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Abstract: Herein, we study stress–strain diagrams of soft biological materials such as animal skin,
muscles, and arteries by Finsler geometry (FG) modeling. The stress–strain diagram of these biological
materials is always J-shaped and is composed of toe, heel, linear, and failure regions. In the toe region,
the stress is almost zero, and the length of this zero-stress region becomes very large ('150%) in, for
example, certain arteries. In this paper, we study long-toe diagrams using two-dimensional (2D)
and 3D FG modeling techniques and Monte Carlo (MC) simulations. We find that, except for the
failure region, large-strain J-shaped diagrams are successfully reproduced by the FG models. This
implies that the complex J-shaped curves originate from the interaction between the directional and
positional degrees of freedom of polymeric molecules, as implemented in the FG model.

Keywords: soft biological materials; stress–strain diagram; J-shaped diagram; Monte Carlo; statistical
mechanics; Finsler geometry

1. Introduction

Biological materials such as muscles, tendons, and skin are known to be very flexible and strong,
and for this reason, these materials have attracted considerable interest with regard to the design
of artificial materials or meta-materials [1,2]. The mechanical properties of these materials are of
fundamental importance in their applications [3,4]. The stress–strain diagram is a typical approach for
characterizing the mechanical strength of these materials, and numerous experimental studies on this
topic have been conducted [5–19].

It has been experimentally observed that the stress–strain diagram of soft biological materials
is J-shaped and that the curve is composed of toe, heel, linear and rupture (or failure) regions
(Figure 1a,b) [5–19]. The failure region is beyond the scope of this paper and will not be taken
into consideration. In the toe region, the stress is almost zero, implying that the materials freely
extend without external forces, similar to the behavior of the soft-elasticity region of liquid-crystal
elastomers [20–26]. The existence of this zero-stress region is the reason why we call the curve J-shaped.

The continuum mechanics approach based on the strain energy functional successfully describes
the J-shaped diagrams [7]. In the context of continuum mechanics, the non-linearity in the J-shaped
curve is understood as hyperelasticity [27,28]. However, the full information of the position of polymer
is not always included in those modelings. In fact, the strains are used to obtain the diagram in those
models, and the strains are calculated from the displacement field u, which is a part of the position
variable r of polymers such that r = r0+u. This convention is useful if u is very small compared to
r0, and it is used in continuum mechanics or elasticity theory. If both r0 and u are obtained in this
expression, we can evaluate r [29,30]. However, it is not necessary to separate r into two parts in the
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case of polymers, and the polymer position r is more convenient than the strain. Indeed, an interaction
of the polymer position and direction is defined by using r and σ and implemented in the FG model,
as we will see in the following section. As a result of this interaction, shape dependent mechanical
property and its relation to σ can be obtained independently of how external stimuli are given. To
calculate the stress for example, we impose a constraint on the strain by fixing the polymer position r
of the boundary. This constraint induces an alignment of σ, and the induced internal structural change
of σ causes a nontrivial behavior of mechanical property such as J-shaped diagram. Such a qualitative
understanding for biological materials is actually observed in the FG model. For this reason, studying
the diagram using the Finsler geometry (FG) modeling technique, where the polymer position r is
directly used, is an interesting prospect.

We have proposed the FG modeling technique to study anisotropic phenomena such as
liquid-crystal elastomers elongation and soft elasticity [31,32]. In [33,34], we studied J-shaped
curves by this FG modeling technique and obtained Monte Carlo (MC) data consistent with previously
reported experimental results, in which the toe length is up to 40∼50% on the strain axis. For these
experimental J-shaped curves of small toe length, FG modeling successfully describes the diagrams.

However, the toe length reaches 150% in some biological materials [9]. The length of the toe region
is generally, albeit not always, limited to less than 50% [5–9]. The main component maintaining the
mechanical strength is the collagen fibers, and elastin also plays an important role in the mechanical
property [1]. Moreover, a lot of components in those biological materials are expected to contribute to
the mechanical strength of materials with large toe length. Thus, it is very difficult to study the diagram
by incorporating these complex mechanisms. Therefore, it is worthwhile to use the FG modeling
technique for studying the large strain diagram.

In this paper, the existing experimental J-shape curves of biological materials such as animal
skin, muscles, and arteries are compared with the simulation results. The experimental curves of
these materials are grouped into two types: the group of diagrams with a small heel (S-heel) and the
group of diagrams with a large heel (L-heel) (Figure 1a,b) [6–9]. The diagram with an S-heel (Figure
1a) is decomposed into two straight lines with different slopes, while the diagram with an L-heel is
decomposed into two different linear lines and a curve for the heel between the two lines. Moreover,
close to the failure region, some of the curves have a convex part, which seems to correspond to the
failure region where the collagen fibers start to break (Figure 1b).(a)                            (b)                           strainstress small heeltoe large heelstress strainconvexfailurefailure toe

Figure 1. A J-shaped diagram is composed of two different linear lines, and the region where two lines
are smoothly connected is called the heel. The J-shaped diagrams are decomposed into two groups: the
diagrams with (a) a small heel and (b) a large heel. The curve in (b) is convex upward in the large-strain
region and hence is highly non-linear.

2. Models and Monte Carlo Simulations

We use cylindrical surfaces that are suitable for the calculation of the surface tension or the stress.
The cylindrical surface is obtained by bending and identifying two boundaries opposite to each other
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of a rectangular surface (Figure 2a). The remaining two boundaries correspond to the boundaries of
the cylinder, which are fixed to calculate the surface tension. Since the simulations are performed
on the lattices of finite size, it is better to remove unexpected boundary effects in the simulations of
surface tension. For this reason, the surface boundaries, which are not directly connected to the surface
tension calculation, should be removed.(a)                            (b) (c)            

Figure 2. (a) A rectangular surface forms a cylindrical surface. Cylindrical lattices for (b) 2D and (c)
3D FG models. The lattices are composed of (b) triangles and (c) tetrahedrons. The total number of
vertices are (b) N=2511 and (c) N=5022.

The 2D FG model is defined on a cylindrical lattice like the one in Figure 2b. The size of the lattice
in Figure 2b is given by (N, NB, NT)=(2511, 7371, 4860), where N, NB, and NT are the total number of
vertices, the total number of bonds, and the total number of triangles, respectively. The Euler number χ
is used to check whether the lattice is correctly constructed, and the χ of the cylinder must be the same
as that of the torus, so χ=N−NB+NT =0. The lattice in Figure 2c is constructed from tetrahedrons
for the 3D FG model [32], and the surfaces inside and outside the 3D lattice are 2D cylinders that are
exactly the same as the one in Figure 2b. Netgen Mesh Generator is used to generate the 3D lattices for
the simulations and in Figure 2c, where the 2D cylinder lattice in Figure 2b is used as the input data.
This 3D lattice is thin, so all vertices are on the surface; there are no vertices inside the 3D structure.
The lattice size is given by (N, NB, NT, Ntet) = (5022, 24624, 34182, 14580), where the first three symbols
are the same as those for 2D lattice and Ntet is the total number of tetrahedrons. This 3D lattice is
topologically identical to the torus and has zero Euler number χ=N−NB+NT−Ntet=0. The height H
is fixed during the simulations for the calculation of the tensile force (Figure 3a). The diameter D of the
upper and lower boundaries is also fixed to D0, and this boundary condition protects the cylinder from
collapsing for small bending rigidity in the simulations. It should be emphasized that this constraint
for D on the boundaries is close to the experimental setup for the measurement of tensile force.(a)            (b)                            (c)��
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Figure 3. (a) The height H and diameter D0 of a cylinder, (b) the unit normal vector Ni of the tangential
plane at the vertex i, the tangential component σ||i of the variable σi, and (c) the unit normal vectors
ni of the triangles i(= 0, 1, 2, 3) used in S2 of Equation (4). σ is identified with −σ because of the
non-polar interaction.
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Here we should note that the 3D model defined on 3D body such as 3D cylinders is not used here,
because the stress–strain diagram does not have J-shaped behaviors at least on the cylinder of which
the diameter and height are comparable [32]. As we will see from the simulation results, large heel
diagrams are obtained only from the 3D model on thick cylindrical surface (Figure 2c), and diagrams
with convex are obtained only from 2D model on cylindrical surface (Figure 2b). It is unclear whether
these 2D and 3D models can be applied to an arbitrary J-shaped curve or not. At present, it seems very
hard for these models to reproduce curves that are far different from those in Figure 1a,b.

2.1. 2D Model

In this subsection, we describe the 2D FG model. Although this 2D model is the same as the one
in [33], we summarize the Hamiltonian here in a self-contained manner. The Hamiltonian is given by a
linear combination of four terms such that

S(σ, r) = λS0 + γS1 + κS2 + UB, (γ = 1)

S0(σ) = − (3/2)
∑

i j

(
σ||i · σ

||

j

)2

UB =
∑

i∈boundary

UB(ri), UB(ri) =

{
∞ (|zi −H| > δB or |zi| > δB)

0 (otherwise)
.

(1)

The variable r(∈ R3) is the vertex position and represents the position of a polymer, such as
collagen fibers. The direction of the polymer is represented by σ(∈ S2), which has a non-polar
interaction of the Lebwohl–Lasher type [35] described by S0; hence, σ is identified with −σ. We should
note that the edges of the triangles do not always represent linear polymers or polymer networks [36].
The triangles are simply introduced for the discretization of 2D materials [37–42]. Indeed, the triangle
edges play a role as local coordinate axes for the discretization of the Hamiltonian. The variable σ||i in
S0 is defined by

σ||i = σi − (σi ·Ni)Ni, (2)

which is a component of σi parallel to the tangential plane at the vertex i (Figure 3b). This tangential
plane is determined by its unit normal vector Ni (Figure 3b), which is defined such that

Ni =

∑
j(i) A j(i)n j(i)∣∣∣∑ j(i) A j(i)n j(i)

∣∣∣ (3)

where A j(i) and n j(i) denote the area and the unit normal vector of the triangle j(i) sharing the vertex i,
respectively (Figure 3c).

The Gaussian bond potential S1 and the bending energy S2 are given by

S1 =
∑

∆

(
γ12`

2
12 + γ23`

2
23 + γ31`

2
31

)
, `2

i j = (ri − r j)
2

S2 =
∑

∆

[κ12 (1− n0 · n3) + κ23 (1− n0 · n1) + κ31 (1− n0 · n2)]

γ12 =
1
6

(
v12

v13
+

v21

v23

)
, γ23 =

1
6

(
v23

v21
+

v32

v31

)
, γ31 =

1
6

(
v31

v32
+

v13

v12

)
κ12 =

1
6

(
v13

v12
+

v23

v21

)
, κ23 =

1
6

(
v21

v23
+

v31

v32

)
, κ31 =

1
6

(
v32

v31
+

v12

v13

)
.

(4)
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In these expressions, `i j is the length of bond i j connecting the vertices i and j, and ni is a unit
normal vector of the triangle i. The coefficient γi j in S1 is defined by using vi j, which is given by

vi j =
∣∣∣σi · ti j

∣∣∣ , ti j =
~̀i j∣∣∣`i j

∣∣∣ , ~̀i j = r j − ri. (5)

(see [32] for more detailed information on the discretization of S1 and S2). The quantities γi j(=γ ji) and
κi j(=κ ji) are considered as the position- and direction-dependent surface tension and bending rigidity,
respectively. The surface tension coefficient γ is fixed to γ=1 for simplicity and is not used henceforth.

The potential UB allows the boundary vertices to move vertically in the z-direction within a small
range ±δB, which is fixed to the mean bond length. This constraint does not influence the results in the
limit of N→∞ because δB/H is negligible in this limit

δB

H

(
=

mean bond length
height of cylinder

)
→ 0 (N→∞), (6)

since the mean bond length is independent of N, while H is proportional to N. The reason for this
constraint UB is assumed to be avoiding a strong and non-physical force, which is suspected to appear
when σi aligns with the z-direction on the boundary. If σi on the boundary aligns with the z-direction
without UB, the corresponding vi j becomes vi j→ 0 because of the definition of vi j in Equation (5).
Therefore, the corresponding γ jk becomes γ jk→∞ and hence S1→∞. In this situation, the variable σi
never aligns with the z-direction, so UB is necessary for the well-definedness of the model.

The partition function is given by

Z2D(λ,κ; H) =
∑
σ

∫ 2N1∏
i=1

dri

N−2N1∏
i=1

dri exp [−S(σ, r)] (7)

where H is the height of the cylinder and is fixed during the simulation (Figure 3a).
∫ ∏2N1

i=1 dri denotes
the 1D integrations of the vertices on the boundaries, where N1 is the total number of vertices on the
upper and lower boundaries. The 2N1 vertices are allowed to move along the circles of radius D0, so
the corresponding integration effectively becomes one-dimensional. The total number of remaining
vertices is N − 2N1, and the positions of these vertices are integrated out by the 3D integrations
represented by

∫ ∏N−2N1
i=1 dri.

2.2. 3D Model

The 3D model Hamiltonian is defined on the 3D lattice discretized by the tetrahedrons shown in
Figure 4a. Although the Hamiltonian is almost the same as that in [32], we briefly describe it in the
outline below. The model is defined without the self-avoiding potential for the “surfaces” (not for the
inside of the structure), and this is the only difference between the models in this paper and in [32].
The surface self-avoiding potential is a non-local potential and is time-consuming for simulations. We
expect that the results are not strongly influenced by whether this self-avoiding interaction is included
or not because the upper and lower boundaries are fixed and the surface always remains relatively
smooth. This is also expected for the 2D model, which has no self-avoiding potential.
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Figure 4. (a) A tetrahedron with vertices (1, 2, 3, 4) and an internal angle φi of a triangle and (b) the
variable σi and the unit tangential vector ti j of the bond connecting the vertices i and j. The σi and ti j

are used to define vi j in Equation (5).

The Hamiltonian S(r, σ) is defined by a linear combination of five different terms:

S(r, σ) = λS0(σ) + S1(r, σ) + κS2(r) + U3D + UB

S0(σ) =
1
2

∑
i j

[
1− 3(σi · σ j)

2
]

S1 =
∑

i j

Γi j`
2
i j, Γi j =

1
4N̄

∑
tet

γi j(tet)

S2(r) =
∑

i

[1− cos(φi −π/3)]

U3D =
∑
tet

U3D(tet), U3D(tet) =
{

0 (Vol(tet) > 0)
∞ (otherwise)

.

(8)

The variable r(∈ R3) is the vertex position of a tetrahedron, and σ(∈ S2) denotes the directional
degrees of freedom of polymers exactly the same as in the 2D model. Each term shares the same role
with the corresponding term in the 2D model. The definition of the Lebwohl–Lasher potential S0 is
slightly different from that of S0 in Equation (1), but the role of this term in the 3D model is identical to
that of S0 in the 2D model. The definition of S1 is also slightly different from the 2D case; however, the
continuous description of S1 is the same (see [32]). In the coefficient of Γi j, N̄ is defined by

N̄ =
1

NB

∑
i j

ni j (9)

where ni j is the total number of tetrahedrons sharing the bond i j and NB(=
∑

i j 1) is the total number
of bonds. The γi j(tet) in S1 is given by

γ12 =
v12

v13v14
+

v21

v23v24
, γ13 =

v13

v12v14
+

v31

v32v34
, γ14 =

v14

v12v13
+

v41

v43v42

γ23 =
v23

v21v24
+

v32

v31v34
, γ24 =

v24

v23v21
+

v42

v41v43
, γ34 =

v34

v31v32
+

v43

v41v42

(10)

where the numbers 1, 2, 3, 4 denote the vertices of the tetrahedron in Figure 4a. In these expressions for
γi j, the symbol vi j is defined by the same expression as in Equation (5) using σi and the unit tangential
vector ti j along the tetrahedron edge i j (Figure 4b).

The term S2 in Equation (8) is different from that of the 2D model in Equation (1); however, the
role of S2 in Equation (8), i.e., to keep the tetrahedron shape almost regular for positive κ values, is
the same as that in the 2D model. The symbol φi is the internal angle of triangles (Figure 4a). The
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role of the potential U3D is to protect the tetrahedron volume from being negative. This potential U3D

introduces a repulsive interaction between the vertices so that the tetrahedron is hardly collapsed,
so this U3D shares the same role with S2 in part. For this reason, the tetrahedron hardly deforms
for positive κ values, so we assume small negative κ values in the simulations to give the J-shaped
diagrams a large strain. The potential UB is exactly the same as in Equation (1) for the 2D model, and
for this reason, its definition is not written in Equation (8).

The partition function Z3D can also be defined for the 3D model; however, its description is exactly
the same as Z2D in Equation (7) except for the actual number N1 for the boundary vertices. To avoid
redundancy, it is not written here.

2.3. Formula for Stress Calculation

In both the 2D and 3D models, the stress in the stress–strain diagram is calculated from the
principle of scale invariance of the partition function dZ/dα|α=1=0 (for simplicity, the subscript 2D in
Z2D is not written henceforth) [43]. This invariance simply originates from the fact that the integrations
in Z are independent of its expression for r, the position of the material.

If we change r to αr with a positive number α, we have the scaled partition function such that

Z(α; Ap(α)) = α3N−4N1
∑
σ

∫ 2N1∏
i=1

dri

N−2N1∏
i=1

dri exp [−S(σ,αr)] , (11)

where Ap is the projected area of the surface and N1 is the total number of boundary vertices, as
mentioned in the previous subsection. The expression Z(α; Ap(α)) implies that Z depends both
explicitly and implicitly on α. In the Hamiltonian S(σ,αr), the only term that depends on α is S1:
S1(α)=α2S1. We should note that the coefficient α3N−4N1 in the right hand side of Equation (11) comes
from the 3D and 1D integrations such that α3N−4N1 =α3(N−2N1)α2N1 .

From the abovementioned scale invariance of Z, we have d log Z/dα
∣∣∣
α=1=0 and

3N − 4N1 − 2γ〈S1〉 − 2
Ap

Z
∂Z
∂Ap

= 0. (12)

For the last term on the left hand side, we assume that Ap(α)=α−2Ap for the dependence of Ap(α)
on α because the projected area Ap is kept fixed under the scale change r→αr for the evaluation of
the tensile stress τ (Figure 5a). Moreover, to evaluate ∂Z/∂Ap on the left hand side of Equation (12),
we naturally assume that the surface is sufficiently expanded. Under this condition, the free energy F
of the surface is given by

F = τ

∫ Ap

A0

dA = τ(Ap −A0) (13)

where A0 is the area of the surface corresponding to the zero-tensile force [43]. Thus, we have the
partition function Z=exp(−F). Inserting this Z into Equation (12), we have

τ =
2〈S1〉 − 3N + 4N1

2Ap
, Ap = πD0H (14)

where D0 is the diameter of the boundary. We should note that A0 = πD2
0, where the initial height is

given by H=D0. This surface tension τ in Equation (14) is called the frame tension because τ depends
only on the area of the frame on which the surface spans. We should note that the formula for τ of
the 3D model is the same as Equation (14) for the 2D model. This is because the thickness of the 3D
cylinder the for 3D model shown in Figure 2c is sufficiently thin that this 3D cylinder is regarded as a
2D surface.
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Figure 5. (a) An illustration of the change in the projected area α−2Ap, which restores the original Ap

and remains unchanged under the scale change r→αr in the partition function, and (b) a possible
folding of the surface (which is magnified; this type of folding is always suppressed).

The reason why D0 = H is assumed in the configurations for τ = 0 is because the lattice is
constructed under the condition D0=H with a regular triangle (see Figure 2b,c). The edge length is
expected to be uniform and independent of the direction in the initial undeformed configuration if
D0 =H is satisfied, at least for λ → 0. Therefore, we have no reason to fix D0, for example, D0 , H,
although a non-zero λ is assumed in both the 2D and 3D simulations.

2.4. Comparison with Experimental Data

To compare the simulation result τ in Equation (14) with the experimental data, we have to
change simulation units to physical units. For this purpose, we explicitly use kBT and the lattice
spacing a [33,44], which are suppressed by kBT=1 and a=1 in the expression for τ in Equation (14).
All quantities that have units of length are multiplied by a, and the Boltzmann factor exp(−F) is
replaced by exp(−βF), where β=1/kBT. It should also be noted that τ is the surface tension and has
units of [N/m], whereas the experimentally measured stress has units of [N/m2]. Because of this
difference in the units, the simulation data τ should be divided by a when comparing them to the
experimental data. Thus, we have the expression τsim for the simulation data with units of [N/m2]:

τsim =
kBT
a3 τ =

(
4× 10−21

a3

)
τ [N/m2]. (15)

In this expression, a is varied to modify the simulation data τ, and the modified τsim can be
compared to the experimentally observed stress τexp. The detailed information of a will be presented
for each τexp in the presentation section.

The Young’s modulus E can also be determined from the linear region of the simulation data τ by
dividing τ by the strain. The obtained E is modified by the same factor in τsim such that

Esim =

(
4× 10−21

a3

)
E [N/m2]. (16)

This Esim is directly compared to the experimental Young’s modulus Eexp, which is called the
stiffness and determined from the linear region of τexp [5,8–10]. The value of a in this Esim is the same
as that of a in τsim. Therefore, Eexp is not independent of τexp. For this reason, we compare only τexp

with τsim.
We should note that, among the parameters used in the simulation, not all of them are always

comparable to physical quantities. The only quantities that can be compared to the experimental ones
are τsim and Esim. In fact, we assume that κ is negative in the 3D FG model. The reason for the negative
κ is that the tetrahedrons hardly deform for positive κ values, i.e., where the obtained diagram has no
toe region, as mentioned above. More detailed information on this negative κ will be described in the
presentation section.



Polymers 2018, 10, 715 9 of 18

2.5. Monte Carlo Technique

The standard Metropolis MC technique is used to update the variables r and σ [45,46]. The
variable σ is updated by using three different uniform random numbers, and the new variable σ′ is
defined independently of the old σ. The variable r is updated such that r→ r′= r+δr with a small
random vector δr. This vector δr is randomly generated in a sphere of radius d0, which is fixed for an
approximately 50% acceptance rate.

On the upper and lower boundaries, the new position r′ is constrained such that the diameter of
the boundaries remains constant at D0, as mentioned above. For the 3D model, two different diameters,
Din

0 and Dout
0 (= D0), are assumed: one for the inner cylinder and the other for the outer one. The

difference is given by Dout
0 −Din

0 =
√

3〈`〉, where 〈`〉 is the mean bond length of the initial configuration
for the simulation. In the discussions below, we use only D0 for simplicity. The constraint on the
diameter allows the vertices to move only along the circles of diameter D0. Due to this free movement
of vertices along the circle, it is possible that the surface will become folded for a range of relatively
small κ values when the height H is sufficiently small and close to D0 (Figure 5b). However, as will be
seen in the snapshots of the surfaces, no folding is expected.

Another constraint is imposed on the boundary vertices by UB in Equation (1). Under this UB, the
vertex positions can move in the vertical direction (⇔ z-direction) within the small range δB. This δB is
fixed to the mean bond length, as described in the Section 2.1.

The lattice size for 2D simulations is (N, NB, NP)= (10584, 31416, 20832), and the size for 3D
simulations is (N, NB, NT, Ntet) = (9761, 48124, 66965, 28602). For this 3D lattice, which is constructed
using the same technique as the lattice in Figure 2c, there are no vertices inside the structure, and all
the vertices are on the surface.

3. Simulation Results

3.1. Comparison with Experimental Data

We show in Figure 6 the experimental stress–strain data of snake’s skin reported in [5]. The skin
of snakes, which is composed of collagen fibers and elastin, has a relatively large deformation, as
expected from their typical body elongation and bending. The units of the stress τexp are [MPa], and
the snake skin is relatively strong. The toe region ranges from 50% to 125% depending on the body
position from which the skin is sampled. The sampling positions of the data (Exp) in Figure 6a,b are
40% and 60% distant from the snake’s snout, where 100% corresponds to the length between the snout
and the vent. The toe length of the plotted data in Figure 6a,b is relatively large and almost equal to
100% and 125% in units of strain. These curves are typical examples of diagrams with an S-heel, as
mentioned in the Introduction, and they are composed of two different linear lines. The parameters
used for the simulations and the value of a for the fitting of τsim in Equation (15) are summarized
below in Table 1.

The stress τsim in the 2D model in Figure 6a is calculated by Equation (15) using the simulation
data τ, and τsim is found to be almost identical to the experimental data τexp. The parameter λ in
Equation (1) is fixed to λ=1, and the bending rigidity κ is varied for the simulations of the 2D model in
this paper. The assumed bending rigidities are κ=0.6 and κ=0.55 for the 2D simulations in Figure 6a,b,
respectively. The lattice spacing a in Equation (15) used for the fitting is a=0.83× 10−9 in Figure 6a and
a=0.85× 10−9 in Figure 6b, both of which are larger than the Van der Waals radius (∼1 × 10−10 [m]),
i.e., the typical size of atoms. This is the reason why we call the FG model a coarse-grained model.
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Figure 6. Experimental data τexp (Exp) and the simulation data τsim (sim) for snake skin with a toe
region of (a) 125% and (b) 100% in units of strain [5]. These experimental data are examples of diagrams
with an S-heel, and the 2D simulation results are used for comparison with these experimental data.

We should comment on the reason why the simulation data at the toe region are slightly larger
than the EXP data in Figure 6a,b. One of the reasons for the deviation comes from an error in the
simulations, because the factor kBT/a3 in Equation (15), which is multiplied to the simulation result τ,
is of the order 105, which is very large. For this reason, a small error in τ at the toe region is magnified.
In fact, to make τ=0 at H/H0=1, we should carefully find H0 with suitable parameters κ and λ. This
H0 is actually not so easy to find especially for the large τexp cases such as those in Figure 6a,b.

The second and third sets of experimental data are of soft biological materials such as diaphragm
and arteries, to which the 2D model data are not always well fitted. The data plotted in Figure 7a
are those obtained in the study of the mechanical diaphragm in a model of muscular dystrophy [6].
The data in Figure 7b are the diagram measured along the circumferential axis of arteries [7]. In [7],
Arroyave et al. analyzed the experimental data by using continuous mechanical models (Fung’s Model
and Holzapfel’s Model). It was found that abdominal aortas can support higher stress before rupture
due to the presence of collagen in the samples. It is also possible to understand that high percentages
of elastin are the reason for the large strain in all groups. We should emphasize that the FG modeling
technique also successfully reproduces the experimental results, although the experimental data are
obtained by using a biaxial loading apparatus [6,7]. 0 1 201 H/H0-1τ(b) :Exp [Ref.[5]:2D sim:3D sim (100%)(MPa)0 0.5 1 1.5024 H/H0-1τ(a) :Exp:Ref.[4]:2D sim:3D sim (100%)(10kPa)

Figure 7. The experimental diagrams of soft biological materials such as (a) skin and (b) arteries
reported in [6,7]. These experimental data are examples of diagrams with an L-heel, and the 2D
simulation data slightly deviate from the experimental data in both (a) and (b).
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The curvature of the heel region in both experimental curves plotted in Figure 7a,b is relatively
small compared to that in the experimental data shown in Figure 6a,b. For this reason, the fitting of the
simulation data of the 2D FG model is not good for these data, while the 3D simulation data are well
fitted except in the failure region.

The next experimental data reported in [8] are of the periodontal ligament of the molars of rats
at (a) 6 months and (b) 12 months of age (Figure 8a,b. In the case of this material, the strain is over
250% and is larger than that in the previous examples shown in Figures 6 and 7. Moreover, for the
large-strain region, the curve of the experimental data starts to bend and becomes convex upwards.
The simulation data of 2D model are well fitted even for the convex part (except the failure region),
although the 3D simulation data start to deviate from the experimental data in the convex region
in Figure 8a. We should emphasize that only the 2D FG model produces results that are in good
agreement with the experimental data. In fact, the results of the canonical model are always linear for
the large-strain region, and they cannot be fit to the experimental curve with the convex part. This is a
non-trivial difference between the FG model and the canonical surface model, as is the fact that the
diagram of the canonical surface model becomes linear at a certain value of κ, while the diagram of the
FG model is always J-shaped independent of κ [33].0 1 200.51 H/H0-1τ(a) :Exp:Ref.[6] (100%)(MPa) :2D sim:3D sim 0 1 200.51 H/H0-1τ(b) :Exp:Ref.[6] (100%)(MPa) :2D sim:3D sim

Figure 8. The experimental data are of the periodontal ligament of the molars of rats at (a) 6 months
and (b) 12 months of age [8]. The strain of the toe region is approximately 50%, which is relatively
short. For the large-strain region, the experimental data are slightly convex upwards, which is well
fitted by the 2D simulation data except in the terminal failure region.

The final examples of experimental data shown in Figure 9a,b are of the passive tension vs. titin
strain of rat muscles, namely, skeletal and cardiac muscles [9]. Granzier et al. studied the mechanical
properties of cardiac muscle by investigating passive tension and stiffness in a stretch-and-release
process. They estimated the contribution of collagen, titin, microtubules, and intermediate filaments to
the tension and the stiffness by gluing experiments after chemical treatments. They concluded that
titin and collagen are the best two candidates for explaining the experimental results over a wide range
of the lengths. These materials are very soft and flexible, and the titin strain is very large and ranges
from 400% to 700%. The experimental curves are convex upward in the large-strain region, and the
convex shape is more clear than that in the data shown in Figure 8a,b. In addition to the previous data
with the convex part, the results of the 2D FG model better fit the experimental data.
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Figure 9. The stress vs. titin strain of animal’s (a) cardiac and (b) skeletal muscles, where the range of
the toe region extends to 100 and 150% [9] and the curves have a convex part in the large-strain region.
The strains are very large (up to 700%) compared to those of the other materials studied in this paper.

3.2. Dependence of the Results on the Simulation Parameters

Here we comment on the dependence of the results on the parameters used in the simulations.
The parameters assumed in the simulations are summarized in Table 1. All values of a are sufficiently
larger than the Van der Waals radius. These are the microscopic parameters and do not always
correspond to actual physical quantities, as mentioned in Section 2.4.

Table 1. The parameters assumed for the 2D and 3D models. The units of the parameters are λ[β], κ[β],
H0[a](=D0[a]) and a[m], where β=1/kBT.

Model λ κ H0 a

Figure 6a 2D 1 0.6 14 0.83× 10−9

Figure 6b 2D 1 0.55 11.7 0.85× 10−9

Figure 7a 2D 1 0.6 15 0.52× 10−8

3D 0.4 −0.05 8 0.75× 10−8

Figure 7b 2D 1 0.6 13 0.17× 10−8

3D 0.45 −0.05 7.6 0.25× 10−8

Figure 8a 2D 1 0.6 15.5 0.23× 10−8

3D 0.4 −0.05 8.6 0.34× 10−8

Figure 8b 2D 1 0.6 16 0.23× 10−8

3D 0.4 −0.05 8.6 0.33× 10−8

Figure 9a 2D 1 0.6 13.5 0.52× 10−8

3D 0.35 −0.1 8.3 0.83× 10−8

Figure 9b 2D 1 0.5 9.8 0.44× 10−8

First of all, the value of τ (in Figures 6–9) is controllable by a as described in Section 2.4, while
the strain H/H0−1 is not because it is dimensionless. Moreover, the behavior of τ in the large strain
region is almost linear, and this linear behavior is almost independent of the parameters. For these
reasons, the shape of J curve is determined mainly by the length of zero stress region or the plateau
between the toe and heel. This plateau length is determined mainly by the initial height H0(=D0),
and it is influenced by λ only slightly. In the simulations, λ is fixed to relatively large values such
that the system is in the intermediate phase between the isotropic and aligned phases, where σ locally
aligns to a direction spontaneously determined in the cylinders of H=H0 for τ=0. This locally aligned
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direction of σ turns to a uniformly aligned phase along the height direction when the height H becomes
sufficiently larger than H0.

The role of κ in 2D model is to suppress the bending deformation of surfaces, so no effect is
expected on τ, at least for sufficiently large H, where the surface is smooth along the height direction.
In contrast, the fluctuation of surfaces of height H/H0'1 depends on κ. Indeed, the fluctuation of such
surfaces H/H0'1 is suppressed if κ is sufficiently large, while the fluctuation is not suppressed if κ is
small. This implies that the value of H0 itself is strongly dependent on κ, and H0 is closely connected
to the plateau length. Therefore, κ is crucial to the shape of J curve in the 2D model at least. Indeed, we
find from Table 1 that the initial height H0 can be fixed in the range 13 ≤ H0 ≤ 16 for κ=0.6. However,
when κ decreases to κ=0.55 and κ=0.5, H0 also becomes considerably smaller than this range of H0.

The stiffness of the 3D model can also be determined by κ, but it also comes from U3D, and this is
more important in the limit of κ→0. Indeed, the thermal fluctuation of vertices protects the tetrahedron
volume from being zero under U3D, and as a consequence the volume always remains positive and
relatively large even when κ→0. From this effective stiffness, the plateau length becomes very small
or almost zero, because no fluctuation is expected in such a 3D cylinder. On such a smooth cylinder,
the bond length starts to increase even when H is increased only slightly from H0, and this leads to an
increase of τ. For this reason, κ should be negative. If κ is negative, it is expected that the 3D cylinder
starts to fluctuate, and the plateau length then becomes non-zero. For this reason, κ is fixed to small
negative such as κ=−0.05 or κ=−0.1.

To summarize, the shape of J curve is determined by the plateau length, and it mainly depends on
the stiffness of materials.

3.3. Behavior of the Variable σ and Snapshots

To observe how the variable σ aligns, we calculate the order parameter M of σ by

M =
3
2

(
〈σ2

z〉 −
1
3

)
, (17)

which represents the alignment of σ along the z axis [35]. We also calculate the eigenvalues of the
tensor order parameter

Qµν =
3
2

(
〈σµσν〉 −

δµν

3

)
. (18)

The largest eigenvalue Σ1 of Qµν and M corresponding to several simulation results is plotted in
Figure 10a,b. For the small-strain region, Σ1 and M slightly deviate from each other; however, they are
exactly the same for the large-strain region. This implies that σ aligns in the z-direction to which the
tensile force is applied.

The problem is what type of configuration of σ appears for the small strain region H'H0, where
Σ1 and M are almost identical to each other. To consider this problem, we assume a configuration that
σ aligns parallel to the boundary and uniformly encircles the cylinder. It is no wonder that such an
anisotropic configuration appears for H'H0, since λ is fixed to relatively large such as λ= 1 in the
2D model. If this configuration appears, 〈σ2

z〉=0 is expected, and it is also expected that the largest
eigenvalue Σ1 of Qµν is Σ1=0. The results in Figure 10a,b show Σ1'0 for H→H0 as mentioned above.
This indicates the possibility that the configuration of σ is uniformly aligned at H→H0. We should
check this with the snapshots below.

Snapshots of the surfaces are shown in Figure 11a–h, where the scales of the figures are different
from each other because the height difference is very large. We find that the variable σ aligns only
locally not uniformly at least in the configurations at H→H0 in Figure 11a,e. This implies that σ changes
in a similar manner to the directional degree of freedom of polymers, which undergo a transition from
a locally ordered polydomain phase to a globally ordered monodomain phase if it is expanded. We
should emphasize that the locally ordered configuration is globally random in Figure 11a,e. It is also
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expected that this locally ordered phase is consistent with the fact that linear objects such as collagen
fibers in biological materials are almost aligned even for the released and zero-strain configurations.

0 2 4

0

0.5

H/H0-1

M

(a)

Fig.9(b)

2DFig.9(a)Σ1

(100%)

:M
:Σ1

0 1 2

0

0.5

H/H0-1

M

(b)

3D

Fig.7(a)

Fig.8(a)
Σ1

(100%)

:M
:Σ1

Figure 10. The open symbols in (a) 2D and (b) 3D simulations represent the order parameter M
defined by Equation (17), and the solid symbols represent the largest eigenvalue Σ1 of the tensor order
parameter defined by Equation (18).(e)    (f)      (g)         (h)(a)        (b)      (c)                     (d)
Figure 11. Snapshots of cylindrical surfaces of the 2D model (a–d) and 3D model (e–h) corresponding
to the simulation data in Figure 9a. The heights of surfaces are (a) H(=D0) =14, (b) H=32, (c) H=52,
and (d) H= 78 for the 2D model and (e) H(=D0) = 8.3, (f) H= 12, (g) H= 24, (h) H= 40 for the 3D
model. The scales of the figures are different from each other. The (red) burs on the surface represent
the variable σ.

4. Summary and Conclusions

4.1. On the FG Modeling

Finally in this subsection, we should comment on the FG model. In the FG modeling, the geometry
inside the materials is modified by replacing the Euclidean metric function by Finsler metric [31–34],
and no interaction energy between polymers is “explicitly” introduced except the Lebwohl–Lasher
type potential [35]. As a result of this geometry modification, the interaction between the direction
and position of polymers is “implicitly” introduced. For this reason, the FG modeling technique is
completely different from the conventional ones, in which an interaction Hamiltonian describing the
phenomenon is necessary from the statistical mechanical perspective; to define a model is to introduce
an interaction energy in the Hamiltonian. Therefore, for the modeling of complex phenomena, the
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FG modeling technique has a potential advantage over the ordinary modeling technique, because
unknown and complex interaction Hamiltonian is unnecessary.

Hence, the FG modeling technique allows us to study J-shaped diagrams without going into
details of the interaction. As a consequence, information on the details of molecular mechanism is
hardly obtained. However, it is possible to obtain information on the mechanical properties such as
surface tension and bending stiffness of the constituent materials via the assumed parameters γ and κ
in Equation (1). The parameter λ is understood as a strength of alignment of polymers, though it is not
always considered as a mechanical property. Thus, we consider that information on these mechanical
properties of the constituents is useful for a design of new materials, especially in the case of materials,
to which a constant response to external mechanical stimuli is requested [3,4].

We should comment on the reason why we use the FG model instead of the canonical surface
models. Here we denote the FG model with Euclidean metric by the canonical model. The 2D canonical
model is nothing but a surface model for membranes [47–52], and here we compare the FG model
only with such canonical surface model for membranes or its 3D extended model. The problem is
whether or not the results of the canonical 2D and 3D models are identical to those of the FG models.
The answer to this question is that the FG model is more suitable than the canonical model. In fact,
almost the same results are obtained for some limited range of κ; however, the stress–strain diagram
obtained from the canonical 2D model for a certain finite value of κ is not J-shaped, as reported in [33].
Another reason is that only the FG model reproduces the diagrams that are convex upwards for the
large-strain region. These are the reasons for why we use the FG modeling technique to analyze the
experimental J-shaped diagrams.

In addition to these features of FG modeling, it is important to note that the mechanical strength
of real membranes, e.g., the surface tension represented by γ (which is fixed to γ=1 in this paper),
becomes dependent on the position and direction on the surface [5,7]. This property is the origin of
why the FG model is considered more suitable for actual biological membranes or polymeric sheets
than the standard surface models [31]. In the 2D and 3D models, a Finsler metric is assumed in the
Gaussian bond potential, and this Finsler metric plays a role in introducing the interaction between the
variables σ and r, which correspond to the polymer direction and position, respectively. As a result
of this modeling, the mechanical strength, such as the surface tension, effectively depends not only
on the position but also on the direction inside the material. Indeed, the Gaussian bond potential
S1 =

∑
i j `

2
i j of the canonical model is changed to S1 =

∑
i j γi j`

2
i j in the 2D FG model (see in Equation

(4)) and S1=
∑

i j Γi j`
2
i j in the 3D FG model (see in Equation (8)) with the effective tensions γi j and Γi j,

where the sum over triangles
∑

∆ of S1 in Equation (4) can be rewritten by using the sum over bonds∑
i j. This is the main advantage of the FG model over its canonical counterpart.

Another feature of the FG model is that it is constructed by extending the linear geometry for
polymers to a 2D surface or a 3D body. In other words, the FG model is a 2D or 3D extension of
Doi–Edwards model for polymers [36]. Indeed, the discrete expressions of S1 in Equations (4) and (8)
is considered as an extension of the Gaussian chain model, which is mathematically supported by the
central limit theorem in probability theory for the variable of the chain extension using the notion of
coarse graining [36,53].

4.2. Concluding Remarks

We studied the large-strain J-shaped diagrams of biological membranes such as animal skin,
muscles, and arteries by 2D and 3D Finsler geometry (FG) models. These materials are very soft,
and the zero-stress region of the diagrams ranges from approximately 50% to 150%. Because of this
zero-stress region, the diagram is called J-shaped. The J-shaped diagram is roughly composed of two
linear lines except the failure region: one is the toe region, and the other is a linear region. The region
where these two lines are smoothly connected is called the heel. Based on the word “heel” we can
divide the experimental large-toe diagrams into two groups: diagrams with a small heel (S-heel) and
diagrams with a large heel (L-heel). The diagrams with an S-heel are consistent with the results of the
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2D model, while the diagrams with an L-heel are well fitted by the results of the 3D model. Moreover,
the experimental diagrams with a convex part in the large-strain region can be fitted by the 2D FG
simulation data. These observations show that the FG modeling technique is applicable for analyzing
J-shaped diagrams of biological membranes.

To be more precise, we show that the curve with an S-heel is successfully reproduced by our
two-dimensional (2D) FG model, while the curve with L-heel is not described by the 2D FG model
but can be reproduced by a 3D FG model. The large strain curves with a convex part are found
to be well-fitted by 2D FG model data. Our results in this paper indicate that the FG modeling
technique can be used to analyze a wide range of J-shaped stress–strain diagram of biological materials
such as tendon, skin, muscles, and arteries. Since the main component that maintains the mechanical
strength of these materials is a polymer such as collagen fiber, the polymeric degrees of freedom can be
coarse-grained and are simply replaced by the variable σ(∈ S2: unit sphere) in the FG model. This
simple coarse graining is key to understanding the mechanical properties of these biological materials
mathematically.

The fact that the FG model was successfully applied to large-strain J-shaped diagrams indicates
that highly non-linear large-strain diagrams of polymers, including those with rubber elasticity, can
also be targeted [36,54]. As demonstrated in this paper, FG modeling describes the “strain induced
alignment of polymer.” By extending the model slightly or by using 3D body lattices, we can apply the
model to large-strain polymeric materials such as rubbers, where the strain-induced crystallization (SIC)
plays an important role in their mechanical property [55]. This will be a biology-inspired challenge in
understanding new materials and their possible mechanical properties [3,4].
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