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Abstract: Coronavirus disease 2019 (COVID-19) is the most devastating infectious disease in the 21st
century with more than 2 million lives lost in less than a year. The activation of inflammasome in
the host infected by SARS-CoV-2 is highly related to cytokine storm and hypercoagulopathy, which
significantly contribute to the poor prognosis of COVID-19 patients. Even though many studies
have shown the host defense mechanism induced by inflammasome against various viral infections,
mechanistic interactions leading to downstream cellular responses and pathogenesis in COVID-19
remain unclear. The SARS-CoV-2 infection has been associated with numerous cardiovascular disor-
ders including acute myocardial injury, myocarditis, arrhythmias, and venous thromboembolism.
The inflammatory response triggered by the activation of NLRP3 inflammasome under certain car-
diovascular conditions resulted in hyperinflammation or the modulation of angiotensin-converting
enzyme 2 signaling pathways. Perturbations of several target cells and tissues have been described in
inflammasome activation, including pneumocytes, macrophages, endothelial cells, and dendritic cells.
The interplay between inflammasome activation and hypercoagulopathy in COVID-19 patients is an
emerging area to be further addressed. Targeted therapeutics to suppress inflammasome activation
may have a positive effect on the reduction of hyperinflammation-induced hypercoagulopathy and
cardiovascular disorders occurring as COVID-19 complications.
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1. Introduction

Host immune response to microbes and complex diseases is a critical systemic defense
process of the human body. The innate immune system is the first line of defense that identi-
fies stimuli experienced by the host. It involves immune cells and recognizes foreign agents
through different pattern recognition receptors (PRRs), including toll-like receptors (TLRs),
C-type lectin receptors, RIG-like helicase (RLR), cytosolic DNA sensors, and members of
the nucleotide-binding oligomerization (NOD)-like receptor (NLR) family [1,2]. Containing
a NOD domain, a leucine-rich repeat (LRR) domain, and a pyrin domain, the NLR family
pyrin domain containing 3 (NLRP3) protein is the most extensively characterized NLR to
date, although there are numerous NLRs identified so far [3,4]. Inflammasomes are large
multiprotein intracellular complexes that play a central role in the innate immune response
of the host [5]. Inflammasome complexes are formed in the cytoplasm of innate immune
cells mainly of the myeloid lineages, such as macrophages and dendritic cells, in reaction to
pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns
(DAMPs). Numerous inflammasome forms have been identified so far that comprise a sen-
sor molecule, an adaptor molecule known as ASC (apoptosis-associated speck-like protein
containing a caspase activation and recruitment domain (CARD)), and pro-caspase-1 [1].

Activation of the inflammasome is a crucial step in the regulation of an innate im-
mune response. The process of inflammasome activation is caspase-dependent, involving
canonical or non-canonical immune regulation of different caspase types. The canonical
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pathway is caspase-1 dependent. Caspase-1 converts proinflammatory cytokines into their
functional counterparts (mainly pro-IL-1β and pro-IL-18 into IL-1β and IL-18, respectively).
Following activation, these proinflammatory cytokines induce inflammation in the host,
as part of the response, against microorganisms or foreign substances. Active caspase-1
additionally triggers pyroptosis, an inflammatory form of cell death by which host immune
cells eliminate foreign invaders [1,3,6]. On the other hand, the non-canonical pathway
involves caspase-4 and caspase-5, which directly trigger pyroptosis. The involvement
of inflammasomes in multiple viral, bacterial, and parasitic infections is a novel target
area of research on the molecular mechanisms underlying diseases. Several reports have
confirmed the immunomodulatory roles of different inflammasomes in multiple viral
infections [7,8].

COVID-19 patients develop acute respiratory syndrome characterized by inflamma-
tion and pneumonia. The virus can be acquired in a number of ways. Oral saliva is also a
source of SARS-CoV-2, which may aggravate the problem in individuals with poor oral hy-
giene, including in children [9–11]. In severe cases (mainly in adults), uncontrolled cytokine
activity such as IL-1β, IL-6, and IL-8 contributes to excessive inflammatory responses that
can lead to ‘cytokine storm’ syndrome [12,13]. Inflammasomes are suggested to play an
active role in COVID-19 disease pathogenesis [14]. In view of the emerging regulatory
functions of these inflammasomes in thrombosis, the related molecular mechanisms and
signaling pathways, the behavior of inflammasomes in COVID-19 pathogenesis, the mech-
anisms underlying hypercoagulopathy, and the potential molecular targets, particularly
for cardiovascular disorders, are discussed in detail in this article.

2. Molecular Basis of Inflammasome Activation

In both the afferent and efferent arms of the immune response, macrophages are
significantly involved in the ingestion of foreign microorganisms (PAMPs) or endogenous
compounds (DAMPs) such as asbestos crystals, adenosine triphosphate (ATP), and uric
acid. Through complementary PRRs, macrophages initially recognize foreign or endoge-
nous substances. This process of detection assists in phagocytosis. PRRs are in contact with
the environment external to macrophages and dendritic cells, and can identify PAMPs.
Degraded lysosomes are released after absorption. The release of lysosomal content is
considered a critical mechanism for activation of inflammasomes although the poten-
tial direct link between inflammasome activation and lysosome release requires further
investigation [15,16].

The majority of inflammasomes characterized to date contain receptor sensor molecules,
which include NLR, NLRP1, NLRP3, NLRP6, NLRP12, and NLR family CARD domain con-
taining 4 (NLRC4). Other families of inflammasomes containing an absent in melanoma 2
(AIM2) protein, interferon gamma inducible protein 16 (IFI16), and pyrin have additionally
been identified. AIM2 is a member of the PYHIN family that recognizes double-stranded
cytoplasmic DNA (dsDNA) [1,3]. This PYHIN family protein is the only inflammatory
sensor that does not belong to the NLR family, despite sharing a number of structural
features. It is characterized by N-terminal pyrin domain (PYD) and a C-terminal hu-
man interferon-inducible nuclear protein with a 200-amino-acid repeat (HIN200) DNA-
binding domain [17].

A typical inflammasome complex comprises molecules or receptors of the inflamma-
some sensor, adaptor protein ASC, and caspase-1. Inflammasome activation may involve
multiple potential mechanisms, including phagolysosomal destabilization, generation of
reactive oxygen species (ROS), and induction of transmembrane ion fluxes, such as K+ and
Ca2+ (Figure 1) [15]. In macrophages, endogenous stimulation via DAMPs, such as crystals,
ATP, and nigericin, triggers ROS production, indirectly causing inflammatory pathway
activation. In response to DAMP recognition, NLRs undergo ATP-dependent oligomer-
ization and enlist ASC through PYD–PYD interactions. Pro caspase-1 is subsequently
recruited through ASC CARD, which is essential for its activation [18]. Typically, ASC is
localized in the nucleus of immune cells and redistributed to the cytosol in the presence
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of NLRs and caspase-1 during infection. As nuclear retention of ASC ultimately impairs
inflammasome-mediated IL-1β release, this step is necessary for the aggregate formation
and stimulates inflammasome activity. To support the formation of caspase-1 dimer, ASC
monomers are required to induce proximity-mediated autoactivation of caspase-1 [8].
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Figure 1. Mechanisms of inflammasome activation and clot formation. (A,B) TLR detects the presence of microbes (LPS)
and activates the NF-kB that initiates the priming phase by transcribing the pro-IL-1β. Then, coupled with endogenous
signals, the inflammasome components will be assembled and activate the procaspase-1. (C) Blood vessel damage, activated
platelets, and hypoxia-inducible factors have been shown in thrombosis activation. Macrophages and neutrophils migrate
and release their danger signals to the damaged vessels, including ROS, ATP, and dsDNA, contributing to the development
of inflammasome complexes. Activated caspase-1 in turn activates pro-IL-1β and IL-18. Active caspase-1 further activates
the GSDMD transmembrane protein associated with membrane pore formation, destabilization, and cell membrane rupture
(pyroptosis). Inflammation and pyroptosis are enhanced by activated caspase-1, leading to thrombosis. AIM2, after sensing
the dsDNA released from the pyroptotic cells, will form inflammatory complexes and cleave the procaspase-1 to become the
active caspase-1. MPs derived from activated cells contain TFs, which initiate the coagulation system and cause blood clot
formation. (D) Activated proinflammatory cytokines increase inflammation and cause cytokine storms and induce blood
clotting. AIM2, absent in melanoma 2; ATP, adenosine triphosphate; Ca, calcium; ASC, apoptosis-associated speck-like
protein containing a caspase recruitment domain; DAMPs, damage-associated molecular patterns; dsDNA, double stranded
deoxyribonucleic acid; GSDMD, Gasdermin D; HIF-1α, hypoxia inducible factor one alpha; IL-1β, Interleukin 1 beta; IL-18,
Interleukin18; LPS, lipopolysaccharide; MPs, microparticles; NET, neutrophil extracellular trap; NF-kB, nuclear factor kappa
light chain stimulation of activated B cells; NLRP3, nucleotide-binding oligomerization domain, leucine-rich repeat, and
pyrin domain containing 3 protein; PAMPs, pathogen-associated molecular patterns; ROS, reactive oxygen specious; TFs,
tissue factors; TLR, toll-like receptor.

Caspases are a family of cysteine proteases specific for aspartate, and act as primary
mediators of inflammation and apoptosis. Caspases are synthesized as inactive zymogens
and possess a variable-length pro-domain, followed by large (20 kDa) and small (10 kDa)
subunit active domains. Apoptotic initiator caspases (caspase-2, -8, -9, and -10), apoptotic
effector caspases (caspase-3, -6, and -7), and caspases involved in inflammatory cytokine
synthesis (caspase-1, -4, -5, and -12L/12S) are subdivided into three functional classes [19].
Among these molecules, caspase-1 is the most extensively characterized inflammatory
caspase and significantly implicated in the innate immune response.
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Activation of caspase-1 is necessary for maturation and release of proinflammatory
cytokines, primarily pro-IL-1β and pro-IL-18. Pro-IL-1β is expressed at low levels in resting
cells and requires activation by specific factors such as PRRs. Proinflammatory IL-1β is
an acute-phase response mediator that promotes immune cell inflammation, vasodilation,
hyperthermia, and extravasation [15]. IL-1β, also identified as an endogenous pyrogen,
is involved in cell proliferation, differentiation, and development [1]. IL-18 (interferon
gamma inducing factor) is an IL-18 gene-induced proinflammatory cytokine. The IL-18
precursor is present in virtually all healthy human and animal cells, unlike IL-1β. An
elevated level of IL-18 is correlated with the severity of the disease [20]. In the presence of
IL-12, it is found to activate Th1 cells to produce IFN-γ. IL-18 not only stimulates NK cells,
basophils, and mast cells, but it also plays a role in inflammation [21].

Caspase-1 can also cleave gasdermin D (GSDMD) protein, inducing a type of cell death
known as pyroptosis. Cell death occurs as a result of membranous pore formation, cytoplas-
mic swelling, and leakage of cytosolic content. Pyroptosis is caused by proinflammatory
signals and associated with inflammation, presenting a programmed caspase-1-dependent
means by which host cells clean up intracellular microorganisms [15]. Cells undergoing
pyroptosis release elevated levels of IL-1β and IL-18, and display DNA fragmentation
along with nuclear condensation [22]. AIM2 sensor proteins can also recognize the release
of dsDNA from pyroptotic cells. The ASC will be recruited through PYRIN–PYRIN interac-
tion through these sensing processes. The ASC intern can interact with caspase-1 via its
CARD domain, and activate caspase-1 [18]. AIM2 inflammasome regulates host immune
response by interacting with cytosolic dsDNA from bacteria and viruses [23].

In addition to NLRP3, other NLRs are being investigated for the regulation of the
innate immune response and their potential advantage as therapeutic targets in different
inflammatory conditions. The NLRP2 inflammasome is another multiprotein complex
comprising NLRP2, the adaptor protein ASC, and caspase-1 that interacts with the P2X7
receptor and pannexin-1 channel. Stimulation of human astrocytes with ATP results in
activation of the NLRP2 inflammasome, leading to the processing of inflammatory caspase-
1 and IL-1β [24].

3. Mechanisms of Blood Clotting Induced by Activated Inflammasome

Blood clot formation is the mechanism by which blood changes from a liquid to a gel
state. Coagulation progresses almost immediately after an injury occurs to the endothelial
lining of blood vessels [25]. Coagulation and inflammation are intimately interlinked, and
dysregulation of single components of such systems may impact the entire equilibrium,
resulting in a broad range of diseases that involve various forms of increased inflammation
and thrombosis. Inflammation initiates coagulation, suppresses the functional pathways
of natural anticoagulants, and impairs the fibrinolytic system. Inflammatory mediators
can elevate platelet count and reactivity, downregulate natural anticoagulant activities,
activate the coagulation system, promote the progression of coagulant response, and
impede fibrinolysis [26,27]. Similarly, clotting induces an increase in the inflammatory
response by releasing mediators from platelets and activated cells, thereby facilitating
cell–cell interactions that increase inflammatory responses [28,29].

Inflammasome-induced blood clotting may occur because of several interrelated
mechanisms including damage to the blood vessels, hypoxia, platelet activation, and proin-
flammatory cytokines. Endothelial cells (ECs) perform a range of critical roles in regulating
vascular functions [25]. Under various conditions, such as pathological inflammatory
and thrombotic stimuli, microparticles (MPs) are released from activated ECs, which may
retain some RNA and cytosolic material. These EC damage derivatives are involved in
inflammation, hemostasis, and the control of neutrophil extracellular trap (NET). An earlier
study reported that monocytic MPs activate ECs through NLRP3 inflammasome-mediated
activation, in turn inducing ERK1/2 phosphorylation, nuclear factor-kappa B (NF-kB) path-
way activation and cell adhesion molecule expression, intercellular adhesion molecule 1,
vascular cell adhesion molecule-1, and E-selectin [30]. These MPs contain tissue factor (TF)
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and induce clot formation by interacting with factor VIIa, the primary triggering factor in
the extrinsic blood clot pathway [31,32].

A close correlation between hypoxia and inflammation has been highlighted recently,
involving activation of multiple cell types such as lymphocytes, platelets, and endothelium.
Hypoxia refers to a condition in which the body or a region of the body is starved of
sufficient oxygen supply at the tissue level. Hypoxia induces hypoxia-inducible factor 1-
alpha (HIF-1α) to be engaged in the hypoxia-induced expression of NLRP3 and thrombosis.
In an animal model, treatment of hypoxia-mediated thrombosis using small interfering
RNA (siRNA) targeting HIF-1α decreased transcription of NLRP3, IL-1β, and caspase-
1 [25] through the recruitment of neutrophils and macrophages and the release of lytic
enzymes such as myeloperoxidase and chemotactic factors that increase NETs. These NETs,
consisting of DNA and histones, are released by leukocytes in a process known as NETosis.
Released histones and DNA molecules, in turn, activate platelets and increase thrombosis
via stimulating the main platelet adhesion receptor integrin αIIbβ3, phosphatidylserine
exposure, FV/Va expression, and thrombin development [32].

Platelets are small non-nucleated cell fragments circulating in the blood and play a sig-
nificant role in managing vascular integrity and hemostasis. NLRP3 does not affect platelet
production, platelet receptor expression, or granule expression. However, platelet NLRP3
deficiency significantly impairs hemostasis and in vivo formation of arterial thrombus [33].
NLRP3 regulates the spread of platelets and retraction of clots via an IL-1β-dependent
mechanism. Moreover, impaired hemostasis and arterial thrombosis have been reported
in mice containing NLRP3-deletion platelets. NLRP3 inhibition impairs the retraction of
clots in human platelets [34]. In a murine model of pancreatic cancer, the platelet NLRP3
inflammasome is upregulated and promotes platelet aggregation and tumor formation [35].
Platelet activation triggers the release of intragranular contents like ATP. NLRP3 binds in-
tracellular DAMPs, such as ATP, leading to activation of inflammasome pathways. Release
of IL-1β in platelet MPs is also dependent on caspase 1, based on the finding that inhibition
of caspase-1 results in a decrease in IL-1β particle release [33,36].

Interleukin-6 (IL-6) is a multifunctional cytokine that plays a critical role in various
biological processes, not just the immune system. This cytokine is a crucial regulator for
both chronic and acute inflammation [37]. IL-6 stimulates TF to transform prothrombin
into thrombin, converting fibrinogen into fibrin. Thus, a significant association is evident
between the formation of the inflammasome and the formation of the clot. Furthermore,
inflammatory activation causes the release of TF-containing microvesicles via pyroptosis,
resulting in systemic coagulation and death [38].

Another mechanism underlying inflammasome-driven blood clotting is induction of
pyroptosis [32]. Inflammasome activation results in immune cell activation, disruption
of internal cell contents, and damage to the cell membrane. Pyroptosis, a necrotic cell
death modality of macrophages, facilitates the release of membrane components, such
as TF-MPs, into the circulation. The release of TFs is a prerequisite for activation of
coagulation factors in the clotting process [38]. In contrast, lytic cell death activates a
novel approach of histone-induced coagulation and thrombosis independent of caspase
1/11 and GSDMD [32]. Histones are cationic nuclear proteins essential for eukaryotic
chromatin structure and function. Incubation of histones with macrophages leads to the
induction of lytic cell death and phosphatidylserine exposure, the main coagulation initiator
necessary for TF activity. Neutralization of TF is reported to reduce coagulation caused by
histones [32,39]. Limited studies to date have attempted to evaluate the involvement of
inflammasome activation in the thrombotic process, and further research is warranted to
elucidate the pathways and therapeutic targets of thrombosis.

4. Inflammasome Activation in COVID-19 Patients

The inflammasome has been identified as a bridge between thrombosis and inflamma-
tion. Numerous clinical studies indicate that the commonly observed cytokine storm in
COVID-19 infection is characterized by the development of inflammasomes. Among the
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NLRPs, an association of the NLRP3 inflammasome with COVID-19 is reported. Elevated
inflammatory marker expression in leukocytes has been demonstrated in patients that
have died from COVID-19. Incubation of viable SARS-CoV-2 viral particle with monocytes
results in the activation of NLRP3 inflammasome as demonstrated by puncta formation, a
marker for active inflammasome formation. Activation of NLRP3 inflammasome is asso-
ciated with disease severity in COVID-19 patients [40]. In addition, the presence of fatal
NLRP3 inflammasome aggregates of COVID-19-induced pneumonia in lung supports the
existence of biological relations between viral infection and cytokine release syndrome [41].

Studies have shown that inflammasome activation is triggered by coronavirus struc-
tural and accessory proteins. Viroporins (≤100 amino acid residues) are small virally
encoded ion channels that oligomerize in the membrane of host cells, leading to the for-
mation of hydrophilic pores. These proteins play critical roles in viral replication and
pathogenesis, and contribute to the transport of Ca2+ ions into the cell cytosol. NLRP3
is activated under conditions of high cytosolic Ca2+ [42,43]. Spike protein lacking the
transmembrane domain activates the inflammasome in macrophages derived from pe-
ripheral blood mononuclear cells (PBMCs) in COVID-19 patients. NLRP3 inhibition with
a selective MCC950 suppressor results in the reduction of IL-1β secretion from spike
protein-stimulated macrophages [44].

Moreover, it has been shown that SARS-CoV orf8b protein could activate the NLRP3
inflammasome in the in vitro setting. In macrophages, orf8b triggers intracellular aggre-
gates, lysosomal stress, autophagy, and pyroptotic cell death [45]. SARS-CoV-2 orf3a
protein is formed in a similar manner, and the inflammasome is activated by K+ ion efflux
and kinase NEK-7. Orf3a-activated IL-1β expression occurs via NF-kB pathway. These
leads to disruption of the intracellular ion balance, promoting mitochondrial damage, and
generating ROS, which act as co-activators of NLRP3 [46].

The NLRP3 inflammasome also plays a regulatory role in platelet function. The key
role of platelets in blood clot formation is primary hemostasis, which involves adherence
to damaged surfaces, binding to procoagulants, and forming aggregates to avoid blood
loss. NLRP3 in platelets is upregulated with increased caspase-1 activity in pancreatic
cancer, as demonstrated in a mouse model [35]. The decrease in platelet activation and
aggregation can be induced via the downregulation of NLRP3 [35]. Platelet inflammasome
NLRP3 activation is reported to trigger platelet aggregation, endothelial dysfunction, and
thrombosis, which may serve as contributing factors to hypercoagulopathy, an issue that
requires further investigation in COVID-19 patients.

Infection with SARS-CoV-2 induces cell death characterized by loss of integrity of
the plasma membrane, characteristic of pyroptosis. Evaluation of COVID-19 patients and
post-mortem samples demonstrated that SARS-CoV-2 induces inflammasome activation
in primary human monocytic cells and mimics the release of lactate dehydrogenase, a
marker of cell injury, from infected monocytes. According to recent reports, SARS-CoV-2
directly infects human monocytic cells and promotes activation of NLRP3 and lytic cell
death [47,48]. Although more evidence is needed to elucidate the role of both structural and
non-structural SARS-CoV-2 proteins, understanding the underlying molecular mechanisms
could pave the way for a therapeutic target to reduce disease severity.

5. Hypercoagulopathy Associated with SARS-CoV-2 Infection

Hypercoagulopathy is a common phenomenon in COVID-19 patients and is associated
with illness severity [49]. A review report showed that 209 (69.0%) out of 303 patients had
coagulation abnormalities. The most common was an alteration in fibrinogen and D-dimer
levels, prolonged prothrombin time (PT), and prolonged activated partial thromboplastin
time (APTT) [50]. The amount of D-dimer was higher in patients with severe than mild
infection in a related study performed at Wuhan First Hospital, China [51]. Similarly,
mean levels of fibrinogen, D-dimer, and von Willebrand factor (VWF) were shown to be
significantly increased in a study conducted in Milan, Italy, on COVID-19 patients in the
intensive care unit (ICU). PT and APTT were normal or slightly elevated. On the other



Cells 2021, 10, 916 7 of 17

hand, the antithrombin level was slightly decreased [51]. The levels of PT and D-dimer
were significantly higher in non-survivors than survivors of COVID-19 [52].

SARS-CoV-2 infects blood vessels and causes vascular damage, both in vitro and
in vivo, characterized by increased procoagulant factors associated with poor prognosis
and higher mortality [53]. According to a report by Tang et al., 71.4% of COVID-19-
related deaths were related to altered coagulation profiles [54]. Research by Klok and
coworkers revealed that the composite incidence of thrombotic events was 31% in COVID-
19 patients in ICU, with venous thromboembolism detected in most COVID-19 cases
(27% of patients with thrombotic events) [55]. The severity of both macro-and micro-
thrombosis was increased in critically ill patients [56]. Similarly, the prevalence of alveolar-
capillary microthrombi was another frequently reported phenomenon [49]. In COVID-19
patients with chronic non-communicable diseases, the degree of thrombotic complications
is significant since 20–30% of critically ill patients with secondary problems during viral
infection are at higher risk of developing thrombotic complications [56,57]. Besides, the
associated endothelial damage promotes the recruitment of immune cells, leading in
turn to the release of proinflammatory cytokines, acute-phase reactants, ultra-large VWF
multimers involved in primary hemostasis and TF overexpression [55,57]. Unnecessary
release of proinflammatory cytokines (cytokine storm) and release of other acute-phase
reactants can activate the complement system, which induces the intrinsic and extrinsic
coagulation cascades, resulting in a state of hypercoagulability [58].

At the cellular level of blood platelets, a study of COVID-19 patients showed increased
mean platelet volume and platelet hyperactivity associated with a decrease in platelet
count [59,60]. Thrombocytopenia is frequently reported in association with increased
risk of severe illness [61,62]. Nevertheless, the causes of thrombocytopenia and platelets’
involvement are not well known. They may be attributed to various processes including
inflammation, oxygen demand injury, and plaque rupture caused by the infection. A recent
study on platelet gene expression offers new evidence of altered platelet gene expression
and substantially enhanced functional reactions during infection with SARS-CoV-2 [63].

Although COVID-19 was primarily considered a respiratory disorder, a significant
number of patients developed other pathological conditions, including cardiovascular
disorders such as myocardial damage, arrhythmia, acute coronary syndrome, and venous
thromboembolism [64]. Inflammasome activation and its impacts have been documented in
patients with COVID-19, hypercoagulability, and cardiovascular disorders [40,65]. Ongoing
studies will be able to unveil the mechanism and linkage regarding inflammasome-induced
hypercoagulopathy in leading to cardiovascular dysfunction.

6. Activation of the NLRP3 Inflammasome Contributed to Cardiovascular Disorders

Cardiovascular disorders are a group of disorders affecting the heart and blood
vessels. It is the number one cause of death worldwide, accounting for 31% of all global
deaths [66]. The role of NLRP3 activation pathways in the development of different
cardiovascular disorders has been widely characterized, given their potential contribution
to the development of diseases such as atherosclerosis, myocardial infarction (MI), and
other cardiomyopathies [65].

Atherosclerosis is an inflammatory condition characterized by the accumulation of
low-density cholesterol and large numbers of immune cells (dendritic cells and lympho-
cytes) in blood vessels. The overall pathogenic event is divided into four main steps: (1)
EC injury, (2) accumulation of cholesterol crystals and low-density lipoproteins (LDL),
(3) adhesion, migration, and differentiation of monocytes into macrophages, and, finally,
(4) recruitment and proliferation of smooth muscle cells [67,68]. Macrophages, ECs, and
smooth muscle cells may serve as potential activators of the inflammasome in atheroscle-
rosis [65,69]. EC injury is the first event in the initiation of atherosclerosis caused by
mechanical, chemical, environmental and/or immunological factors. NLRP3 inflamma-
some activation by tobacco smoke and certain environmental pollutants, such as cadmium
and acrolein, results in pyroptosis and injury of ECs [70–72]. Moreover, cholesterol crys-
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tals are an essential factor in the induction of endothelial dysfunction in blood vessels.
Cholesterol crystals can act as a DAMP signal and promote progression of atherosclerosis
through interactions with immune cells. Monocytes attach to the lesions on injured ECs
and differentiate into macrophages and foam cells [73]. NLRP3 present in the cytoplasmic
matrix of macrophages and foam cells can initiate atherosclerosis when cholesterol crystals
are engulfed by macrophages via their CD36 receptors, resulting in activation of the NLRP3
inflammasome via lysosomal damage. Early-stage atherosclerosis was reportedly reduced
in an NLRP3 knockout mouse fed a high cholesterol diet, indicating a close link between
activation of NLRP3 and atherosclerosis progression [74–77]. Monosodium glutamate
is another DAMP signal for activation of NLRP3 and initiation of several inflammatory
events, including atherosclerosis [78].

The narrowing of coronary arteries resulting from deposition of atherosclerotic plaques
can lead to further complications, including MI, which is among the most common causes
of death attributable to cardiovascular disorders. MI is defined as the myocardial death
due to prolonged disruption of the blood supply into the heart. This situation severely
affects the pumping capability of the heart, along with arrhythmia and instability in ion
channel function [79,80]. Cellular injury caused by ischemic insult and subsequent release
of cellular debris and metabolites can activate inflammasomes, initiating inflammation [81].
The NLRP3 inflammasome is reported to act as a primary sensor for DAMPs released
during the onset of acute MI, as evident from a high expression of the inflammasome-
associated proteins in cardiac fibroblasts and cardiomyocytes. Inflammasome activation
stimulates the production of IL-1β and other cytokines, initiating an inflammatory response
in ischemic heart. NLRP3, along with ASC proteins and caspase-1, plays a vital role in
the development of MI, cardiac fibrosis, and other adverse phenomena, as demonstrated
in various animal studies [78,82–84]. The reperfusion procedure is usually performed to
control the extent of damage caused by MI, but can also inflict damage to the myocardium.
Studies on animal models of ischemia/reperfusion injury revealed overexpression of
NLRP3 components. Conversely, blocking of NLRP3 resulted in a reduction of infarct
size [85,86].

In addition to ischemic injury, inflammasome plays a critical role in various non-
ischemic cardiovascular pathologies. Cardiac remodeling is an adaptive response that
involves changes in the structure and function of the heart in order to maintain cardiac
function after sustaining an injury. Following ischemic insult in rats, the NLRP3 inflam-
masome and calcium-sensing receptors enhanced the rate of cardiac remodeling [87]. On
the other hand, a lack of NLRP3 inflammasome resulted in the onset of adverse cardiac
remodeling and other phenomena, such as cardiac hypertrophy and fibrosis [88]. In one
experimental setup, mice were subjected to transverse aortic constriction (TAC). Expression
of NLRP3 was significantly higher in the TAC group, leading to enhanced production of
specific proinflammatory and profibrotic mediators, which resulted in pathologies such
as cardiomyocyte hypertrophy, fibrosis, and impaired heart function [89]. In a similar
study, inhibition of the NLRP3 inflammasome resulted in better survival of TAC mouse via
attenuation of left ventricular hypertrophy and fibrosis [90].

Cardiac fibrosis and remodeling are the main events in the development of congestive
heart failure (CHF), which is the endpoint of many cardiovascular conditions. Data from
clinical trials of CHF patients support the involvement of NLRP3 inflammasome and
downstream cytokines in the pathogenesis of CHF [91]. Pressure overload in the heart
triggers activation of calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ). High
expression of this molecule is evident in CHF while its inhibition enhances cardiac health.
CaMKIIδ activates the NLRP3 inflammasome in failing heart, triggering other adverse phe-
nomena (like inflammation and cardiac fibrosis) through recruitment of macrophages and
other inflammatory cytokines such as IL-1β and IL-18. Inhibition of NLRP3 or CaMKIIδ
could preserve the myocardium from further deterioration by neutralizing the pressure
overload and preventing recruitment of proinflammatory cytokines [92–94]. Deficiency
of the epigenetic regulator ten-eleven translocation 2 (Tet2) resulted in more significant
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cardiac dysfunction because of increased expression of IL-1β and NLRP3. Sano et al. [95]
demonstrated that selective inhibition of the NLRP3 inflammasome significantly reduced
the risk of heart failure development in mice. Similar or conflicting findings have been
reported by other investigators [68], highlighting the necessity for more studies to fully
clarify the association between the effect of NLRP3 activation and incidence of cardiovas-
cular dysfunction.

A similar mechanism has been shown in the severely ill COVID-19 patients with cere-
brovascular complications, which involved vascular and neurological abnormalities [96,97].
The NLRP3 inflammasome has been shown to be a crucial component in neurological dis-
eases including cerebrovascular diseases. NLRP3 was activated by thioredoxin-interacting
protein (TXNIP), an endogenous inhibitor of the antioxidant thioredoxin (TRX) system,
thus leading to inflammation and brain tissue injury [98]. Damage of brain tissue re-
sults in cerebrovascular disorders. On the other hand, the expressions of P2X7 receptor
(P2X7R), NLRP3 inflammasome components, and cleaved caspase-3 were significantly
detected in the ischemic brain tissue after stroke [99]. This murine model indicated that
the P2X7R/NLRP3 pathway activates neuronal apoptosis post ischemic injury [99]. Fur-
ther NLRP3 activation via NF-κB and mitogen-activated protein kinase (MAPK) signaling
pathways have been reported following ischemic stroke [100]. Moreover, the ACE2 re-
ceptor as the target of SARS-CoV-2 was highly expressed in neurons, astrocytes, and
oligodendrocytes, which may activate inflammation through NLRP3 pathways and lead to
cerebrovascular and nerve system dysfunctions [101]. More evidence is required, however,
to recognize the NLRP3 inflammasome activation pathway as a potential therapeutic target
for the treatment of cerebrovascular disorders in COVID-19.

7. Potential Role and Therapeutic Target of the NLRP3 Inflammasome for
Cardiovascular Complications in COVID-19

Respiratory disorders and hypoxia, along with the inflammatory response, cause
significant myocardial damage in COVID-19 patients and are highly associated with the
development of heart failure [102]. Cytokine burst induced by COVID-19 results in exces-
sive demand for metabolites and energetics, further aggravating myocardial injury [103].
The inflammatory response caused by NLRP3 inflammasome activation under particular
cardiovascular conditions results in hyperinflammatory responses by intensifying the in-
flammatory response induced by COVID-19 or by modulating the angiotensin-converting
enzyme 2 (ACE2)/angiotensin signaling pathway [104]. ACE2 is highly expressed in both
lung and cardiac cells. The severity of symptoms experienced with COVID-19 cardiovascu-
lar complications may be attributed to the high expression of ACE2 in cardiac cells, and
myocardial injury is potentially attributable to ACE2-related signaling pathways [104,105].
Hyperinflammation facilitates infiltration of viral particles into other organ systems like
the cardiovascular system. NLRP3 is activated by sensor proteins during viral infections
once PAMPs are detected by cell surface receptors such as TLR2/4 and TREM family
receptors. The decreased level of ACE2 in cardiac cells leads to increased DAMP levels,
thus increasing the comorbidity of SARS-CoV-2-induced cardiovascular dysfunction [103].

High mortality rates are reported in COVID-19 patients displaying an elevated expres-
sion of D-dimers and fibrin degradation products, resulting in the onset of disseminated
intravascular coagulation and other coagulopathies [106,107]. Myocardial injury, mainly
attributed to the ACE2 pathway, is also observed in a significant number of COVID-19
cases. Other possible mechanisms include the cytokine burst triggered as a consequence of
respiratory dysfunction [108]. Arrhythmia is another commonly observed cardiovascular
condition among COVID-19 patients. Large-scale cytokine expression, such as IL-1, IL-6,
and TNF- α, is possibly another possible cause of arrhythmia [109]. In addition, clinical
studies have shown that COVID-19 patients with cardiometabolic comorbidities are at
increased risk of having severe conditions because these factors have the potential to induce
hyperinflammatory conditions [104]. Adverse cardiovascular events following infection
are predominantly attributed to inflammasome activity, but the degree of involvement of
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inflammasomes in the cardiac manifestations of COVID-19 requires further investigation
using animal models [15].

Recent preclinical studies support the potential therapeutic applicability of many ex-
isting drugs in blocking NLRP3 components as targets for treating cardiovascular disorders
(Table 1). The antifibrotic small-molecule drug pirfenidone has utility in inhibiting the
NLRP3 inflammasome and suppressing IL-1β-induced profibrotic and proinflammatory
responses in a TAC-induced mouse model of hypertension. This treatment strategy is
reported to be useful in alleviating myocardial fibrosis and enhancing overall survival of
TAC-induced mice [90]. Treatment with the anti-inflammatory drug rosuvastatin amelio-
rated adverse phenomena such as cardiac remodeling and dysfunction via silencing NLRP3,
ASC and pro-caspase-1 in rats with induced type 2 diabetes [110]. The role of rosuvastatin
in blocking the activation of NLRP3 inflammasome was further investigated in ECs. Sim-
vastatin and mevastatin effectively attenuated the expression of NLRP3 inflammasomes by
inhibiting oxidized low-density lipoproteins or TNF-α [111].

Table 1. Therapeutic compounds targeting inflammasome NLRP3 activation in cardiac disorders.

Cardiac Disorders Therapeutic Drugs Mechanisms of NLRP3 Inflammasome
Regulation

Myocardial fibrosis Pirfenidone Inhibit NLRP3-induced inflammatory and
profibrotic responses [90]

Cardiomyopathy Statins, Rosuvastatin Inhibit oxidized low-density lipoprotein or
tumor necrosis factor-α [110,111]

Cardiac inflammation and fibrosis Cinnamaldehyde Blockage of CD36-induced TLR4/6-IRAK4/1
signaling pathway [112]

Acute myocardial infarction (AMI)
myocarditis Colchicine Inhibition of excessive tubulin

polymerization [113]
CCE 1 Downregulates pyroptosis pathway [114]

Diabetic cardiomyopathy Metformin Activate AMPK 2, enhanced autophagy via
inhibition of the mTOR pathway [115]

Melatonin
Inhibiting lncRMALAT1/miR-141-mediated

NLRP3 inflammasome activation and
TGF-β1/Smads signaling [116]

Cardiac hypertrophy and fibrosis Empagliflozin Inhibition of oxidative stress-induced injury
via sGC-cGMP-PKG pathway [117]

1 Cholecalciferol cholesterol emulsion, 2 Adenosine monophosphate-activated protein kinase.

Antioxidative stress agents such as cinnamaldehyde and allopurinol alleviated cardiac
inflammation and fibrosis by blocking NLRP3 inflammasome activation via the CD36-
induced TLR4/6-IRAK4/1 signaling pathway in rats with fructose-induced metabolic
syndrome and in cell models [112]. Brief treatment with colchicine, another commonly used
anti-inflammatory drug, improved cardiac health by attenuating the NLRP3 inflammasome
pathway and other proinflammatory cytokines. Short-term treatment reduced infarct
size and was helpful in enhancing survival and cardiac function after acute MI [113].
Cholecalciferol cholesterol emulsion (CCE) is clinically used for the treatment of vitamin
D deficiency and other disorders. In an earlier investigation into the potential of CCE as
a treatment agent for autoimmune myocarditis, the group showed that CCE attenuated
myocarditis by downregulating the pyroptosis pathway in mice [114]. Metformin is a
widely used therapeutic agent for type 2 diabetes to conserve cardiac health, and exerts its
effects via several pathways. In a study on diabetic cardiomyopathy, metformin induced
inhibition of NLRP3 inflammasome via induction of adenosine monophosphate-activated
protein kinase (AMPK)-activated autophagy [115]. In diabetic mice treated for eight weeks
with the antidiabetic drug empagliflozin, pyroptosis, cardiac hypertrophy, and fibrosis were
ameliorated through activation of the sGC-cGMP-PKG pathway [116]. The mechanisms
and potential therapeutics targeting cardiovascular disorders in COVID-19 are illustrated
(Figure 2).
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Figure 2. Therapeutic targets in inflammasome induced cardiovascular disorders in COVID-19. SARS-CoV-2, the causative
agent for COVID-19, causes pulmonary infection. Inflammasomes are activated in SARS-CoV-2 infected patients. Activation
of NLRP3 inflammasome results in hyperinflammation and hypercoagulopathy, which ultimately leads to cardiovascular
complications in COVID-19. Various therapeutic compounds are indicated in inhibiting the pathways leading to the
inflammasome activation and preventing cardiovascular risks. ASC, apoptosis-associated speck-like protein containing a
caspase recruitment domain; Ca, calcium; CaSR, calcium-sensing receptor, CCE, cholecalciferol cholesterol emulsion; CD,
cluster of differentiation; DAMPs, damage-associated molecular patterns; GSDMD, gasdermin D; HIF-1α, hypoxia inducible
factor one alpha; IL-1β, Interleukin 1 beta; IL-18, Interleukin 18; IRAK, interleukin-1 receptor-associated kinase; LDL, low
density lipoprotein; LPS, lipopolysaccharide; MPs, micro-particles; NLRP3, nucleotide-binding oligomerization domain,
leucine-rich repeat, and pyrin domain containing 3 protein; PAMPs, pathogen-associated molecular patterns; SARS-CoV-2,
severe acute respiratory syndrome coronavirus two; TFs, tissue factors; TLR 4, toll-like receptor.

These therapeutic options are shown to limit the NLRP3 activation, and the release
of IL-1β—one of the proinflammatory cytokines detected during COVID-19 progression.
Recent studies on MCC950, a selective NLRP3 inhibitor, have promisingly blocked IL-1β
secretion after SARS-CoV-2 stimulation of patient monocytes/macrophages with spike
protein [44]. MCC950 also inhibits atherosclerotic lesion development in apolipoprotein
E–deficient mice via inhibiting NLRP3 [118]. Evidence shows that dexamethasone reduces
allergic airway inflammation in vivo by inhibiting the function of the NLRP3 inflamma-
some. After treatment, the protein levels of pro-caspase-1, caspase-1, IL-1, IL-6, and IL-17
in lung tissues decreased [119]. Anakinra, a non-glycosylated recombinant antagonist
targeting human IL-1 receptor, is a 17-kD protein and is given to reduce the release of
IL-6 triggered in COVID-19 patients. The administration of anakinra inhibits the effect
of IL-1β and further inflammation [120]. In addition, colchicine used to treat AMI has
also been selected as a therapeutic option in clinical trials and in severe COVID-19 pa-
tients [113,121]. Colchicine prevents pyroptosis and NLRP3 assembly and activation [122],
thereby preventing platelet aggregation, cytokine storm, and thrombosis [121]. Further
research is needed to evaluate the effect of MCC950, dexamethasone, anakinra, and other
potential therapeutics in the prevention of inflammasome induced thrombotic events and
cardiovascular disorders during COVID-19 progression.
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8. Conclusions

According to recent reports, about one in five people worldwide could be at increased
risk of severe COVID-19 disease. Targeted drugs are not available for many cases of asymp-
tomatic and moderate viral infections, and only supportive care is provided. Improved
understanding of the pathogenesis of hypercoagulopathy in COVID-19 patients is essential
to improve care and reduce morbidity and mortality rates.

Innate immune effector cells are implicated in the pathophysiological mechanisms
linking thrombosis and inflammation in different viral infections. Inflammasome com-
ponents and mechanisms of inflammatory activation have recently been described for
COVID-19, which provide new perspectives and research opportunities for clarifying
disease pathogenesis. NLRP3 has been established as a critical component of the innate
immune system that detects a wide range of microbial patterns, endogenous hazard signals,
and environmental irritants, mediating caspase-1 activation and secretion of IL-1β/IL-18
proinflammatory cytokines in response to microbial infection and cellular damage. Further
studies are warranted to validate the role of NLRP3 in clinical outcomes of COVID-19 and
the biological mechanisms involved in the inflammatory response to infection.

In addition to chemotherapeutic drugs, natural products, and herbal drugs influence
the NLRP3 pathway and can be potentially applied for cardiovascular disorders [68]. While
treating cardiovascular complications by targeting NLRP3 pathway components clearly
provides new opportunities in drug development, further studies and clinical trials are
required to validate safety and efficacy of the therapeutic compounds in COVID-19 patients.
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Glossary

ACE2 Angiotensin-converting enzyme 2
ASC Apoptosis-associated speck-like protein containing a CARD
ATP Adenosine triphosphate
CaMKIIδ Calcium/calmodulin-dependent protein kinase IIδ
CARD Caspase activation and recruitment domain
CCE Cholecalciferol cholesterol emulsion
COVID-19 Coronavirus disease 2019
DAMPs Damage-associated molecular patterns
EC Endothelial cell
GSDMD Gasdermin D
HIF-1α Hypoxia-inducible factor 1-alpha
ICU Intensive care unit
IFI16 Interferon gamma inducible protein 16
IFN-γ Interferon gamma
IL-18 Interleukin-18
IL-1β Interleukin-1 beta
IL-6 Interleukin-6
IRAK4 Interleukin-1 receptor-associated kinase 4
LDL Low density lipoprotein
LRR Leucine rich repeat
MI Myocardial infarction



Cells 2021, 10, 916 13 of 17

MPs Microparticles
NET Neutrophil extracellular trap
NLR Nucleotide oligomerization domain-like receptors
NLRP3 NLR family pyrin domain containing 3
NOD Nucleotide oligomerization domain
PAMPs Pathogen associated molecular patterns
PBMCs Peripheral blood mononuclear cells
PRR Pattern recognition receptors
PYD Pyrin domain
ROS Reactive oxygen species
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
TF Tissue factor
TGF-β1 Transforming growth factor-beta1
Th1 T helper type 1
TLR Toll-like receptors
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