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Abstract
Breathing asynchronies are mismatches between the requests of mechanically ventilated subjects and the support provided 
by mechanical ventilators. The most widespread technique in identifying these pathological conditions is the visual analysis 
of the intra-tracheal pressure and flow time-trends. This work considers a recently introduced pressure-flow representation 
technique and investigates whether it can help nurses in the early detection of anomalies that can represent asynchronies. 
Twenty subjects—ten Intensive Care Unit (ICU) nurses and ten persons inexperienced in medical practice—were asked to 
find asynchronies in 200 breaths pre-labeled by three experts. The new representation increases significantly the detection 
capability of the subjects—average sensitivity soared from 0.622 to 0.905—while decreasing the classification time—from 
1107.0 to 567.1 s on average—at the price of a not statistically significant rise in the number of wrong identifications—
specificity average descended from 0.589 to 0.52. Moreover, the differences in experience between the nurse group and the 
inexperienced group do not affect the sensitivity, specificity, or classification times. The pressure-flow diagram significantly 
increases sensitivity and decreases the response time of early asynchrony detection performed by nurses. Moreover, the data 
suggest that operator experience does not affect the identification results. This outcome leads us to believe that, in emergency 
contexts with a shortage of nurses, intensive care nurses can be supplemented, for the sole identification of possible respira-
tory asynchronies, by inexperienced staff.
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1  Introduction

In ventilator-assisted patient breathing, asynchronies occur 
when there is a mismatch between the patient’s demand 
and the support provided by the ventilator in terms of dura-
tion, volume, or flow. It is a common problem in ventilated 
patients and it may cause severe discomfort for patients, 
compromise ventilator efficacy in decreasing Work Of 
Breath (WOB), and even damage the diaphragm [1–17]. 
It is therefore a paramount task to detect asynchronies and 
intervene promptly.

Modern mechanical ventilators can sample patients’ 
airways pressure, flow, and volume hundreds of times per 
second, and represent them as waveforms on a device moni-
tor. The waveform-based representation of respiratory acts 
grants the specialist some knowledge of the patient-ventila-
tor interaction, and it also provides a valuable tool to detect 
many ventilation conditions such as asynchronies. Neverthe-
less, manual waveform analysis is a complex task requiring 
specific competency that only a few specialists can achieve. 
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Because of this, many issues concerning patient-ventilator 
interaction are often under-diagnosed, with negative conse-
quences for patients who, receiving inappropriate ventilation 
support, undergo a worsening of autonomous respiratory 
activities and an increased mortality risk [16].

Another method for detecting asynchronies is the moni-
toring of the oesophageal pressure waveform. The main limi-
tations are that it is semi-invasive, requires strict calibration, 
and the accuracy of the signal is affected by several variables 
(e.g., patient’s posture, cardiac activity, swallowing, posi-
tion, and volume of inflation of the oesophageal balloon); 
moreover, specific skills for the interpretation of tracings 
are required [18, 19]. As an alternative one can use the Neu-
rally Adjusted Ventilatory Assist (NAVAⓇ ), which requires a 
nasogastric catheter for the detection of the Electrical Activ-
ity of the Diaphragm (EAdi) [20], but also this technique is 
semi-invasive. Moreover, patients can trigger ventilators by 
using solely the auxiliary respiratory muscles; this means, 
according to the “first-come, first-served” principle, that 
even during NAVAⓇ there may be a spontaneous ventilatory 
activity, and therefore asynchrony, even in the absence of 
any EAdi evidence. In fact, in this specific case, the software 
switches to an actual Pressure Support Ventilation (PSV) 
with a non-diaphragmatic pneumatic trigger [21–23].

In general, a fundamental aspect of managing the prob-
lem of asynchronies is the collaboration between physicians 
and nurses. Among the other activities, nurses provide an 
important shortcut bridge between patients and clinicians 
in ICU. Since they are usually more strictly in contact with 
patients than clinicians, nurses may help the latter in obtain-
ing a more rapid response to abnormal breathing activities. 
In this context, easy identification of possible asynchronies 
to request an expert diagnosis is crucial for early responses. 
Note that Chacon et al. proved that after specific training of 
two hours a day for twenty days, based on the observation of 
flow and pressure waveforms, ICU nurses were able to detect 
Ineffective Efforts during Expiration (IEE) as well as expert 
physicians [24]. However, the focus was only on IEE, and 
other types of asynchrony were not considered.

Recently, a new asynchrony identification approach, 
based on the analysis of the breath representation in the 
pressure-flow space, has been patented [25] and proposed to 
replace the usual pressure-time and flow-time portrayal [26]. 
Since this technique would require a hardware upgrade of 
the ventilation machinery, which may not always be pos-
sible in the current generation of ventilators, this work has 
two aims: on the one hand, it appraises the efficiency dif-
ference between the new approach and the standard one in 
ahead identification of possible asynchronies performed by 
humans; on the other hand, it gauges the importance of the 
operator’s experience in the identification process.

To achieve these goals, a group of three experts in the 
field labeled one by one 200 breaths as either “containing 

at least one asynchrony” or “not containing any asyn-
chrony”, with no distinction between inspiratory, expira-
tory, or cycling-off asynchronies. Then, we measured 
the sensitivities, specificities, and evaluation times of 20 
individuals—10 ICU nurses and 10 inexperienced subjects 
with no medical practice—in asynchrony identification on 
the pre-labeled breaths, comparing the new approach with 
the classical one.

As far as the first goal, this work compares the results due 
to the adopted identification technique on the whole set of 
subjects, on the nurses, and the inexperienced group, and the 
Wilcoxon signed-ranks test [27] establishes whether there 
exists any statistically significant difference in using one of 
the two identification techniques in place of the other.

About the importance of the experience in early asyn-
chrony identification, the Mann–Whitney U test  [28] is 
applied to both compare nurse and inexperienced groups 
on each classification technique and discover whether the 
experience impacts the subjects’ sensitivities, specificities, 
or classification times in any of the two approaches.

2 � Materials and methods

2.1 � Loop‑based characterization of asynchronies

Mechanical ventilator usually represents respiratory acts as 
two plots depicting both patients’ pressure and airflow over 
time, such as those reported in Fig. 1.

Even if it is theoretically possible to distinguish between 
a normal breath without asynchronies (see Fig. 1a) and a 
pathological breath with one or more asynchronies (Fig. 1b), 
in practice the task is quite arduous; indeed it is necessary 
to train nurses following a specific protocol [24], since the 
differences between the normal and the pathological case 
are not always so clear.

The breath’s pressure-flow representation consists of a 
curve that produces a sort of an elliptic cycle, such as that 
depicted in Fig. 2a. In normal conditions, both pressure and 
flow rise during the first part of the inspiration. Then, the 
flow reaches the maximum and declines down to 0. As soon 
as the flow becomes negative, the expiration begins, the 
pressure decreases, and its trend stands still until the end 
of the breath. From a physical perspective, the area in this 
pressure-flow curve corresponds to the power ( P ) expressed 
during the breath cycle in terms of airflow and pressure, and 
WOB equals P ∗ �t , where �t is the time elapsed during the 
breath.

Any Sub-Breath Loops (SBLs), decorating the primary 
curve, represents a work overload which is measurable by 
computing its area and which, according to [26], may denote 
a ventilation asynchrony. Figure 2b contains two SBLs: the 
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small one, whose samples have pressure above 25 cmH2O 
and flow between 0 and 0.5 l∕s , occurs during the inspiratory 
phase; the larger one, whose pressure and flow are between 
5 and 10 cmH2O and between −0.5 and 0, respectively, 
appears during the expiratory phase.

2.2 � Data‑set extraction and labeling

As far as the breath data, we retrospectively analyzed data 
used in a previously published study [26].

Airway flow ( f  ), pressure ( p ), and EAdi samples for a 
total of 50228 breaths by eight critically ill mechanically 
ventilated patients were considered. The patients were 
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(a) The pressure-time and flow-time rep-
resentation of a breath that, according
to the majority of the experts, does not
contain asynchronies
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(b) The pressure-time and flow-time rep-
resentation of a breath that, according to
the majority of the experts, does contain
asynchronies

Fig. 1   The pressure-time and flow-time representation of two breaths
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(a) The pressure-flow representation of a
breath is depicted as time-domain wave-
forms in Fig. 1a. According to the major-
ity of the experts, it does not contain
asynchronies
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(b) The pressure-flow representation of
a breath is depicted as time-domain
waveforms in Fig. 1b. According to the
majority of the experts, this breath does
contain asynchronies

Fig. 2   The pressure-flow representation of the two breaths depicted as time-domain waveforms in Fig. 1
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ventilated with Servo-IⓇ (Maquet) in different modalities: 
Pressure Regulated Volume Controlled (PRVC), Pres-
sure Support (PS), Synchronized Intermittent Mandatory 
Ventilation-Volume Controlled (SIMV-VC), Synchronized 
Intermittent Mandatory Ventilation-Pressure Controlled 
(SIMV-PC), Volume Control (VC), Volume Support (VS) 
and Neurally Adjusted Ventilatory Assist (NAVAⓇ).

2.2.1 � Data‑set selection

We produced the pressure-time, the flow-time and the EAdi-
time plots of all the 50228 breaths in the data set. By observ-
ing these plots, we preliminarily selected 202 breaths so that, 
according to our initial coarse evaluation, the number of 
respiratory acts that seemed to contain asynchronies was 
about the same as those that appeared to be normal. We 
admitted asynchronies in any breath cycle phases, being in 
either inspiration, cycling, or expiration.

2.2.2 � Data‑set labeling by expert

The flow-time, pressure-time, and EAdi-time plots of the 
selected 202 breaths were analyzed by three ICU expert 
physicians that individually labeled each of the respiratory 
acts as “containing asynchronies” or “non-containing asyn-
chronies”. Finally, the consensus between the evaluations 
of the experts was produced by a majority. According to it, 
97 breaths among the 202 contained asynchronies and the 
remaining 105 were normal acts.

2.3 � Testing the SBL‑based identification 
of asynchronies

2.3.1 � Breath representations

Each of the 202 selected breaths was depicted by two distinct 
images: an image representing both the pressure-time and 
the flow-time plots, such as those reported in Fig. 1, and an 
image reporting the pressure-flow plot of the breath itself, 
see Fig. 2 for two examples. We call “waveform breath rep-
resentation” the former images and “pressure-flow breath 
representation” the latter.

It is worth noticing that the EAdi-time plots were 
employed by the experts to produce the consensus, while 
they have not been used during the following classification 
phase of the experiment.

2.3.2 � Classifier selection and training

We considered 20 individuals. Half of them were nurses 
with at least three years of working experience at the gen-
eral and post-operative ICU of the Cattinara University 

Hospital, Trieste, Italy, whose average age and standard 
deviation are about 43.3 and 10.49; this group is called 
“nurse group”. The remaining subjects—i.e., 10 individu-
als whose average age and standard deviation are about 43.2 
and 19.27, respectively—were not involved in medical prac-
tices, they had never seen any waveform and pressure-flow 
representations of a breath before the experiment, and they 
knew neither the source nor the meaning of these plots. This 
group is named the “inexperienced group”.

Among the 202 classified breaths, we randomly selected 
one representative for the breaths that, according to the 
expert consensus, do not contain any asynchrony, and one for 
those having asynchrony. We used exactly the breath associ-
ated with Figs. 1a and 2a as an example of the case with-
out asynchronies, and the breath associated with Figs. 1b 
and 2b as an example of the case containing asynchronies. 
These two breaths and their respective representations were 
used to train the considered individuals about asynchrony 
identification.

Because of their job, all the subjects in the nurse group 
were assumed to know normal activity in waveform breath 
representation in the time domain. Figure 2a and b were 
instead shown as examples of the pressure-flow breath rep-
resentation and the SBLs in Fig. 2b were pointed out as 
clues for asynchronies. This activity took about one minute 
and was the only training that the nurse group had in distin-
guishing asynchronies from normal activity in pressure-flow 
breath representation.

While the nurses were physically located in the same 
place during the training session, the components of the 
inexperienced group came from different geographical areas 
and, because of this, they were trained on-line by using a 
video. Figures 1 and  2 were used as examples for the two 
kinds of images to consider: Figures 1a and  2a were pre-
sented as “normal” images, while Figs. 1b and  2b were 
exhibited as “abnormal” images. In particular, the bumps 
in Fig. 1b around 0.35 s and 1.85 s , and the SBLs in Fig. 2b 
were highlighted as unwanted and to-be-reported events.

2.3.3 � Subjects’ evaluation

The subjects were asked to individually evaluate the 200 
breaths in the consensus not used for the training. The evalu-
ations were repeated twice: first, by using the waveform rep-
resentation of the breaths (waveform-based classification) 
and, then, by analyzing their pressure-flow representations 
(SBL-based classification). During both rounds, the image 
order was shuffled so to avoid memory-based bias. A dedi-
cated web application collected the subject classifications 
and recorded the elapsed time. The subjects were also asked 
for permission to store and publish their ages and professions 
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for statistical purposes only, and they all agreed (see Table 1 
for the data).

Each of the nurses was asked to establish, for each of the 
breaths, whether it contained at least one asynchrony during 
the waveform-based classification and to indicate the pres-
ence of SBLs decorating the complete breath loop cycles in 
the SBL-based classification.

The components of the inexperienced group were instead 
asked to identify bumps present in both of the two plots, 
i.e., the pressure-time and flow-time waveforms, during the 
waveform-based classification, and to signal the presence of 
SBLs in the pressure-flow breath representation.

2.4 � Statistical analysis

The consensus between the experts was considered as the 
standard of reference against which subjects’ evaluations 
were compared. For each of the subjects and each of the 
waveform-based and SBL-based classification rounds, we 
built a confusion matrix which reported the number of true 
positives (TP)—i.e., the evaluations which were consist-
ent with the consensus and classified a breath as contain-
ing at least one asynchrony-, true negatives (TN)—i.e., the 
evaluations which were consistent with the consensus and 
classified a breath as not containing any asynchrony-, false 
positives (FP)—i.e., the evaluations which, differently from 
the consensus, classified a breath as containing at least one 
asynchrony-, and false negatives (FN)—i.e., the evaluations 
which does not agree with the consensus, classified a breath 
as not containing any asynchrony (see Table 2). Then, we 
computed the sensitivity (SE) and specificity (SP) of each 
of the confusion matrices as follows

(1)SE
def

=
TP

TP + FN
SP

def

=
TN

TN + FP

Sensitivity, specificity, and total classification time data 
were individually considered (see Table 3 and Figs. 3, 4, 
and 5) and the two-tailed Wilcoxon signed-ranks test [27] 
was applied to establish whether subjects’ performances 
were improved by using the SBL-based classification in 
place of the waveform-based classification (overall analy-
sis). We selected as threshold p-value 0.05 to discharge the 
null hypothesis that “the medians of the data associated to 
the waveform-based and SBL-based classifications are the 
same”. The W-value was computed and compared with the 
critical value due to the p-value threshold and the number of 
uneven paired samples. The same statistical tests were also 
internally applied to each of the considered groups: the nurse 
analysis dealt with the differences between waveform-based 
and SBL-based classifications performed by the nurses; the 
inexperienced analysis investigated the effects of these 
two approaches on the performances of the inexperienced 
subjects.

Furthermore, the two-tailed Mann–Whitney U test [28] 
was applied to compare nurse and inexperienced groups on 
each classification technique and to discover, by using once 
more as p-value 0.05, whether the experience impacts the 
sensitivity, the specificity, or the classification time of the 
subjects (waveform analysis and SBL analysis). For both 
waveform and SBL analysis, we computed the U-value and 
compared it with the critical value associated with both the 
p-value threshold and the number of considered subjects. 
The mean values of all the considered data distributions 
were also evaluated, to establish an order among the means 
themselves whenever the null hypothesis was discharged.

Table 1   The subjects 
considered by this study

They were asked for permission to store and publish their ages and professions for statistical purposes only 
and they all agreed

ID Age Profession ID Age Profession

1 41 ICU Nurse 11 31 Musician
2 28 ICU Nurse 12 31 Teacher
3 63 ICU Nurse 13 63 Retired
4 50 ICU Nurse 14 47 Univ. Associate Professor
5 51 ICU Nurse 15 24 Univ. Student
6 47 ICU Nurse 16 59 School Manager
7 41 ICU Nurse 17 18 High School Student
8 43 ICU Nurse 18 65 Retired
9 28 ICU Nurse 19 26 Univ. Student
10 41 ICU Nurse 20 68 Retired
(a) The nurse group. (b) The inexperienced group.
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Table 2   The number of true 
positive (TP), false positive 
(FP), false negative (FN), 
and true negative (TN) cases 
concerning the consensus by a 
majority among the experts per 
subject

The table reports these data for both waveform-based and SBL-based classifications. The reported clas-
sification times are expressed in seconds and refer to the total amount of time required to classify all the 
exhibited images

Waveforms SBLs

Group Id TP FP FN TN Time TP FP FN TN Time

Nurse 1 82 50 14 54 578 84 41 12 63 553
2 72 38 24 66 1208 84 50 12 54 425
3 41 16 55 88 584 86 45 10 59 456
4 68 60 28 44 1025 90 53 6 51 700
5 40 38 56 66 768 92 54 4 50 798
6 22 14 74 90 1378 87 49 9 55 661
7 48 40 48 64 664 89 56 7 48 661
8 68 71 28 33 1213 88 49 8 55 543
9 74 42 22 62 815 85 44 11 60 530
10 80 60 16 44 942 87 52 9 52 461

Inexp. 11 65 39 31 65 1747 88 48 8 56 826
12 67 43 29 61 906 87 48 9 56 433
13 76 49 20 55 642 86 53 10 51 893
14 35 20 61 84 1326 90 55 6 49 485
15 23 21 73 83 761 84 48 12 56 315
16 64 57 32 47 2506 88 49 8 55 545
17 79 74 17 30 1043 84 50 12 54 479
18 70 44 26 60 1746 86 59 10 45 553
19 48 28 48 76 837 85 47 11 57 484
20 72 50 24 54 1450 87 49 9 55 541

Table 3   The sensitivity (SE), 
specificity (SP), and total 
evaluation time in seconds 
(Time) of each subject in both 
waveform-based and SBL-based 
classifications

Waveforms SBLs

Group Id SE SP Time SE SP Time

Nurse 1 0.85 0.52 578 0.88 0.61 553
2 0.75 0.63 1208 0.88 0.52 425
3 0.43 0.85 584 0.90 0.57 456
4 0.71 0.42 1025 0.94 0.49 700
5 0.42 0.63 768 0.96 0.48 798
6 0.23 0.87 1378 0.91 0.53 661
7 0.50 0.62 664 0.93 0.46 661
8 0.71 0.32 1213 0.92 0.53 543
9 0.77 0.60 815 0.89 0.58 530
10 0.83 0.42 942 0.91 0.50 461

Inexp. 11 0.68 0.63 1747 0.92 0.54 826
12 0.70 0.59 906 0.91 0.54 433
13 0.79 0.53 642 0.90 0.49 893
14 0.36 0.81 1326 0.94 0.47 485
15 0.24 0.80 761 0.88 0.54 315
16 0.67 0.45 2506 0.92 0.53 545
17 0.82 0.29 1043 0.88 0.52 479
18 0.73 0.58 1746 0.90 0.43 553
19 0.50 0.73 837 0.89 0.55 484
20 0.75 0.52 1450 0.91 0.53 541
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3 � Results

The consensus accounted for 97 breaths labeled as “contain-
ing asynchronies” (such as ineffective efforts during expi-
ration (IEEs), flow asynchronies, or delayed-termination 
asynchronies) and 105 breaths labeled as “non-containing 
asynchronies”. One breath in the former group and one in the 
latter were used to train the subjects; thus, each individual 
was requested to classify 200 breaths twice (96 containing at 

least one asynchrony and 104 not containing asynchronies): 
once during the waveform-based classification and once dur-
ing the SBL-based classification.

Table 2 reports the confusion matrix and the overall 
classification time associated with each subject for wave-
form-based and SBL-based classifications. Table 3 pre-
sents the sensitivity and specificity of each subject in both 
waveform-based and SBL-based classifications, along with 
the required classification time. Figures 3, 4, and 5 graphi-
cally summarize the data contained in Table 3. Table 4 

Fig. 3   Sensitivities of the 
subjects (higher is better). The 
subjects from 1 up to 10 belong 
to the nurse group and the 
remaining ones, i.e., from 11 to 
20, to the inexperienced group
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Fig. 4   Specificities of the 
subjects (higher is better). The 
subjects from 1 up to 10 belong 
to the nurse group and the 
remaining ones, i.e., from 11 to 
20, to the inexperienced group
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Fig. 5   Classification times in 
seconds per subject (lower is 
better). The subjects from 1 up 
to 10 belong to the nurse group 
and the remaining ones, i.e., 
from 11 to 20, to the inexperi-
enced group
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Table 4   The average sensitivity (SE), specificity (SP), and classification time in seconds (Time) for both waveform-based and SBL-based clas-
sifications for all the subjects (Overall), the nurse group, and the inexperienced group

Index avg. Overall Nurse group Inexp. group

Waveform SBL Waveform SBL Waveform SBL

SE 0.622 0.905 0.620 0.908 0.624 0.901
SP 0.589 0.520 0.588 0.526 0.591 0.513
Time 1107.0 567.1 917.5 578.8 1296.4 555.4
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contains the average values of all the analyses and all the 
classification rounds. Table 5 consists of the W-values 
for the overall, nurse, and inexperienced group analyses 
and the U-values for both waveform and SBL analyses 
of the sensitivity, specificity, and classification time data. 
The numbers between parentheses are the critical value 
associated with the threshold p-value 0.05 for the specific 
samples. The null hypothesis is rejected when the W-value 
(the U-value) is smaller than the corresponding critical 
value. Please, notice that the critical values for the Wil-
coxon signed-ranks test (first three columns in Table 5) 
changed according to the number of uneven values in the 
considered paired samples.

The W-value of the overall analysis about sensitivity 
is 0 and, since it is smaller than the corresponding criti-
cal value—i.e., 52-, the null hypothesis was discharged. 
Thus, we can state that the sensitivities of the overall group 
improved after switching from the waveform-based clas-
sification, whose average was 0.622, to the SBL-based 
approach, whose average was 0.905. The same situation also 
holds for both nurse and inexperienced group analyses: since 
the W-value and the critical value are 0 and 8, respectively, 
in both the cases, the sensitivity of both the nurse group and 
the inexperienced group significantly increases by switch-
ing from the waveform-based to the SBL-based classifica-
tion. The former raises its average sensitivity from 0.620 to 
0.908 and the latter from 0.624 to 0.901. On the contrary, the 
U-values of waveform and SBL analyses about sensitivity 
are 46 and 43, respectively, and, since the critical value is 23 
in both cases, the null hypothesis “the experience differences 
between nurse and inexperienced groups did not affect the 
sensitivity”, cannot be discharged.

Dealing with the specificity, neither the W-values of the 
overall analysis—i.e., 58.5-, the nurse analysis—i.e., 17-, 
and the inexperienced analysis—i.e., 18—nor the U-values 

of waveform and SBL analyses—i.e., 49.5 and 48, respec-
tively—are smaller than the corresponding critical values—
i.e., 52, 8, 8, 23, and 23, respectively. Thus, despite a mild 
decrease in average specificity values (see Table 4, second 
row), we could not exclude that this contraction was due to 
the chance.

The W-value associated with the classification times 
together with the corresponding average values suggested 
that the use of SBL-based classification in place of the 
waveform-based one sped up the breath classifications of 
the overall group and lowered its average time from more 
than 18 min ( 1107.0∕60 ≈ 18.45 min) to less than 10 min 
( 567.1∕60 ≈ 9.45 min). The very same situation also inter-
nally holds in both the nurse group (W-value and critical 
value are 3 and 8, respectively) and the inexperienced 
group (W-value and critical value are 1 and 8, respectively) 
and, by switching from the waveform-based classifica-
tion to the SBL-based, their average classification times 
decreased from more than 15 min ( 917.5∕60 ≈ 15.29  min) 
to less than 10  min ( 578.8∕60 ≈ 9.65 ) and from more 
than 21 min ( 1296.4∕60 ≈ 21.61 min) to less than 10 min 
( 555.4∕60 ≈ 9.26 ), respectively. Finally, the Mann–Whitney 
U test could not certify a meaningful difference between 
the nurse and the inexperienced groups in the evaluation 
times due to none of the classification approaches. Indeed, 
the U-values of both waveform-based and SBL-based classi-
fications were greater than the corresponding critical values: 
29 and 23 are the U-value and the critical value, respectively, 
for the former, while 44.5 and 23 are the U-value and the 
critical value, respectively, for the latter. In a sense, this sur-
prising result certifies the hardness of the asynchrony detec-
tion task and the necessity of a specific training, such as that 
described in [24], even for experienced nurses.

4 � Discussion

The discovered upsurge in sensitivity is a substantial result 
because it allows early asynchrony detection and may avoid 
severe consequences to mechanically ventilated patients. 
On the contrary, the moderate specificity contraction we 
found, for more not statistically significant, is in any case not 
particularly harmful from the patients’ point of view, as it 
results in specialist evaluations when not strictly necessary.

Also, the speed-up obtained by the classification time is 
quite significant, since the SBL-based method substantially 
halves this time, allowing a more user-friendly approach 
while detecting the closed-loop pattern characterizing a 
possible asynchrony.

What appears to be unexpected is the fact that inexperi-
enced subjects substantially performed as well as experi-
enced nurses, and this for both the waveform-based and the 
SBL-based classifications. While for the waveform-based 

Table 5   Wilcoxon signed-ranks test results for waveform-based ver-
sus SBL-based classifications on the overall subjects (first column), 
on the nurse group (second column), and the inexperienced group 
(third column) and Mann–Whitney U test results for nurse group 
versus inexperienced group on both waveform-based and SBL-based 
classifications (fourth and fifth columns, respectively)

Each column reports either the W-values (first column, second, and 
third) or the U-values (fourth and fifth columns) for sensitivity, 
specificity, and overall classification time comparisons. The number 
between parenthesis is the critical value for the specific test. The con-
tent of a cell was italicized only when the corresponding test failed to 
discharge the null hypothesis

Overall Nurse Inexp. Waveform SBL
W-values W-values W-values U-values U-values

Sensitivity 0 (52) 0 (8) 0 (8) 46 (23) 43 (23)
Specificity 58.5 (52) 17 (8) 13 (8) 49.5 (23) 48 (23)
Time 8 (52) 3 (8) 1 (8) 29 (23) 44.5 (23)
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method we can assume that this is an indirect proof of the 
hardness of the asynchronies detection task, as far as the 
SBL-based method it sounds like a paramount result: the 
closed-loop pattern is easily detected by whoever.

As for the clinical meaning of the obtained results, we 
have to say that pondering the SBL-based detection per-
formed by nurses as a replacement for clinical diagnosis 
is not a scope of this work, and in any case, the low speci-
ficity exhibited by the examined subjects would preclude 
further step in this direction. SBLs are only an intuitive 
new graphic breathing representation, which provides more 
information to clinicians to make decisions. Its application 
in an ICU could be an important nursing tool to easily rec-
ognize anomalies that can represent asynchronies, favoring 
an early intervention of the clinician. Moreover, SBL-based 
identification appears to outperform the standard method 
as an early discovery technique in a more structured–and 
common—diagnostic framework, where a clinical evalua-
tion follows every warning.

Another important issue, not discussed in this work, is the 
kind of asynchronies that could be detected, i.e. ineffective 
efforts, double cycling, reverse triggering, and inspiratory 
airflow dyssynchrony [29]. But the possibility of distinguish-
ing among specific kinds of asynchronies in the pressure-
flow space is a critical topic, and it is still under investiga-
tion; so, the SBL-based identification method could prevent 
proper treatment of these different phenomena. Notice, how-
ever, that this issue is not relevant in our settings, since the 
only thing that matters here is detecting any anomaly in the 
breathing cycle. This means that the lack of classification 
for the asynchronies and the moderate absolute specificity, 
which produces some useless alarms, have little relevance in 
such a context, since the final diagnosis is always due to the 
experts. Vice versa, alerting the experts for the vast majority 
of the real asynchronies is certainly a requested feature in 
the investigated settings, and the high measured sensitivity 
accomplishes this task.

Because of the above reasons, it seems reasonable to sug-
gest the switch from wave-form-based to SBL-based early 
identification of possible asynchronies.

5 � Conclusions

We considered 20 subjects: half of them were nurses and 
the remaining were inexperienced in medical practices. We 
required all of them to individually blindly classify 200 
pre-labeled breaths by using the standard waveform-based 
classification approach and the new SBL-based classifica-
tion techniques, with the intent of identifying those breaths 
which exhibited mechanical ventilation asynchronies.

The average sensitivities over the 20 considered subjects 
for waveform-based and SBL-based classifications were 

0.622 and 0.905, respectively; the specificities were 0.589 
and 0.52, respectively; as far as the classification times may 
concern, their averages were 1107.0 and 567.1 seconds, 
respectively.

The collected data were analyzed by using the two-tailed 
Wilcoxon signed-ranks test with a p-value of 0.05 to high-
light sensitivity, specificity, and classification time differ-
ences between the two approaches in the overall groups and 
internally to both the nurse group and the inexperienced 
group. This test highlighted that switching from the wave-
form-based classifications to the SBL-based classifications 
increased sensitivity and decreased classification times. 
Even though the approach change caused a slight contrac-
tion in specificity, the Wilcoxon test did not exclude that 
this was due to the case. The two-tailed Mann–Whitney U 
test with a p-value of 0.05 was also used to see whether the 
differences in experience between the nurse group and the 
inexperienced group affected the sensitivity, the specificity, 
or the classification times in either waveform-based or SBL-
based classifications. According to the collected data and the 
statistical test, this does not seem to be the case.

The above results suggest that the SBL-based classifica-
tion can be used instead of the standard waveform-based 
classification to significantly enhance the early detection 
of anomalies that can represent asynchronies, both by 
experienced and inexperienced subjects. Moreover, quite 
surprisingly, the effectiveness of both the classification 
approaches seems to be unrelated to the evaluators’ experi-
ence. Thus, while a specialistic review remains required to 
establish a diagnosis, in emergency contexts in which there 
is a shortage of nurses experienced in mechanical ventila-
tion—for example, those due to the COVID-19 pandemic 
(e.g., see [30–33])-, ICU nurses could be supplemented by 
inexperienced staff for the sole role of early identification 
of anomalies which can represent respiratory asynchronies.
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