MSP) or the
Drug Equivalence Principle (DEP) (Table 2). Prior work has
shown contradictory results when comparing between MSP and
DEP frameworks4,12,32, and a lack of consensus remains on the
commonality between the two principles4,7,9,11. Here we show
MuSyC satisfies both the DEP and MSP under specific parametric
constraints (Fig. 2A, B), thereby unifying the foundational prin-
ciples of drug synergy.

The MSP was first described by Bliss3 and is the foundation of
the Bliss Independence framework. MSP assumes the probability
of a cell surviving treatment by drug 1 (U1) is independent of the
probability of the same cell surviving treatment by drug 2 (U2).
Therefore, the probability of surviving both Drug 1 and Drug 2 is
U=U1 ⋅U2

3. Synergy or antagonism occur when U ≠U1 ⋅U2. A
method to define an alternative Bliss null model has been
reported for growth-rate data as the sum of growth-rate
inhibition33, but this formulation is uncommon, and not
classified as MSP. MuSyC satisfies the MSP under the following
conditions: (1) the effect metric is expressed as a percent (E0= 1,
and E3= E1E2), (2) there is no potency synergy (α12= α21= 1),
and (3) there is and no cooperativity synergy (γ12= γ21= 1)
(Fig. 2A, see Supplemental Section Multiplicative Survival
Principle for details).

The DEP was first established by Loewe1,2. DEP-based
methods are characterized by linear isoboles (contours of equal
effect) (Fig. S2A). A combination of doses d1 and d2, achieving
effect E, satisfies the DEP when f 1ðd1Þ

f�1
1 ðEÞ þ

f 2ðd2Þ
f�1
2 ðEÞ ¼ 1, where fi(di)

represents the monotherapy response of drug i. MuSyC satisfies
the DEP under the following conditions: (1) the drugs’ actions are
mutually exclusive (α12= α21= 0) and (2) h1= h2= 1 (Figs. 2B
and S2B, see Supplemental Section Dose Equivalence Principle
for details).

From the literature, we identified several prominent synergy
models beyond Bliss and Loewe including: CI34, HSA23, Effective
Dose model6, ZIP7, Hill PDE8, and GPDI24. Table 2 compares
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Box 1 | Derivation of MuSyC

Consider a reversible transition between an unaffected population (U) and an affected population (A) governed by

U"
r1 �dh

r�1

A ð7Þ

where d is the concentration of the drug, h is the Hill slope, often called cooperativity, and r1 and r−1 are constants corresponding to the reaction rate
(Fig. 1A). Applying the Law of Mass Action, steady state ratios of U and A are

dU
dt ¼ A � r�1 � U � r1dh � 0

A
U ¼ r1d

h

r�1
� d

C

� �h ð8Þ

When d ¼ r�1
r1

� �1
h
, then (A= U). This dose is commonly called the EC50 (herein denoted as C). Equation (8) is called the “median effect equation”, and

has been shown to describe multiple distinct drug mechanisms of action52. Because 100% of the population is either unaffected or affected, we also
have the condition U+ A= 1. This leads to the 2-parameter 1D Hill equation

U ¼ Ch

Ch þ dh
¼ 1

1þ d
C

� �h ð9Þ

If the U and A differ by an observed effect (such as proliferation rate53), the measured effect E at dose d will be a weighted average

E ¼ U � E0 þ A � E1;
where E0 and E1 are the the effects characteristic of the U and A, respectively. From this we find the final form of a 4-parameter Hill equation:

E ¼ E1 þ
E0 � E1

1þ d
C

� �h ð10Þ

2D extension of the Hill equation for two-drug systems.
Consider a system with 4 possible states, U, A1, A2, and A1,2 corresponding to populations that are unaffected, affected by drug 1 alone, affected by drug
2 alone, or affected by both drugs, respectively. The corresponding transitions between these states are:

½U "
r1 �d

h1
1

r�1

A1; U "
r2 �d

h2
2

r�2

A2; A1 "
r
γ12
2 � α12d2ð Þγ12h2

r
γ12
�2

A1;2; A2 "
r
γ21
1 � α21d1ð Þγ21h1

r
γ21
�1

A1;2�
" #

ð11Þ

Here, the α parameters quantify the modulation of one drug’s EC50 (potency) due to the other drug. Similarly, the γ parameters measure the change of
a drug’s Hill slope (cooperativity) due to the other drug.
As in the 1D case, finding the steady state of the system leads to the following system of equations

dU
dt

¼ �U � r1d
h1
1 þ r2d

h2
2

� �
þ A1 � r�1 þ A2 � r�2

dA1

dt
¼ �A1 � r�1 þ rγ122 ðα12d2Þγ12h2

� �þ U � r1dh11 þ A1;2 � ðr�2Þγ12
dA2

dt
¼ �A2 � rγ211 ðα21d1Þγ21h1 þ r�2

� �þ U � r2dh22 þ A1;2 � ðr�1Þγ21
dA1;2

dt
¼ �A1;2 � rγ21�1 þ rγ12�2

� �þ A1 � rγ122 ðα12d2Þγ12h2 þ A2 � rγ211 ðα21d1Þγ21h1

ð12Þ

At equilibrium, the Eq. (12) must all be equal to zero; however, the system only defines a rank 3 matrix. Taking the first three equations from (12) with
the constraint U+ A1+ A2+ A1,2= 1, we define

M :¼

� r1d
h1
1 þ r2d

h2
2

� �
r�1 r�2 0

r1d
h1
1 � r�1 þ rγ122 ðα12d2Þγ12h2

� �
0 ðr�2Þγ12

r2d
h2
2 0 � rγ211 ðα21d1Þγ21h1 þ r�2

� � ðr�1Þγ21
1 1 1 1

2
666664

3
777775 ð13Þ

such that

M � U A1 A2 A1;2

h iT
¼ 0 0 0 1½ �T

or, solving for the proportions of each state,

U A1 A2 A1;2

h iT
¼ M�1 � 0 0 0 1½ �T ð14Þ

If we again consider distinct effects E0, E1, E2, and E3 distinguishing populations U, A1, A2, and A1,2, we find the equation for the dose-response surface to
be

E ¼ E0 E1 E2 E3
� � �M�1 � 0 0 0 1½ �T ð15Þ

As d1→∞ the equation reduces to

E ¼ E3 þ
E1 � E3

1þ α12d2
C2

� �γ12h2 ð16Þ

by which we can see the 2D equation reduces to a 1D Hill equation at the boundaries (See Supplemental Section Proof of boundary behavior of 2D Hill equation).
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key features and assumption of the different synergy models.
Each of these methods, as well as MuSyC, defines synergy based
on the experimental deviation from a null (additive) dose-
response surface. Because almost all synergy frameworks are
founded on either the DEP or MSP, we standardized relationships
between the various models, mapping the global landscape of
drug synergy (Fig. 2C, see Supplemental Section Relationships
between different synergy frameworks for details).

In deriving this map, we uncovered potential sources of error
when using MSP or DEP methods which impact interpretation of
synergy studies. Specifically, we identified three recurrent
considerations meriting attention from the field. (1) Previous
synergy metrics conflate different synergy types (i.e. potency,
efficacy, cooperativity) in ways that can mask synergistic and
antagonistic interactions (Fig. 3). (2) The connection between
MuSyC and the MSP-derived frameworks depend on the single
drugs’ efficacy (E1, E2), and as a result, MSP frameworks are biased
against the combination of moderately efficacious single agents
(Fig. 4). (3) The connection between the DEP and MuSyC is
constrained by single drugs’ Hill slopes (h), and therefore DEP
frameworks impose a Hill-slope dependent bias, artificially
inflating the synergy for drugs with low Hill slopes (Fig. 5). This
bias is a consequence of satisfying the sham experiment as
described in Section Re-examining the sham experiment: Sham
compliance introduces Hill-dependent bias in DEP models. While
there may be different approaches to quantify synergy relative to a
given null model, the biases we discuss are intrinsic to the null
models themselves, while the magnitude of bias depends on
the precise synergy quantification. To assess impact of these
considerations on synergy calculations in different fields, we
analyzed five large publicly available datasets (Table 3) using
MuSyC and other synergy frameworks (see Methods section for
description of fitting methods). We find the MuSyC algorithm to
be robust to different types and magnitude of noise as well as
sampling designs facilitating the analysis of many types of data
(Fig. S3). Note, while synergistic cooperativity (γ) is theoretically
plausible (as initially postulated by7), including it did not increase
the fit quality (Fig. S4) as measured by AIC and therefore we do
not explore synergistic cooperativity in subsequent analyses.

Conflating synergistic potency and efficacy masks synergistic
interactions. To determine how conflation of distinct synergy
types impacts the interpretation of drug-response data, we

generated synthetic dose-response surfaces using MuSyC (Eq.
(15)) across a range of α and β values and calculated the synergy
according to Loewe, Bliss, and Highest Single Agent (HSA) at the
EC50 of both drugs (Fig. 3A, D, G and Video S2). In each case,
many distinct sets of (α12, α21, β) are indistinguishable (e.g. the
black contour line on the spheres).

Figure 3A shows that near the boundary between synergism
and antagonism, Loewe is insensitive to changes in synergistic
potency, tracking instead with synergistic efficacy. Consequently,
in the anti-cancer dataset from O’Neil et al.26, Loewe misses
potency antagonism in combinations with synergistic efficacy
(Fig. 3B middle distribution, see Fig. S5 for an example surface).
This reflects Loewe’s assertion of infinite potency antagonism
(α12= α21= 0, Fig. 2A) in its null model. Therefore, combina-
tions that are antagonistically potent (α < 1) are all synergistic by
Loewe in the absence of sufficient antagonistic efficacy (values
above black contour in Fig. 3A). Indeed, Loewe is frequently
synergistic even in cases of antagonistic potency and efficacy
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Fig. 1 MuSyC is a mass-action, state-transition model of drug
combination synergy. A Two-state transition model for a single drug
system. The “unaffected” cells are indicated in red with the letter “U”, while
affected cells are indicated in cyan with “A1”. The traditional equation for
fitting dose-response relationships (middle) is the 4-parameter Hill
equation. We derive this equation using the Law of Mass Action from a
two-state transition model of drug effect (left). Edge notation is equal to the
ratio of states' percent occupancy at equilibrium (A1

U) at dose (d1). The Hill
equation contains parameters measuring a drug’s efficacy (E0− E1),
potency (C), and cooperativity (h). Each parameter corresponds to distinct
geometric transformations of the dose-response curve (right). B Two-drug
model: MuSyC is derived from a four-state state-transition model of
combination pharmacology (left) based on the Law of Mass Action and
results in a 2D Hill-like equation describing a dose-response surface
(middle). Cells affected by both drugs are indicated in the magenta circle
and labeled “A12”. Red to blue color gradient on the dose-response
surface ranges from no effect (red) to maximum achieved effect (blue). The
edge notations (left) refer to the ratio of the connected corners for the
boundary condition. For example, edge #3 annotation means A12

A1

� �
!

C1
α21d1

γ21h1
� �

when d2→∞. Beyond the parameters of the single Hill equation,
the 2D Hill equation has additional parameters (β, α, γ) corresponding to
distinct transformations of the dose-response surface (right) (Video S1).
These transformations describe changes in a single drug’s efficacy, potency,
and cooperativity due to the combination, and, therefore, are interpreted as
synergistic efficacy (β), synergistic potency (α), and synergistic
cooperativity (γ). There are two values for α and γ because each drug can
independently modulate the potency and cooperativity of the other6,7 (edge
3 vs. edge 4 of the state transition model). In contrast, the single β
parameter describes the percent increase in maximal effect due to both
drugs (effect E3 at A12). See Fig. S1 for MuSyC extension to three drugs.

Table 1 Annotation of MuSyC parameters.

U Percent of unaffected population.
A1, A2 Percent of affected by drug 1 and drug 2, respectively.
A1,2 Percent of affected by both drug 1 and drug 2.
d1, d2 Drug concentrations for drug pair.
Ed Measured effect at (d1, d2).
C1, C2 The concentration of drug required to achieve 50% of the

maximal effect (i.e., EC50).
h1, h2 Hill coefficients for dose-response curves of drug 1 and 2 in

isolation.
E0 The basal effect Ed (d1= d2= 0).
E1, E2 Maximal efficacy of drugs 1 and 2 in isolation.
E3 Maximal efficacy of the combination of drugs 1 and 2.
β Percent increase (or decrease) in max effect with both drugs

over the most efficacious single drug (β :¼ minðE1 ;E2Þ�E3
E0�minðE1 ;E2Þ).

α12 Fold change in the potency (C2) of [d2] induced by drug 1.
α21 Fold change in the potency (C1) of [d1] induced by drug 2.
γ12 Fold change in the cooperativity (h2) of [d2] induced by drug 1.
γ21 Fold change in the cooperativity (h1) of [d1] induced by drug 2.
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(Fig. 3B bottom distribution). As an example, the combination of
methotrexate (targets folate synthesis) and erlotinib (EGFR
inhibitor) in UWB1289 (BRCA1-mutant ovarian carcinoma)
cells is antagonistically efficacious and potent by MuSyC, but
synergistic by Loewe (Fig. 3C).

Some assays, such as the anti-malarial combination screen
from Mott et al.25 are designed so that the drug effect spans the
entire range from E0= 1 to E1= E2= E3= 0. In such cases there
is no synergistic efficacy, because each drug alone already
achieves the greatest efficacy measurable. Nevertheless, even if
all synergy detected by an assay is synergistic potency, traditional
synergy metrics can still conflate asymmetric synergistic poten-
cies. This can occur when α12 is synergistic while α21 is
antagonistic, or vice versa (Fig. 3D, Bliss synergy, black contour
line through β= 0 plane). In the anti-malarial dataset25, Bliss is
consistently synergistic when log(α12, α21) > 0, and antagonistic if
log(α12, α21) < 0; however, when log(α12) < 0 < log(α21), Bliss will
strictly classify a combination as either synergistic or antagonistic
(Fig. 3E bottom distribution) despite the asymmetric interactions.
As an example, Bliss conceals that halofantrine (inhibits
polymerization of heme molecules) reduces the potency of
mefloquine (targets phospholipids) against the multi-drug
resistant malaria strain HB3 (Fig. 3F).

HSA is commonly thought to quantify synergistic efficacy.
However, for antagonistically potent combinations, HSA cannot
distinguish synergistic and antagonistic efficacy because it does
not account for the topology of the dose-response surface
(compare ðlog ðα12Þ; log ðα21Þ; βÞ ¼ ð�;�;þÞ and (− ,− ,− )
quadrants of Fig. 3G and Video S2). In the anti-cancer
combination dataset26, we observe this trend (Fig. 3H middle vs
bottom distributions). As an example, the synergistically
efficacious combination of dexamethasone (agonist of the
glucocorticoid receptor) and mk-8669 (PI3K/mTOR dual inhi-
bitor) in a colorectal adenocarcinoma cell-line is masked by HSA
due to antagonistic potency (Fig. 3I). Repressing glucocorticoid
signaling has previously been shown to repress mTOR signaling35

providing a potential molecular mechanism explaining the
synergy.

MSP is biased against combinations of drugs with intermediate
efficacy. MSP frameworks, such as Bliss, explicitly expect drug
effects to measure the “percentage of cells affected”, which is by
definition bounded within the closed interval E∈ [0, 1]. Never-
theless, dose-response data is usually not a measure of percent
affect, but rather of relative percent effect (see Supplemental
Section Percent Affect vs Percent Effect for an example). This
distinction, maintained by MuSyC (Box 1), is critical because
percent effect data commonly saturates (i.e., percent affect is near
100%) at intermediate effect (i.e., relative percent effect is near
50%). For combinations of these moderately efficacious drugs,
Bliss expects a large increase in effect over the single agents, even
when each drug is administered at saturating concentrations
(Fig. 4A, middle panel). In contrast, if combining drugs with high
or low efficacy, Bliss expects a more modest increase (Fig. 4A, left
and right panels).

Based on this expectation that E3= E1 ⋅ E2 (Fig. 2A), MuSyC
predicts Bliss would be biased toward antagonism in combinations
of moderately efficacious drugs (Fig. 4B yellow shading around
E1= E2 ≈ 0.5). As expected, the median Bliss score in the anti-
cancer dataset is biased toward antagonism for moderately
efficacious combinations 0.35 < (E1, E2) < 0.65 (Fig. 4C, cyan
square), though the magnitude of bias is less than predicted in
Fig. 4B. This bias persists even when looking at pan-cancer trends
in the combination of drugs which have, on average, intermediate
effect over the entire cell-line panel (Fig. 4D). As a particularT
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example, the synergistic efficacy of paclitaxel (targets microtubule
stability) and mk-2206 (AKT inhibitor) in KPL1 cells is masked by
Bliss’s high expectation for moderately efficacious drugs (Fig. 4E,
gray plane). In several datasets, the magnitude of this MuSyC-
predicted bias was sufficient to obfuscate many of the strongest
synergies and antagonisms according to Bliss (Fig. S6A, B).

Other MSP-based methods, such the Effective Dose model also
assume data measures percent affect and fit a simplified 2-
parameter Hill equation enforcing E0= 1 and E1= 0. This
assumption can lead to poor fits of percent effect data for
moderately efficacious drugs, and thus invalid synergy scores
(Fig. S7). Therefore, the distinction between percent affect and
percent effect is a critical component of MuSyC.

Re-examining the sham experiment: Sham compliance intro-
duces Hill-dependent bias in DEP models. A new synergy
model’s consistency is traditionally tested with the “sham”

combination thought experiment. In a sham experiment, a single
drug is considered as though it were a combination, with the
expectation that the drug should be neither synergistic nor
antagonistic with itself. DEP frameworks, characterized by linear
isoboles, are known to satisfy the sham experiment, while MSP
frameworks famously do not9.

In Box 2, we show MuSyC only satisfies the sham experiment
when h= 1, which makes sense as MuSyC produces linear
isoboles only in this condition (Fig. S2B and Eq. 25). Further, our
analysis in Box 2 revealed that sham combinations exhibit unique
biochemistry, only equivalent to true combinations in the case
h= 1. When h ≠ 1, combinations contain intermediate states
representing mixed-inhibition (black circles, Fig. 5A, B). In sham
combinations, these mixed-inhibition states are equivalent to
single drug complete-inhibition states (Fig. 5A, cyan circles),
while for real combinations, these are not equivalent (Fig. 5B).
When h= 1, these intermediate mixed-inhibition states do not
exist, explaining the concordance between sham and true

A B

C

Fig. 2 Unifying MSP and DEP with MuSyC, and mapping the landscape of drug synergy. A The Bliss null model, the base model for all MSP frameworks,
emerges from MuSyC when E0= 1, α12= α21= γ12= γ21= 1, and E3= E1E2. B The Loewe null model, the base model for all DEP frameworks, emerges from
MuSyC when h1= h2= 1 and α12= α21= 0. The constraint on α indicates the drugs' activities are mutually exclusive (i.e., the double-drugged state A1,2

does not exist). C Network of relationships between synergy frameworks (nodes) grouped by their underlying principle (colors). The notation next to solid
edges signifies conditions under which source model reduces to end model’s null model. The dotted edge indicates MuSyC synergistic efficacy (β) is
proportional to HSA as d1→∞, d2→∞. See Supplemental Section Derivation of the theoretical relationships between different synergy frameworks for
complete annotation of the parameters defined in each method. Where possible, parameters from each framework were translated in terms of the dose-
response parameters defined for MuSyC (Table 1) to facilitate comparison. CI has two equations for synergy for the mutually exclusive (exc) and non-
mutually exclusive (nonex) binding case. Conditions for which Bliss or Loewe reduces to the CI(nonex) and CI(ex) models were found in Chou and
Talalay34. The mutually exclusive case is recommended by Chou37 and used in the CompuSyn software. Likewise, GPDI has three separate equations for
HSA, Bliss, and Loewe models. In contrast, MuSyC has one equation (Box 1, Eq. (15)) which reduces to Bliss and Loewe under certain conditions.
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combinations in this case. We expect when h ≠ 1, enforcing sham
compliance leads to predictable systematic biases. We expect
when h < 1 DEP frameworks will overestimate synergy (Fig. S2C),
and when h > 1, DEP frameworks will overestimate antagonism
(Fig. S2D).

In combinations from the anti-cancer dataset, the average trend
of Loewe synergy closely follows the Hill slope bias predicted by
MuSyC (Fig. 5C). Further, subtracting the MuSyC-predicted bias
from Loewe values for each combination results in a distribution

independent of Hill slope (bottom panel). The bias toward synergy
is particularly large for drugs with low Hill slopes. As an example,
both doxorubicin (DNA damaging agent) and mk-4827 (PARP
inhibitor) have small Hill slopes when applied to MBA-MB-436
cells, and their combination is synergistic by Loewe. However,
using MuSyC, we see this combination is both antagonistically
efficacious and antagonistically potent (Fig. 5D). In one dataset
(Cokol et al.), this MuSyC-predicted bias revealed a screen-wide
underestimation of synergy by Loewe (Fig. S6A,C).

Fig. 3 Conflating potency and efficacy synergy masks synergistic interactions in large drug combination datasets. A The colors on the sphere (radius on
β axis bottom left) represent the value of Loewe (colorbar to right) for a drug combination with a MuSyC synergy profile (α12, α21, and β) (axes bottom left).
For all combinations: E0= 1, E1= E2= 0, h1= h2= 1, d1= d2= C1= C2, γ12= γ21= 1. The solid line marks the boundary between Loewe synergy and
antagonism. Along this contour, which includes many different sets of (α12, α21, and β), Loewe is the same (−log(Loewe)= 0). Gray planes correspond to
β= 0, log ðα12Þ ¼ 0, and log ðα21Þ ¼ 0. The hole in the upper-right quadrant represents sets for which Loewe is undefined. B Distribution of Loewe for anti-
cancer drug combinations26 grouped by their synergy profiles according to MuSyC. Loewe was calculated as detailed in Methods section, including the Hill
slope correction. The background color distinguishes antagonism (purple, “Ant”) from synergism (yellow, “Syn”). C The anti-cancer combination
methotrexate and L-77812326 is antagonistically potent and efficacious against HT29 cells, by MuSyC; however, it is designated by Loewe to be synergistic.
Left panel shows the MuSyC-fitted dose-response surface, right panel shows the edges of the MuSyC surface. Color on the dose-response surface
indicates effect (% Viable), with colorbar given next to the surface. On the right, the open circles mark the EC50 for each drug in isolation, closed circle is
the shifted EC50 due to antagonistic potency. Brackets are 95% confidence intervals for each parameter based on Monte Carlo sampling (see Methods
section). D Sphere for Bliss as in A. E Distribution of Bliss for anti-malarial drug combinations25. Combinations for which each drug alone achieves Emax <
0.1 were selected, ensuring E1 ⋅ E2≈ E3≈ 0. Under this condition, the differences between MuSyC and Bliss are due only to asymmetric potency synergy (all
combinations near the β= 0 plane in D). F Mefloquine increases the potency of halofantrine (red curves) but halofantrine decreases the potency of
mefloquine (blue curves) in the HB3 strain of P. falciparum25. G Sphere for HSA as in A. H Distribution of HSA for anti-cancer combinations26 grouped by
MuSyC synergy profile. In antagonistically potent combinations, HSA can miss synergistic efficacy. I Combination of dexamethasone and mk-8669 in
DLD1 cells26 is anagonistically potent, but synergistically efficacious.
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Therefore, satisfying sham compliance biases models toward
synergy for drugs with low Hill slopes, regardless of with what
these drugs are combined. This bias—which stems from enforcing
a biochemical reaction scheme only appropriate for sham
combinations—should be sufficient grounds for dismissing the
sham experiment as a measure of a new synergy framework’s
validity.

MuSyC reveals errors in the derivation and application of the
Combination Index. Recent reports have identified potential
flaws with the use of CI11,36, yet it remains the most highly cited
synergy metric30,34,37. CI has recently been proposed to the Food
and Drug Administration (FDA) and National Institutes of
Health (NIH) as the de facto definition of drug synergy31. Due of
its prominence in the field, here we specifically examine its
behavior with respect to the biases discussed above. We find CI
and MuSyC have the same null model when h1= h2= 1, α12=
α21= 0, E0= 1, E1= E2= 0 (Supplemental Section Relationship
between different synergy frameworks). The presence of con-
straints on h and E indicates CI could be impacted by both a Hill-

slope and efficacy range bias, like those we reported above for
DEP and MSP-based frameworks, respectively. Like MuSyC, CI is
based on the Law of Mass-Action, facilitating a direct comparison
of their formulations. In doing so, we found two errors in CI with
significant consequences: (1) a fundamental math error in its
derivation impacting combinations with h ≠ 1 (Box 3, Fig. 6A–C),
and (2) a fitting error that arises when applied to drugs with
partial efficacy (E1 or E2 > 0) (Fig. 6D–F).

Details of the error in the derivation of CI are in Box 3.
Because of this error, the CI equation is only valid for
combinations of drugs with Hill slopes equal to one (h1=
h2= 1). In this regime, MuSyC also results in linear isoboles
(Fig. S2B). When h ≠ 1 (Figs. 6A and S8A), the CI equation
incorrectly factors the exponent outside the sum, introducing
the exact same cross terms that we show (Box 2) are only valid
for sham combinations, and not valid for all combinations when
h1 ≠ h2 ≠ 1. Therefore, when h ≠ 1, CI suffers from the same Hill-
slope dependent bias we show in Fig. 5. We show the
consequence of this bias in illustrative two-drug examples using
synthetic (Figs. 6B and S8B) and experimental combinations
(Figs. 6C and S8C).

Fig. 4 Bliss is biased against combinations of moderately efficacious drugs. A The null dose-response surface according to Bliss such that Bliss is zero at
all doses for different single agent efficacy. Δ is defined as the expected increase in percent effect of the combination over the stronger single agent at
saturating doses. The left and right panels have the same expected increase according to Bliss, Δ= 0.09, while the combination of moderately efficacious
drugs (middle panel) has a expected increase of Δ= 0.25. The color of the surface indicates the drug combination effect, from no effect (green) to
maximum (purple). The solid color lines on the left and back sides show the single-drug responses. B Calculation of Δ (colorbar bottom) for surfaces with
different pairings of (E1, E2). Color indicates the difference, with range given on the colorbar below the image. C Median Bliss for anti-cancer
combinations26 grouped by the maximal efficacy of their single agents. Ranges for each square: cyan square: [0.35, 0.65], blue square: [0.1, 0.9], and
magenta square: [0.0, 1.0]. Bliss is calculated at the maximum tested concentrations of both drugs. D Heatmap of the median Bliss score (colorbar left) for
each combination across the cancer cell-line panel26. Rows and columns are ordered by the average efficacy of each drug alone over all cell-lines (Emax)
(bar graphs top and right). Colored boxes correspond to groupings denoted in the legend (bottom). Boxplots show Bliss trends toward antagonism for
combinations of moderately efficacious drugs (assuming approximate normality, one-sided t-test, blue < yellow;green < blue;green < yellow). The bottom
and top of the boxes are the first and third quartiles, respectively. The red line shows the median. The whiskers extend to 1.5 times the interquartile range
below and above the first and third quartiles. The boxplots represent n= 967 biologically independent combinations (yellow), n= 6047 combinations
(cyan), and n= 7773 combinations (green). E Dose-response surface of paclitaxel and mk-2206 in KPL1 cells26. Gray plane is the expected effect of the
combination by Bliss at max(d1,d2).
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Even when h= 1, CI requires that the maximal and minimal
effects (E0, E1, Fig. 1) be fixed at 1.0 and 0. Subsequently, CI fits
the single-drug dose-response curves using the two-parameter
median-effect equation30 (Eq. (8)), see also Supplemental Section
Percent Affect vs Percent Effect—Combination Index).
In contrast, MuSyC is based on a four-parameter Hill equation
(Box 1, Eq. (10)), and thus can describe metrics of drug effects
with arbitrary ranges. It is common to observe in many dose-
response assays, such as percent viability, drug effects that do not
reach 0% (i.e. E1 > 0)38. For such assays, the two-parameter
median-effect equation fits poorly (Fig. 6D). These poor fits lead
to an effect-dependent error in CI quantification of synergy as
observed in synthetic (Fig. 6E) and experimental combinations

(Fig. 6F). We note, this effect-dependent error is not the same as
the effect-range bias we report for MSP-based frameworks in
Section “MSP is biased against combinations of drugs with
intermediate efficacy”.

Discussion
Herein, we have demonstrated four key advances of MuSyC21

germane to the study of combination pharmacology: (1) the
unification of the DEP and MSP; (2) the decoupling of three
distinct types of synergy; (3) the revelation of biases emerging
from constraints on the single drug pharmacological profile
inherent in the DEP and MSP; and (4) reporting on flaws of

Table 3 Summary of the datasets used for comparisons and validating theoretical predictions by MuSyC.

Model # of Combinations Metric of drug effect Effect range Refs.

P. falciparum (Strains:3D7,HB3,Dd2) 773 Percent response [0,100] 25

37 cancer cell lines 22,738 Percent viable [0,1] 26

60 cancer cell lines 330,064 Percent growth [−100, 100] 27

HIV 116 Infectivity [0,1] 28

S. cerevisiae 175 Area under growth curve [0,484] 29

Fig. 5 Hill-slope dependent bias results from enforcing sham compliance DEP-based frameworks. A An illustration of the unique biochemistry of the
sham experiment. The red circle represents an undrugged molecule with three binding sites. In a sham experiment, a drug is treated as though it were two
separate drugs (green and blue polygons). Mixed states in which the binding sites are bound by both green and blue drugs (black circles) are equivalent to
fully drugged states (cyan circles). We highlight three paths (green, blue, magenta arrows) that can be followed to reach a mixed-drugged state. These
three paths correspond to the coefficient of 3 d1d

2
2

C3
in Eq. (19) in Box 2. B In a combination of mutually exclusive drugs (triangle and polygon), targeting the

same molecule, and with the same number of binding sites, the mixed states (black circles) are not equivalent to fully drugged (cyan circles) accounting for
the discrepancy between MuSyC and the sham experiment (Box 2). C Loewe synergy is biased by Hill slope in the anti-cancer drug screen26. The orange
shaded regions show moving window percentiles (window width is 0.1) of Loewe (10th through 90th percentiles, in steps of 10). The top panel shows how
many data points are present in the window. The blue curve in the middle plot shows the median MuSyC-predicted bias as a function of the geometric
mean of the Hill slopes (see Methods section). Subtracting the MuSyC-estimated bias (calculated for each data point) from Loewe yields the bottom plot.
D The antagonistically efficacious and potent combination of mk-4827 and doxorubicin26 is misidentified as synergistic by Loewe, because both drugs in
isolation have Hill slopes h < 1.
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highly cited CI including a mathematical, derivational error
which impacts its reliability for synergy quantification.

The DEP and MSP have formed the foundational principles of
most synergy frameworks over the last century; however, the
connection between these principles has remained unknown4,5.
Here, approaching combination pharmacology using the Law of
Mass Action applied to a state-transition model results in a single
framework unifying both principles. By mapping all frameworks
on a common landscape, MuSyC facilitates rigorous investigation
of oft-cited, contradictory conclusions between existing
frameworks16—contradictions that preclude reproducibility
between synergy studies. Specifically, as is seen in Fig. 2C, there
is no combination which can simultaneously satisfy the condi-
tions required by both DEP and MSP synergy frameworks. Pre-
vious works advocate prioritizing combinations that are
synergistic by all methods5, or choosing a synergy model carefully
based on the data measured and shape of dose-response curves32.
In contrast, MuSyC’s unification of DEP and MSP means it is
applicable regardless of whether the data are best described by the
DEP or MSP, or something in-between, so no choice is required.
Further, while MuSyC’s mass-action formalism applies most
directly to molecular inhibition, its synergy parameters describe
geometric transformations of efficacy, potency, and Hill slope,
which are well-established quantities used to describe sigmoidal
responses, regardless of mechanism.

One key advance of MuSyC, facilitating this unification, was
the decoupling of α, β, and γ. These synergy parameters corre-
spond directly to classic, pharmacological measures of a drug’s
potency, efficacy, and cooperativity. By calculating synergy in this
way, interpretation of synergy does not depend on arbitrary
expectations or thresholds. Rather, an α of 10 corresponds to a
10-fold increase in a compound’s potency, as a result of the other
drug, regardless of whether we define α= 1 or α= 10 as the
“threshold” for synergy. As practical advice for accurately fitting
all synergy parameters, we recommend sampling (d1, d2) around
the four corners (0, 0), (d1,max, 0), (0, d2,max), and (d1,max, d2,max)
to best constrain synergistic efficacy, and around the four edges
(C1, 0), (C1, d2,max), (0, C2), (d1,max, C2) to best constrain syner-
gistic potencies and cooperativities, where di,max is an asympto-
tically high dose of drug i. We refer interested readers to
Supplemental Section “Interactive MuSyC Jupter Notebook”,
Figs. S12–S16, and Supplemental Code 1, which provide an
interactive demonstration that shows how each synergy para-
meter results in different outputs across multiple concentrations.
We envision distinguishing synergies of potency, efficacy, and
cooperativity will be of differential consequence in alternate
contexts. For example, in cancer synergistic efficacy may be most
important, while for neurological disorders, synergistic coopera-
tivity—i.e. sharp on-off drug response —may be preferred. In an
analysis of clinical trials of combination therapies, we find

Box 2: | Sham compliance of MuSyC, and the mass action biochemistry of a sham experiment

To simulate a sham experiment using MuSyC, there is no state A1,2 (Fig. 1B), which requires α12= α21= 0. Further, because drugs 1 and 2 are the same,
h1= h2= h, C1= C2= C, and E1= E2. Thus, the 2D Hill equation (Eq. (15)) reduces to

Edðd1; d2Þ ¼
E0 þ E1

dh1þdh2
Ch

1þ dh1þdh2
Ch

MuSyC Sham ð17Þ

In comparison, the true dose-response surface of a sham experiment can be analytically determined from the 1D Hill dose-response equation (Eq. (10))
as

Edðd1; d2Þ ¼ Esingleðd1 þ d2Þ

¼
E0 þ E1

d1þd2
C

� �h
1þ d1þd2

C

� �h True Sham
ð18Þ

Equations (17) and (18) are only equivalent when h= 1. This makes sense, as the constraints on α and h are the conditions required for MuSyC to satisfy
the DEP (Fig. 2B). To see what happens when h≠ 1, consider, for instance, a molecule with three binding sites targeted by a small molecule inhibitor
(h= 3) (Fig. 5A, B). For clarity, we assert E0= 1 and E1= 0, though the findings are valid more generally. The MuSyC sham surface follows

Edðd1; d2Þ ¼ 1þ d31 þ d32
C3

� 	�1

MuSyC Sham

In contrast, the true sham surface is

Edðd1; d2Þ ¼ 1þ d1 þ d2
C

� 	3
 !�1

¼ 1þ d31
C3 þ 3

d21 d2
C3 þ 3

d1d
2
2

C3 þ d32
C3

� 	�1

True Sham

ð19Þ

.
The two additional cross-terms in the true sham equation (3 d21 d2

C3
and 3 d1d

2
2

C3 ) describe the six possible mixtures of drugs 1 and 2 that, together, fill all

binding sites (Fig. 5A, blue, green, and magenta paths show three possible mixtures). In a sham experiment, because drugs 1 and 2 are the same, the
diagonal states (black and cyan circles) in Fig. 5A are all equivalent, and fully inhibited.
Conversely, in non-sham combinations, drugs rarely target the same binding sites, or even the same molecule. Even when two drugs are mutually
exclusive inhibitors of the same molecule and have the same number of binding sites, the cross-terms describe non-equivalent, not fully inhibited states
(Fig. 5B). A commonly applied and physiologically supported approximation is that only fully bound molecules become (in)active (see reaction schemes
5–7 in Weiss54). Partially bound cross-terms are therefore reasonably modeled as unaffected, and the absence of these cross-terms from Eq. (17) is
justified for real (non-sham) combinations (see Discussion section). Further, when the two drugs do not target the same molecule or are mutually
exclusive or have the same number of binding sites, by far the preponderance of real combinations, the diagonal states are ill defined yet remain
embedded in the sham equation.
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synergistic efficacy is statistically higher in clinically efficacious
combinations than clinically non-efficacious combinations (see
Supplemental Section MuSyC statistically distinguishes effica-
cious and non-efficacious drug combinations in clinical trials
based on combination screens, Figs. S9 and S10).

The relationship between MuSyC and the MSP and DEP fra-
meworks (Fig. 2) is constrained by monotherapy parameters (E1,
E2 for MSP, h for DEP). These constraints suggested systematic
biases in MSP and DEP frameworks contingent on a single drug’s
efficacy (MSP, Fig. 4) and Hill slope (DEP, Fig. 5). These sys-
tematic biases merit consideration when using these frameworks
for drug discovery in large screens, or when accounting for batch-
effects across different datasets (Fig. S6). Such systematic biases
can confound machine learning models to predict synergy,
decreasing their utility. Additionally, the constraint on h high-
lighted a discrepancy between the biochemistry of true sham
experiments and real combinations. The centrality of the sham
experiment in the drug synergy literature cannot be overstated;
however, we argue enforcing sham compliance comes at the cost
of improperly modeling real combinations, leading to a pre-
dictable Hill-dependent bias.

CI has previously been criticized for its procedure to fit the
median-effect equation. Specifically, CI depends on a log-
transformation in order to linearize the two-parameter median

effect equation “in similar logic to the defunct Scatchard analysis
in pharmacology, which has been replaced by non-linear
modeling”36. That is, this log-transformation alters the noise
profile such that small deviations for effects at low concentrations
result in large deviations in the synergy calculations. Additionally,
this transformation results in information loss, since undefined
values for effects outside the range of (0,1) are forcibly removed,
and as a consequence, CI synergy estimates become “statistically
unstable” for noisy experimental data11. Beyond these valid
points regarding CI’s practical application, here we uncover a
mathematical error in the derivation of CI (Box 3) causing a
systematic bias depending on the Hill slope. Because these flaws
compound in non-linear ways, the expected error when applying
CI is unique to each particular combination and assay design.

The prospects of higher-order synergies (i.e., interactions
beyond pairwise) and scaling laws for drug mixtures, while pro-
vocative, have remained contentious6,12,39,40. MuSyC’s cubic
geometry allows it to be easily extended to three or more drugs
(Fig. S1), and we expect MuSyC will enable a more refined search
for higher-order interactions. For instance, combinations that
mix different synergy profiles (e.g., drugs 1 and 2 are synergisti-
cally potent, and drugs 2 and 3 are synergistically efficacious) may
exhibit different higher-order interactions than combinations all
sharing a single synergy type. However, the number of synergy

Box 3: | Derivation error in combination index

Both MuSyC and combination index (CI) describe combination drug responses using the Law of Mass Action. The common form of CI was developed
from a model of mutually exclusive inhibitors, and MuSyC reproduces this model when α12= α21= 0 (Fig. 1B). Surprisingly though, even in this case,
MuSyC and CI disagree. CI predicts additive drug combinations will result in linear isoboles, irrespective of the Hill slope, while MuSyC (with α12=
α21= 0) predicts linear isoboles only when h1= h2= 1 (Fig. 6A and Eq. 25). This motivated us to compare the derivations of CI and MuSyC to
understand this discrepancy.
While formalized in its current form in Chou and Talalay34, the mathematics underlying CI are developed in Chou and Talalay55. We found an error in
the section Inhibition of the Higher-Order Kinetic Systems by Mutually Exclusive Inhibitors, which is responsible for the discrepancy between MuSyC and CI.
Specifically, when the authors consider the special-case of h= 1, they correctly solve for the ratio of inhibited (affected) to uninhibited (unaffected)
targets after treatment with n-drugs as

A
U
¼ ∑

n

j¼1

dj
Cj

Eq: 11 fromChou andTalalay55

as well as the the 1-drug case with arbitrary h (the median-effect equation (Eq. (8)).

Aj

Uj

¼ dj
Cj

 !hj

Eq: 12 fromChou andTalalay55:

See Table S1 for details of how we translated variable names from Chou and Talalay55. However, the authors incorrectly generalized these two
equations to an n-drug, arbitrary h case by erroneously “relating the first-order Eq. (11) to the [h]th order relationship ... Eq. (12)” (Chou and Talalay55,
pg. 209)

INVALID
A
U
¼ ∑

n

j¼1

dj
Cj

 !h

Unlabeled equation from Chou and Talalay55; pg: 209 ð20Þ

To show this is incorrect, consider nmutually exclusive drugs following Hill kinetics (a model graphically represented for n= 2 in Fig. 2B). At equilibrium
(see Box 1), for each drug j we assert

dAj

dt
¼ Urjd

hj
j � Ajr�j � 0

where Cj � r�j

rj

� � 1
hj . From this we can solve

Aj

U ¼ dj
Cj

� �hj
for each drug. Because A ¼ ∑n

j¼1 Aj, we instead find the correct form for the multi-drug case with

arbitrary h is

CORRECT
A
U
¼ ∑

n

j¼1

dj
Cj

 !hj

ð21Þ

The error in the invalid equation factors the exponent h outside the sum, whereas we see each term in the sum must be raised to its own hj. When hj=
h= 1 the discrepancy between these equations vanishes. However the authors use the incorrect version to define the CI34, irrespective of h. This
accounts for the discrepancy between CI and MuSyC, and introduces a Hill-slope dependent bias in CI calculation of synergy (Figs. 6 and S8).
Specifically, CI underestimates synergy when h > 1 (Fig. 6D–F), and overestimate synergy when h < 1 (Fig. S8). The ubiquity of this error in DEP
frameworks applied to real data is further addressed in Section Re-examining the sham experiment: Sham compliance introduces Hill-dependent bias in DEP
models.
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parameters in MuSyC scales as 2N(N+ 1)− 3N− 1 (including γ)
where N is the number of drugs (Fig. S1), and the commensurate
data necessary to fully constrain MuSyC hyper-surfaces invokes a
parameter identifiability problem (“the curse of dimensionality”).
Nonetheless, MuSyC’s geometry could be leveraged to guide
sampling schemes to constrain the boundaries, allowing the
solution to be built up step-wise from the boundaries (see Sup-
plemental Section Proof of boundary behavior of the 2D Hill
equation).

MuSyC expects single-drug dose-response curves to be sig-
moids well fit by the 1D Hill equation (Eq. (10)), and dose-
response surfaces to be well fit by the 2D Hill equation (Eq. (15)).
In our experience, these expectations are met by real data, as most
single drugs have monotonic, sigmoidal responses, and even
complex drug interactions can be modeled using various mixtures
of α, β, and γ (96% and 88% of combinations in anti-cancer and
anti-malarial datasets had R2 > 0.7, respectively). However, it is
possible for drugs to have multiphasic responses due to poly-
pharmacology which are not well fit by a Hill curve. It may be
possible to extend MuSyC to encompass such drugs—for instance
by including a multiphasic Hill model41 or modeling effects of

“partially affected” states (Fig. 5A, B and Box 3). In extreme cases,
it may only be possible to apply non-parametric frameworks such
as Bliss, Loewe, or HSA. Nevertheless we note that without fitting
dose-response curves to a parametric model, these metrics are
sensitive to noise in individual data-points. Replicate measure-
ments may be able to reduce this sensitivity. Additionally, MuSyC
assumes all drugs are administered concurrently, whereas patient
treatments are often staggered. New theory and experimental
methods are needed to address the synergy of combinations
which are staggered temporally, bridging the synergy of phar-
macodynamics with the synergy of pharmacokinetics. Finally, in
the datasets we analyzed here, we did not find a role for syner-
gistic cooperativity (γ). Future studies in other systems are needed
to better understand situations when synergistic cooperativity is
expected.

By viewing the landscape of drug synergy through the lens of
mass-action, we have demonstrated the underlying assumptions,
limitations, and biases of commonly applied synergy methods.
We have shown how MuSyC unifies the DEP and MSP thus
providing a consensus framework for the study of combination
pharmacology. These findings provide much needed clarity to the
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Fig. 6 Comparing MuSyC and CI. A Linear isoboles, characteristic of CI, emerge from MuSyC when the drugs are mutually exclusive (α12= α21= 0) and h1
= h2= 1 (Fig. S2). When h≠ 1, MuSyC predicts non-linear isoboles. Here, CI would erroneously assess dose pairs in the red shaded region (between
straight, dotted, diagonal line, and curved line above it) as antagonistic. B An example, synthetic two-drug dataset where this Hill-dependent bias is
apparent (h1= h2= 2, E0= 1, E1= E2= 0.0, C1= C2= 1, α12= α21= 0). This trend is most apparent near d1≈ d2. C The combination of artenimol (alkylating
agent) and amodiaquinine (putative inhibitor of heme polymerase activity) in the HB3 strain of malaria (chloroquine sensitive)25. Left panel shows the
predicted CI bias (antagonism along diagonal due to h > 1). Right panel shows MuSyC’s fit. Because E0= 1, E1= E2= 0, and (α12, α21) < 0.0001, the
difference between MuSyC and CI, is due to the Hill slope error in CI. D A synthetically generated dose-response dataset (blue points) with (E0= 1,
E1= 0.4, C= 1, h= 1) is fit using the CI method (E= f(d), orange line), which assumes the effect must range from 100% to 0%. To calculate synergy, CI
uses f−1(E) (orange line). Residuals in the CI fit of f−1(E) to the true data are annotated with arrows. Black dots denote where the CI fit and true curve (blue
dotted line) cross. CI overestimates f−1(E) for effects between the black dots, and underestimates it for effects outside the black dots. When CI
overestimates f−1(E), we expect it to overestimate synergy. Likewise, when CI underestimates f−1(E) we expect it to underestimate synergy. E A synthetic
two-drug dataset with partially efficacious drugs (E0= 1, E1= E2= 0.4, C1= C2= 1, h1= h2= 1, α12= α21= 0) is analyzed with CI. As expected, in regions
where CI overestimates f−1(E), it overestimates synergy (red), and likewise for underestimation (blue). F Experimental combination of drugs with
intermediate efficacy showing (left) CI’s effect-dependent bias and (right) MuSyC’s fit. The combination is mk-4827 (PARP inhibitor) combined with 5-fu
(thymidylate synthase inhibitor) in MDA-MB-436 breast adenocarcinoma26 (BRCA1 mutant51). Because MuSyC finds (α12, α21) < 0.1 and h1≈ h2≈ 1, the
principle difference between the MuSyC model and CI relates to the effect range. As predicted, CI is antagonistic at the highest doses, despite these being
the only doses which achieve greater effect than either drug alone (β= 0.17).
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field and should promote the reproducibility of drug synergy
studies across drug combination discovery efforts. Such a rigorous
approach to the discovery and application of drug combinations
will open the door to the discovery of new and previously dis-
carded avenues for therapeutic mixtures.

Methods
We note the synergy calculations conducted for the different published datasets
were not necessarily the same as those used in the original paper. Indeed the
limitations of the current frameworks forced customized analysis for each pub-
lication highlighting the need for a consensus framework. However, in order to
compare between datasets, we have calculated Bliss, Loewe, HSA, and other
synergy frameworks, as described below, from the raw data.

Software
Implementation and website. A web application to calculate MuSyC synergy
parameters for users’ data is available at https://musyc.lolab.xyz/. Experimental
data are uploaded in comma-separated value (CSV) format; data format details and
usage instructions are in the supplemental materials. The application fits dose-
response surfaces using MuSyC and offers the results both as a CSV download of fit
parameters, and interactive plots of the dose-response surface.

The web application uses the Django web application framework
(djangoproject.com) and Python 3.7. Fitting tasks are processed asynchronously
using a message queue (RabbitMQ; rabbitmq.com) and task-worker framework
(Celery; celeryproject.org). Data are organized in a Postgres relational database
(postgres.org). The following packages were used for fitting, data analysis, or
visualization: SciPy v1.1.042, Numpy v1.14.343, Pandas v0.23.044, Matplotlib
v2.2.245, uncertainties v3.0.246.

Fitting 2D Hill equation. Here we describe fitting protocol for drug metrics where
the metric of drug effect decreases as dose increases (E0 > E3) (e.g., anti-proliferative
drugs); however, the framework is equally valid if increasing the drug corresponds
to increases the effect (E0 < E3) (e.g., percent effect).

Previously, we found it necessary to use a Metropolis Hastings Monte Carlo
(MCMC) seeded with a particle swarm optimization (PSO) to fit the 2D Hill
equation21. This was prompted by the inconsistent performance of standard non-
linear least squares (NLLS) regression. In particular, we observed instances of
calculated uncertainties in NLLS which were several orders of magnitude greater
than the parameter value. This, we have discovered, is because the multi-
collinearity between the Hill slope and the EC50 (C) inherent in the structure of the
Hill equation—collinearities which are amplified when extending the Hill equation
to 2D. The correlation between variable h and C is easiest to observe in a linearized
1D Hill equation (Eq. (1)).

log
E0 � Em

E � Em
� 1

� 	
¼ h � log ðdÞ � h � log ðCÞ ð1Þ

In Eq. (1), the intercept of the line (h � log ðCÞ) depends on the slope of the line (h).
This correlation is problematic when trying to estimate the parameter uncertainty
(σ) from NLLS regression because σ is estimated as the square root of the inverse
Hessian, approximated to be JTJ (where J is the Jacobian at the solution). J of the 4-
parameter Hill equation is

J ¼ ∂

∂E0

∂
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∂

∂h
∂
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ð2Þ

¼ 1� 1
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When the Hill slope is large (e.g., h > 5), the second two terms of the J cause the
numerical approximation of the inverse of J to be undefined. This problem is
compounded in the 2D Hill equation where, in addition to h and C, the parameters
α and γ are co-linear. However, this does not affect the accuracy of the fitted
parameter values from the NLLS regression—only the parameter uncertainty47.

For the fitting the 2D Hill equation in this study, we adopted a Monte Carlo
sampling approach to calculate the fit parameter uncertainty. This is significantly
faster than our previous method (PSO+MCMC)21 while maintaining reasonable
calculations of the parameter uncertainties accounting for the multi-collinearities
described above. The Monte Carlo algorithm for fitting the 2D Hill equation is as
follows. First, the 4-parameter 1D Hill equation (Eq. (10)) is fit to the dose-
response of each drug in isolation. The fit uses the Trust Region Reflective (TRF)
algorithm implemented in the curve_fit() module of the scipy.optimization
package. h and C were unconstrained while Emax and E0 are constrained for each
dataset as annotated in the Methods section, data acquisition, preparation, and
analysis. In general, adjusting the parameter bounds to closely match what is
feasible for the given dataset will lead to better parameter estimates, helping the
curve fitting algorithm to avoid becoming stuck in a suboptimal local minima. The
initial 1D Hill fits provide estimates for (E0, E1, E2, C1, C2, h1, h2), because the 2D
Hill equation becomes equivalent to the 1D Hill equation in the limit as di→ 0. In

practice, best fits of these parameters in the 2D Hill equation which have
counterparts from the 1D Hill equation tend to be similar to their monotherapy fits
which were used as initial guesses. However we note that it is possible for these
values to differ significantly from their monotherapy best guesses when the
monotherapy data are noisy, and thus can have wide uncertainties. Next the 2D
Hill equation (Eq. (15)) is fit using the TRF algorithm with initial values based on
the 1D Hill equation fits and with bounds based on the parameter uncertainty
calculated for the 1D Hill fits. The initial values for parameters unique to the 2D
Hill equation, E3, α21, α12, γ12, γ21 are (minðE1;E2Þ,1,1,1,1). For all combinations
r1= r2= 100. The bounds for log ðα21Þ; log ðα12Þ are set to [−4,4]. From this initial
fit, 100 Monte Carlo samples are used to calculate the parameter uncertainty as
described by Motulsky and Christopoulos47, (Chapter 17: Generating confidence
intervals by Monte Carlo, pg. 104). Specifically, noise, with a distribution N(0,σ),
where σ is equal to the root mean square (RMS) of the best fit, is added to best-fit
values of the 2D Hill equation for all drug doses. The data plus noise is then fit
again initializing the optimization from the best-fit parameters of the original data.
This is done 100 times. From this ensemble of fits, the 95% confidence interval of
each parameter can be calculated. This Monte Carlo approach results in
asymmetric confidence intervals which better captures the non-Gaussian
distribution of uncertainty for many fits (e.g. the distribution of h is log-normal) as
well as being robust to the co-linear parameters in the 2D Hill equation. The
asymmetric confidence interval is particularly salient when the dose-range is
insufficient to observe the lower plateau of the dose-response. Only combinations
for which R2 > 0.7 and the fitted EC50s of both drugs was less than maximum
tested dose for each (C1<maxðd1Þ;C2<maxðd2Þ) were included for subsequent
analysis.

Comparing fitting algorithm robustness between different synergy frameworks. We
additionally examined the performance of the MuSyC fitting when the raw data is
subject to different types of noise (Fig. S3A). We synthetically generated 10 random
samples of 5400 noise and synergy profiles and compared between all para-
meterized models of synergy the percent of convergence (Fig. S3B), fit quality
assessed by R2 (Fig. S3C), and variation in synergy parameters assessed by Z-score
between the random samples (Fig. S3D). Fitting algorithms for the different models
is described in Section Calculation of other synergy metrics. Overall, we find
MuSyC performs as well as or better than comparable parameterized models of
synergy on the tested synergy profiles. We note this analysis is hampered by the
lack of a “true” standard for synergy necessitating dose-response surfaces to be
generated based on a defined model—in this case the MuSyC model. Bliss, Loewe,
and HSA in general do not require fitting an equation to the data, and were thus
excluded from this analysis. Nevertheless we note such synergy metrics may be
more sensitive to noise in the data, as noise in individual datapoints is not
smoothed out via a curve fit.

Data acquisition, preparation, and analysis
ONeil et al. anti-cancer screen. The anti-cancer drug combination data were
downloaded from the supplemental materials of ONeil et al.26. Single agent and
combination datasets were merged. Drug effect was the mean normalized percent
viability (X/X0 column) calculated as detailed in ONeil et al.26. The minimum and
maximum bounds for [E0, E1, E2, E3] during 2D Hill equation fits were
[0.99,0.0,0.0,0.0,0.0] and [1.01,2.5,2.5,2.5], respectively.

Mott et al. anti-malarial screen. The anti-malarial drug combination data were
downloaded from https://tripod.nih.gov/matrix-client/ from the Malaria Matrix
project. Blocks downloaded for analysis were:
[1601,1602,1603,1701,1702,1703,1761,1764]. Only blocks with a mqcConfidence of
>0.9 were included. The drug effect was calculated as described in Mott et al.25.
Effects <−20% and >120% were removed. The minimum and maximum bounds
for [E0, E1, E2, E3] during 2D Hill equation fits were [90.,0.0,0.0,0.0] and
[110,200,200,200], respectively.

Tan et al. anti-HIV screen. The anti-HIV drug combination data were downloaded
from the supplemental table four of Tan et al.28. Drug effect was one minus the
normalized infection rates as detailed in Tan et al.28. The minimum and maximum
bounds for [E0, E1, E2, E3] during 2D Hill equation fits were [0.99,0.0,0.0,0.0,0.0]
and [1.01,1.5,1.5,1.5], respectively.

Cokol et al. anti-fungal screen. The anti-fungal drug combination data were
downloaded from supplemental dataset one in Cokol et al.29. The raw cell growth
measurements for all 200 drug-drug interaction assays were stored as a 96 × 64
matrix of numbers. Rows were time points with 15 min intervals and columns are
the indices of an 8 × 8 drug matrix. Drug dilutions were linear between the
maximum reported in Table 1 of Cokol et al.29 and 0. The drug effect was
quantified using the area under the growth curve (AUGC), calculated using
Simpson’s integration, after the first 10 time points (150 min). The background
unique to each experiment was removed by subtracting the minimum observed
growth rate for each pair individually. The minimum and maximum bounds for
[E0, E1, E2, E3] during 2D Hill equation fits were [0, 0, 0, 0] and [∞,∞,∞,∞],
respectively.
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Holbeck et al. anti-cancer screen. The ALMANAC anti-cancer drug combination
data were downloaded from https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-
ALMANAC file ComboDrugGrowth_Nov2017. zip. The matching single dose-
response data were downloaded from https://wiki.nci.nih.gov/display/
NCIDTPdata/NCI-60+Growth+Inhibition+Data, June 2016 release DOSE_R-
ESPONSE link. Single agent and combination datasets were merged using pandas
dataframe operations. Drug effect was the percent growth inhibition calculated as
detailed in27. The minimum and maximum bounds for [E0, E1, E2, E3] during 2D
Hill equation fits were [99,−100,−100,−100,−100] and [101, 350, 350, 350],
respectively.

Calculation of other synergy metrics
Bliss, Loewe, and HSA. Bliss, Loewe, and HSA depend on the concentration of
drugs so a combination can be synergistic at one dose, but antagonistic at another
dose. Several methods have been proposed for extracting a single synergy metric
per combination from these frameworks to enable comparisons between
combinations13–15,26. For our analysis, we calculate the synergy score at the
combination of each drug’s EC50 (Figs. 3 and 5) as proposed by Malyutina et al.48

or at the maximum tested concentration of each drug (Fig. 4). The EC50 of each
drug was calculated from the fits to the 2D Hill Eq. (15) which we have observed to
be more robust to noise when estimating the single drug pharmacologic profile.
Assuming the notation for the 1D Hill equation and inverse Hill equation—which
calculate effect (E given a dose (d) and a dose given an effect, respectively—are
given by

HxðdÞ ¼ Ex þ ðE0�Ex Þ
1þ dx

Cx

� �hx
HxinvðEÞ ¼ Cx � ðE0�Ex Þ

ðE�Ex Þ � 1
� � 1

hx

where Ex < E0, then equations for Bliss, Loewe, and HSA at the EC50 are:

Bliss ¼ H1ðC1Þ � H2ðC2Þ � EðC1;C2Þ ð4Þ

Loewe ¼ C1
H1invðEdðC1;C2ÞÞ

þ C2

H2invðEdðC1;C2ÞÞ
ð5Þ

HSA ¼ min H1ðC1Þ;H2ðC2Þ
� �� EðC1;C2Þ ð6Þ

where Ed(C1, C2) is the measured effect of combining C1 of d1 and C2 of d2. And
equations for Bliss at the max of each drug is:

Bliss ¼ H1ðmaxðd1ÞÞ � H2ðmaxðd2ÞÞ � Eðmaxðd1Þ;maxðd2ÞÞ
Thus, Loewe synergy is calculated using an equation similar to CI34, while Bliss and
HSA are calculated using an “excess over” approach, which calculates the raw
difference between the expected and observed responses. While the reference
models are always the same, we note alternative equations may be used to quantify
synergy of a combination33,49, though the biases we report are intrinsic to the
reference models, not the synergy quantification approach. These equations assume
the metric of drug effect decreases as the dose increases. Because many single
agents did not reach 0% maximum efficacy, the EC50s (C1, C2) were not necessarily
50% (Fig. S7). If E(C1, C2) < E1, E2 then Loewe was undefined. We apply a �log 10
transformation the scale Loewe to match the ranges Bliss and HSA are synergistic;
therefore, f �log 10ðLoeweÞ> 0 the combination is synergistic and if
�log 10ðLoeweÞ< 0 the combination is antagonistic. Additionally, for Figs. 3 and 5
we had to calculate the Hill-dependent bias in Loewe. For Fig. 3, we subtracted the
Hill slope bias to only study the impact of conflating synergistic potency and
efficacy. To calculate the bias, Loewe was calculated as in Eq. (5) where Hxinv was
was evaluated at the MuSyC-predicted Ed(d1, d2) for the combination retaining all
the single drug parameters (E0, E1, E2, C1, C2, h1, h2) and assuming (α12= α21= 0).
This resulted in an estimate of the bias purely due to the Hill slope in the Loewe
calculation.

ZIP and BRAID. Both ZIP and BRAID were calculated for each combination using
the R packages available for each method: (ZIP’s R code is in the supplemental file
1 of the manuscript7 and BRAID’s package is available from: https://cran.r-project.
org/web/packages/braidReports/braidReports.pdf.

Effective dose model. To fit Zimmer et al.’s Effective Dose Model we used the
scipy.optimization.curve_fit module in Python 2.7. Specifically, the
Effective Dose Model, Eq. 2 in Zimmer et al.50 (Eq. 30 in Supplement), contains
parameters (C1, C2, a12, a21, h1, h2) where the a parameters are the synergy values.
In the model, there are no parameters for efficacy because it is assumed the drug
effect ranges between zero and one. When this is not true, the Effective Dose Model
results in poor fits to the data (Fig. S7A, B).

Schindler’s Hill PDE model. The Hill PDE model has no parameters to fit as the
dose-response surface is derived the single dose-response curves. In fact, Schindler
does not propose a method to estimate synergy from experimental data, but
postulates some implementation of perturbation theory could be used to fit

experimental data8. Therefore, to calculate the synergy of this model, we defined
the sum of residuals between the null surface and the experimental data as the
metric of synergy.

Combination Index. Following the CI fitting algorithm in the CompuSyn software,
we fit the median-effect equation, a 2-parameter, log-linearized form of the Hill
equation to each drug alone obtained by assuming E0= 1 and E1= 0. C and h were
then obtained from the slope and y-intercept of the log-linearized data using the
scipy.stats.linregress module in Python 2.7. While CI assumes the drug
effect is scaled between (0, 1), when this is not the case, a poor fit results (Figs. 6
and S7C, D). All data points with percent viability >1 were excluded from the CI fit
because the median-effect equation becomes complex in those cases. For some
drugs, this left too few points to fit a line, such that CI was undefined. In other
cases, the fitted value for h was <0, a physically unrealistic result; therefore, those
combinations were also considered undefined. After that, CI was calculated using
Eq. (5).

As with Loewe, we apply a �log 10 transformation to scale CI synergy such that
�log 10ðCIÞ > 0 the combination is synergistic and if �log 10ðCIÞ< 0 the
combination is antagonistic.

GPDI model. The GPDI model fitting algorithm was developed in Python by the
authors based on description from24. Fits for the single drug parameters (C1, C2,
h1, h2, E1, E2) were based on the single dose-response data alone (See Table S5 for
parameter translation). Fitting for the parameters (INT21, INT12, CINT,12, CINT,21)
was done using curve_fit function in python in either the Loewe or Bliss version of
GPDI (see Supplemental Section 4.5). For all conditions (hINT,12= hINT,21= 1) as
was asserted in the original paper.

Drug combination database analysis. Initial possible matching drug names
between the in vitro experiments and the Drug Combination Database (DCDB)
were determined using fuzzy string matching in Python (https://github.com/
seatgeek/fuzzywuzzy v0.17.0). Drugs which had a sorted token ratio of 85 were
initially included. Of the 427 drugs, there were 172 single drug matches. Matches
included structural analogs. See matching_drug_names−11−29−2019_final.csv for
complete matching list. Of these matching drugs, there were 126 tested combi-
nations in clinical trials according to DCDB. Outliers in the synergy calculation
were considered values 1.5 times the interquartile range (Q1−Q3) above or below
Q1 or Q3 respectively.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets analyzed in this study were obtained from publicly available sources with
DOIs Mott (10.1038/srep13891, Figs. 3, 6, S4, S6, and S9), O’Neil (10.1158/1535-7163.
MCT-15-0843, Figs. 3–4 and S4–S9), Holbeck (10.1158/0008-5472.CAN-17-0489, Figs. 7,
S6, and S9), Tan (10.1038/nbt.2391, Fig. S6), and Cokol (10.1038/msb.2011.71, Figs. S6
and S9). Clinical trial data was collected from the Drug Combination Database (DCDB)
(10.1093/database/bau124, http://public.synergylab.cn/dcdb/, Figs. S9–S10). The synergy
datasets generated in this study are available in a repository at https://bitbucket.org/
meyerct1/musyc_theory/.

Code availability
All code required for recreating manuscript analyses from the MuSyC fits are available
for review in the repository https://bitbucket.org/meyerct1/musyc_theory/. A web
application to calculate MuSyC parameters is available at https://musyc.lolab.xyz/. The
code for the interactive Jupyter notebook demonstration of MuSyC is available at https://
github.com/djwooten/natcomms-musyc2021/.

Received: 26 January 2021; Accepted: 7 July 2021;

References
1. Loewe, S. über Kombination swirkungen. Arch. Exp. Pathol. 114, 313–326

(1926).
2. Loewe, S. Versuch einer allgemeinen Pharmakologie der Arznei-

kombinationen. Klin. Wochenschr. 6, 1078–1085 (1927).
3. Bliss, C. I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26, 585–615

(1939).
4. Greco, W. et al. Consensus on concepts and terminology for combined-action

assessment: the saariselka agreement. ACES 4, 65–69 (1992).
5. Tang, J., Wennerberg, K. & Aittokallio, T. What is synergy? The Saariselkä

agreement revisited. Front. Pharmacol. 6, 181 (2015).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24789-z

14 NATURE COMMUNICATIONS |         (2021) 12:4607 | https://doi.org/10.1038/s41467-021-24789-z | www.nature.com/naturecommunications

https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-ALMANAC
https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-ALMANAC
https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data
https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data
https://cran.r-project.org/web/packages/braidReports/braidReports.pdf
https://cran.r-project.org/web/packages/braidReports/braidReports.pdf
https://github.com/seatgeek/fuzzywuzzy
https://github.com/seatgeek/fuzzywuzzy
http://public.synergylab.cn/dcdb/
https://bitbucket.org/meyerct1/musyc_theory/
https://bitbucket.org/meyerct1/musyc_theory/
https://bitbucket.org/meyerct1/musyc_theory/
https://musyc.lolab.xyz/
https://github.com/djwooten/natcomms-musyc2021/
https://github.com/djwooten/natcomms-musyc2021/
www.nature.com/naturecommunications


6. Zimmer, A., Katzir, I., Dekel, E., Mayo, A. E. & Alon, U. Prediction of
multidimensional drug dose responses based on measurements of drug pairs.
Proc. Natl Acad. Sci. USA 113, 10442–7 (2016).

7. Yadav, B., Wennerberg, K., Aittokallio, T. & Tang, J. Searching for drug
synergy in complex dose-response landscapes using an interaction potency
model. Comput. Struct. Biotechnol. J. 13, 504–513 (2015).

8. Schindler, M. Theory of synergistic effects: Hill-type response surfaces as ‘null-
interaction’ models for mixtures. Theor. Biol. Med. Model. 14, 15 (2017).

9. Foucquier, J. & Guedj, M. Analysis of drug combinations: current
methodological landscape. Pharmacol. Res. Perspect. 3, e00149 (2015).

10. Geary, N. Understanding synergy. AJP: Endocrinol. Metab. 304, E237–E253
(2013).

11. Twarog, N. R., Stewart, E., Hammill, C. V. & A. Shelat, A. BRAID: a unifying
paradigm for the analysis of combined drug action. Sci. Rep. 6, 25523 (2016).

12. Meyer, C. T., Wooten, D. J., Lopez, C. F. & Quaranta, V. Charting the
fragmented landscape of drug synergy. Trends Pharmacol. Sci. 41, 266–280
(2020).

13. Ianevski, A., He, L., Aittokallio, T. & Tang, J. SynergyFinder: a web application
for analyzing drug combination dose-response matrix data. Bioinformatics 33,
2413–2415 (2017).

14. Flobak, A., Vazquez, M., Lægreid, A. & Valencia, A. CImbinator: a web-based
tool for drug synergy analysis in small- and large-scale datasets. Bioinformatics
33, 2410–2412 (2017).

15. He, L. et al. Methods for high-throughput drug combination screening and
synergy scoring. Methods Mol. Biol. 1711, 351–398 (2018).

16. Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical
review from a response surface perspective. Pharmacol. Rev. 47, 331–85
(1995).

17. Bansal, M. et al. A community computational challenge to predict the activity
of pairs of compounds. Nat. Biotechnol. 32, 1213–22 (2014).

18. Menden, M. P. et al. Community assessment of cancer drug combination
screens identifies strategies for synergy prediction. bioRxiv https://doi.org/
10.1101/200451 (2017).

19. Han, K. et al. Synergistic drug combinations for cancer identified in a
CRISPR screen for pairwise genetic interactions. Nat. Biotechnol. 35, 463–474
(2017).

20. Palmer, A. C. & Sorger, P. K. Combination cancer therapy can confer benefit
via patient-to-patient variability without drug additivity or synergy theory
combination cancer therapy can confer benefit via patient-to-patient
variability without drug additivity or synergy. Cell 171, 1678–1691.e13
(2017).

21. Meyer, C. T. et al. Quantifying drug combination synergy along potency and
efficacy axes. Cell Syst. 8, 97–108 (2019).

22. Chou, T.-C. et al. Analysis of combined drug effects: a new look at a very old
problem. Trends Pharmacol. Sci. 4, 450–454 (1983).

23. Gaddum, J. Pharmacology. (Oxford University Press, London, 1940).
24. Wicha, S. G., Chen, C., Clewe, O. & Simonsson, U. S. A general

pharmacodynamic interaction model identifies perpetrators and victims in
drug interactions. Nat. Commun. 8, 2129 (2017).

25. Mott, B. T. et al. High-throughput matrix screening identifies synergistic and
antagonistic antimalarial drug combinations. Sci. Rep. 5, 13891 (2015).

26. O’Neil, J. et al. An unbiased oncology compound screen to identify novel
combination strategies. Mol. Cancer Ther. 15, 1155–1162 (2016).

27. Holbeck, S. L. et al. The National Cancer Institute ALMANAC: a
comprehensive screening resource for the detection of anticancer drug pairs
with enhanced therapeutic activity. Cancer Res. 77, 3564–3576 (2017).

28. Tan, X. et al. Systematic identification of synergistic drug pairs targeting HIV.
Nat. Biotechnol. 30, 1125–1130 (2012).

29. Cokol, M. et al. Systematic exploration of synergistic drug pairs. Mol. Syst.
Biol. 7, 544 (2011).

30. Chou, T.-C. Drug combination studies and their synergy quantification using
the chou-talalay method. Cancer Res. 70, 440–446 (2010).

31. Chou, T.-C. The combination index (CI < 1) as the definition of synergism
and of synergy claims. Synergy 7, 49–50 (2018).

32. Vlot, A. H., Aniceto, N., Menden, M. P., Ulrich-Merzenich, G. & Bender, A.
Applying synergy metrics to combination screening data: agreements,
disagreements and pitfalls. Drug Discov. Today 24, 2286–2298 (2019).

33. Baeder, D. Y., Yu, G., Hoze, N., Rolff, J. & Regoes, R. R. Antimicrobial
combinations: bliss independence and loewe additivity derived from
mechanistic multi-hit models. Philos. Trans. R. Soc. B: Biol. Sci. 371, 20150294
(2016).

34. Chou, T. C. & Talalay, P. Quantitative analysis of dose-effect relationships: the
combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul.
22, 27–55 (1984).

35. Wang, H., Kubica, N., Ellisen, L. W., Jefferson, L. S. & Kimball, S. R.
Dexamethasone represses signaling through the mammalian target of
rapamycin in muscle cells by enhancing expression of REDD1. J. Biol. Chem.
281, 39128–34 (2006).

36. Ashton, J. C. Drug combination studies and their synergy quantification using
the chou-talalay method–letter. Cancer Res. 75, 2400–2400 (2015).

37. Chou, T.-C. Theoretical basis, experimental design, and computerized
simulation of synergism and antagonism in drug combination studies.
Pharmacol. Rev. 58, 621–681 (2006).

38. Fallahi-Sichani, M., Honarnejad, S., Heiser, L. M., Gray, J. W. & Sorger, P. K.
Metrics other than potency reveal systematic variation in responses to cancer
drugs. Nat. Chem. Biol. 9, 708–714 (2013).

39. Wood, K., Wood, K., Nishida, S. & Cluzel, P. Uncovering scaling laws to infer
multidrug response of resistant microbes and cancer cells. Cell Rep. 6,
1073–1084 (2014).

40. Tekin, E. et al. Prevalence and patterns of higher-order drug interactions in
Escherichia coli. npj Syst. Biol. Appl. 4, 31 (2018).

41. Di Veroli, G. Y. et al. An automated fitting procedure and software for dose-
response curves with multiphasic features. Sci. Rep. 5, 14701 (2015).

42. Jones, E., Oliphant, T. & Peterson, P. SciPy: Open Source Scientific Tools for
Python (2001).

43. Oliphant, T. E. Guide to NumPy (2006). http://web.mit.edu/dvp/Public/
numpybook.pdf.

44. McKinney, W. Data Structures for Statistical Computing in Python (2010).
http://conference.scipy.org/proceedings/scipy2010/mckinney.html.

45. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9,
90–95 (2007).

46. Lebigot, E. O. Uncertainties: a Python package for calculations with
uncertainties (2011). http://pythonhosted.org/uncertainties/.

47. Motulsky, H. & Christopoulos, A. Fitting Models to Biological Data using
Linear and Nonlinear Regression A practical guide to curve fitting Contents at a
Glance (GraphPad Software Inc., San Diego, 2003). http://www.facm.ucl.ac.be/
cooperation/Vietnam/WBI-Vietnam-October-2011/Modelling/
RegressionBook.pdf.

48. Malyutina, A. et al. Drug combination sensitivity scoring facilitates the
discovery of synergistic and efficacious drug combinations in cancer. PLoS
Comput. Biol. 15, 1–19 (2019).

49. Demidenko, E. & Miller, T. W. Statistical determination of synergy based on
bliss definition of drugs independence. PLoS ONE 14, 1–22 (2019).

50. Zimmer, A., Katzir, I., Dekel, E., Mayo, A. E. & Alon, U. Prediction of
multidimensional drug dose responses based on measurements of drug pairs.
Proc. Natl Acad. Sci. USA 113, 10442–7 (2016).

51. Elstrodt, F. et al. Brca1 mutation analysis of 41 human breast cancer cell lines
reveals three new deleterious mutants. Cancer Res. 66, 41–45 (2006).

52. Chou, T. C. Relationships between inhibition constants and fractional
inhibition in enzyme catalyzed reactions with different numbers of reactants,
different reaction mechanisms, and different types and mechanisms of
inhibition. Mol. Pharmacol. 10, 235–47 (1974).

53. Harris, L. A. et al. An unbiased metric of antiproliferative drug effect in vitro.
Nat. Methods 13, 497–500 (2016).

54. Weiss, J. N. The Hill equation revisited: uses and misuses. FASEB J. 11,
835–841 (1997).

55. Chou, T. C. & Talalay, P. Generalized equations for the analysis of inhibitions
of Michaelis-Menten and higher-order kinetic systems with two or more
mutually exclusive and nonexclusive inhibitors. Eur. J. Biochem. 115, 207–16
(1981).

Acknowledgements
The authors would like to thank Corey Hayford, Sarah Groves, Darren Tyson, Leonard
Harris, Joshua Bauer, James Pino, Ken Lau, and Chris Wright for insightful conversa-
tions and critical feedback. The authors would also like to thank Monica Del Valle for
improvements to the software. This work was supported by the following funding
sources: CTM was supported by National Science Foundation (NSF) Graduate Student
Fellowship Program (GRFP) [Award #1445197]; C.F.L. was supported by the National
Science Foundation [MCB 1411482 and CAREER 1942255]; C.F.L. and V.Q. were
supported by the National Institutes of Health (NIH) [U54-CA217450 and U01-
CA215845]; and V.Q. was supported by NIH [R01-186193].

Author contributions
D.J.W., C.T.M., C.F.L., and V.Q. conceived the study. C.T.M. and D.J.W. designed and
executed the analyses. All authors reviewed the final manuscript; C.T.M. and D.J.W.
performed the visualizations; A.L.R.L. implemented the webserver for MuSyC calcula-
tions. C.F.L., C.T.M., and D.J.W. wrote the manuscript.

Competing interests
C.T.M. and V.Q. are academic founders and part equity holders in Parthenon Ther-
apeutics Inc. All other authors declare no competing interests.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24789-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4607 | https://doi.org/10.1038/s41467-021-24789-z | www.nature.com/naturecommunications 15

https://doi.org/10.1101/200451
https://doi.org/10.1101/200451
http://web.mit.edu/dvp/Public/numpybook.pdf
http://web.mit.edu/dvp/Public/numpybook.pdf
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://pythonhosted.org/uncertainties/
http://www.facm.ucl.ac.be/cooperation/Vietnam/WBI-Vietnam-October-2011/Modelling/RegressionBook.pdf
http://www.facm.ucl.ac.be/cooperation/Vietnam/WBI-Vietnam-October-2011/Modelling/RegressionBook.pdf
http://www.facm.ucl.ac.be/cooperation/Vietnam/WBI-Vietnam-October-2011/Modelling/RegressionBook.pdf
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-24789-z.

Correspondence and requests for materials should be addressed to V.Q. or C.F.L.

Peer review information Nature Communications thanks Åsmund Flobak and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative
Commons license and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24789-z

16 NATURE COMMUNICATIONS |         (2021) 12:4607 | https://doi.org/10.1038/s41467-021-24789-z | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-021-24789-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	MuSyC is a consensus framework that unifies multi-drug synergy metrics for combinatorial drug�discovery
	Results
	A state-transition model to measure multi-drug synergistic effects
	Mapping the landscape of prominent synergy models within a consensus framework
	Conflating synergistic potency and efficacy masks synergistic interactions
	MSP is biased against combinations of drugs with intermediate efficacy
	Re-examining the sham experiment: Sham compliance introduces Hill-dependent bias in DEP models
	MuSyC reveals errors in the derivation and application of the Combination Index

	Discussion
	Methods
	Software
	Implementation and website
	Fitting 2D Hill equation
	Comparing fitting algorithm robustness between different synergy frameworks
	Data acquisition, preparation, and analysis
	ONeil et�al. anti-cancer screen
	Mott et�al. anti-malarial screen
	Tan et�al. anti-HIV screen
	Cokol et�al. anti-fungal screen
	Holbeck et�al. anti-cancer screen
	Calculation of other synergy metrics
	Bliss, Loewe, and HSA
	ZIP and BRAID
	Effective dose model
	Schindler&#x02019;s Hill PDE model
	Combination Index
	GPDI model
	Drug combination database analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




