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SUMMARY

The estimation of treatment effects based on observational data usually involves multiple
confounders, and dimension reduction is often desirable and sometimes inevitable. We first clarify
the definition of a central subspace that is relevant for the efficient estimation of average treatment
effects. A criterion is then proposed to simultaneously estimate the structural dimension, the basis
matrix of the joint central subspace, and the optimal bandwidth for estimating the conditional
treatment effects. The method can easily be implemented by forward selection. Semiparametric
efficient estimation of average treatment effects can be achieved by averaging the conditional
treatment effects with a different data-adaptive bandwidth to ensure optimal undersmoothing.
Asymptotic properties of the estimated joint central subspace and the corresponding estimator of
average treatment effects are studied. The proposed methods are applied to a nutritional study,
where the covariate dimension is reduced from 11 to an effective dimension of one.

Some key words: Forward selection; High-order kernel; Joint central subspace; Optimal bandwidth; Semiparametric
efficiency; Undersmoothing.

1. INTRODUCTION

Investigating the causal effect of a treatment on an outcome is often the primary interest in
medical and social studies. While randomization is the gold standard in identifying treatment
effects, often only observational data are available. A major challenge in observational studies is
confounding, where the treatment and the outcome of interest are associated with other pretreat-
ment variables, potentially leading to seriously biased estimation of average treatment effects. A
simple method of dealing with confounding is local matching. Under conditional independence,
the distribution of outcomes in a specific group behaves just like that of a random sample from the
group while conditioning on values of confounding variables. Thus, a consistent estimator can
be obtained by averaging the differences between groups over the distribution of confounding
variables. Hahn (1998) introduced a class of nonparametric imputation estimators that use local
matching and showed that they are asymptotically efficient.

Although nonparametric imputation estimators are n1/2-consistent under regularity conditions,
the remainder terms depend on their biases and variances. In particular, the variance increases with
the number of confounders, so a balancing score vector with a smaller dimension is always pre-
ferred. According to Rosenbaum & Rubin (1983), the propensity score is the coarsest balancing
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score, and also has the smallest dimension. However, Hahn (1998) showed that projection onto the
true propensity score can be inefficient. Another well-known balancing score is the prognostic
score of Hansen (2008). Leacy & Stuart (2014) further combined propensity and prognostic
scores to improve the classical matching estimator of average treatment effects. Unfortunately,
estimators based directly on propensity and prognostic scores often cannot attain the semipara-
metric efficiency bound. Hence, finding a suitable balancing score vector with high efficiency
and minimal dimension is important in practice.

There are two approaches to reducing the dimension of the covariate vector while keeping as
much information as possible about the relationship between response and covariates. The first is
variable selection, in which the main goal is to drop redundant variables: de Luna et al. (2011) first
defined some subsets of confounding variables which are minimal in the sense that the treatment
ceases to be unconfounded for any proper subset of these sets; they also showed that these subsets
can reduce the efficiency bound for average treatment effects. Related methods are discussed in
Vansteelandt et al. (2012). Instead of using the total subset selection procedure, another method
of variable selection is penalized regression. Since confoundedness resides in the conditional
distribution of the potential outcomes and treatment variable, given confounders, Ghosh et al.
(2015) developed a lasso-type criterion to select redundant variables. The second approach is
sufficient dimension reduction, which seeks a few linear combinations of confounders that retain
the full information on confoundedness. In a related missing data problem, Hu et al. (2014)
introduced effective balancing scores, which are the central subspaces of missing indicators and
observed responses, given covariates. While the estimation of average treatment effect can often
be regarded as two missing data problems, applying this approach twice would yield two estimates
of central subspaces that could be highly collinear.

In this paper, we introduce a joint sufficient dimension reduction model on the propensity
score as well as the conditional distributions of potential outcomes, and use the joint central
subspace to form a semiparametric efficient estimator of average treatment effects. No stringent
parametric model formulation is assumed in the dimension reduction framework. Further, while
classical dimension reduction methods consider models on the joint distribution of treatment
and potential outcomes, our approach focuses on the marginal distributions and can yield a
balancing score with smaller dimension. The exclusion restrictions used in de Luna et al. (2011)
for efficiency gains are not required, but the semiparametric efficiency bound is retained by our
estimator.

Several approaches to sufficient dimension reduction can be extended to this causal inference
problem. In a complete-data setting, these approaches include inverse regression (Li, 1991; Li
& Wang, 2007; Zhu et al., 2010), average derivative and minimum average variance estimation
(Zhu & Zeng, 2006; Xia, 2007; Wang & Xia, 2008; Yin & Li, 2011), and the semiparametric
framework (Ma & Zhu, 2012, 2013; Huang & Chiang, 2017). Here we extend the work of Huang
& Chiang (2017) and construct a crossvalidation-type least squares criterion to estimate the struc-
tural dimension and the basis matrix simultaneously. The bandwidth used in the semparametric
estimator of the unspecified link function can be selected using the same criterion and attains the
optimal rate for estimating the conditional treatment effects. The proposed model is flexible and
the average treatment effects can be estimated efficiently.

Although local matching using the propensity score may not be semiparametrically efficient,
inverse propensity score weighting with estimated weights has been shown to be efficient (Hirano
et al., 2003), and many recent efforts have focused on improving the weighting estimators (Qin
& Zhang, 2007; Imai & Ratkovic, 2014; Chan et al., 2016). In contrast to those estimators, our
method provides a rate-optimal estimator of covariate-specific treatment effects, which is useful
for personalized prediction and the study of heterogeneity.
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2. JOINT SUFFICIENT DIMENSION REDUCTION

2·1. Notation and model construction

Let Y (0) and Y (1) be the potential outcomes when an individual is assigned to the control and
treatment groups, respectively, and let T be a binary treatment indicator. Since each unit is either
treated or not treated, the observed outcome is Y = TY (1) + (1 − T )Y (0). In addition, a vector
of covariates or confounders X = (X1, . . . , Xp)

T is observed for each subject, and we make the
following conditional independence assumption.

Assumption 1 (Unconfounded treatment assignment). We have that T {Y (0), Y (1)} | X ,
where denotes independence.

This assumption is often made to identify the average treatment effect τ = E{Y (1) − Y (0)}.
Under Assumption 1, Hahn (1998) and Robins et al. (1994) derived the semiparametric efficiency
bound for τ as

σ 2
eff = E

[
{m1(X ) − m0(X ) − τ }2 + σ 2

1 (X )

π(X )
+ σ 2

0 (X )

1 − π(X )

]
,

where π(X ) = pr(T = 1 | X ) is the propensity score, mk(X ) = E{Y (k) | X } is the conditional
mean of the potential outcome, and σ 2

k (X ) = var{Y (k) | X } (k = 0, 1). Also, σ 2
eff can be shown

to be the asymptotic variance of a nonparametric imputation estimator by directly using X as a
balancing score. A balancing score with smaller dimension but the same efficiency is obtained if
the conditional distributions of Y (0), Y (1) and T given X are captured by a lower-dimensional
linear subspace of X . Therefore, we focus on finding BTX such that

T X | BTX , Y (0) X | BTX , Y (1) X | BTX , (1)

where B is a full-rank p × d parameter matrix with d � p; we call the column space of B a joint
sufficient dimension reduction subspace. For simplicity, we will write span(B) for the column
space of a matrix B. Obviously, (1) holds when d = p and B is the p × p identity matrix, Ip.
Thus it always covers the true model. Moreover, if span(B1) ⊂ span(B2) and span(B1) is a joint
sufficient dimension reduction subspace, then span(B2) will also be a joint sufficient dimension
subspace. The most interesting parameter is therefore the joint sufficient dimension reduction
subspace of smallest dimension, called the joint central subspace when it exists, which is unique
up to an equivalence class as discussed in Remark 2. The corresponding basis matrix B0 has
dimension d0. The existence and uniqueness of the joint central subspace can be ensured under
some mild conditions, similar to the discussion of Cook (1998) on sufficient dimension reduction
for univariate responses.

Alternatively, based on the classical literature on sufficient dimension reduction, one can also
consider the model

{T , Y (0), Y (1)} X | BTX , (2)

which is different from model (1). In fact, span(B0) will be contained in the central subspace of
(2). Since the average treatment effect involves only the marginal distributions of {T , Y (0), Y (1)}
and it is appealing to seek a balancing score with lower dimension, we consider model (1) instead
of model (2).
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Based on the definition of a joint central subspace, BT
0X is obviously a balancing score and

T {Y (0), Y (1)} | BT
0X ,

which ensures unbiased estimation of the average treatment effect. The main feature of this
balancing score is that it creates both propensity and prognostic balance (Hansen, 2008; Leacy
& Stuart, 2014), and we will show in § 3 that it attains the semiparametric efficiency bound in
the estimation of τ .

Remark 1. Unlike sufficient dimension reduction tools such as sliced inverse regression (Li,
1991), we do not require an additional linearity assumption on the covariate distribution.

Remark 2. Under model (1), π(BTX ) and Fk( y | BTX ) (k = 0, 1) remain the same for any
basis matrix B with the same column space. In fact, all such B span the same space and are
isomorphic up to a linear transformation. The parameter space of B is called the Grassmann
manifold, or Grassmannian, denoted by Gr(d, Rp). To avoid ambiguity, we follow Ma & Zhu
(2013) in employing the local coordinate system of the Grassmannian and parameterize the basis
by B = (Id , C)T, where C is a (p − d) × d free parameter matrix. This parameterization is
particularly useful in theoretical developments for characterizing the information matrix, and is
not an additional model assumption or a restriction on span(B). Computation of the proposed
estimator does not require fixing the reference variables in advance; see Remark 6.

Remark 3. Since the main parameters of interest are means of potential outcomes, one could
also consider the joint central mean subspace, which is the smallest linear subspace with basis
matrix BM such that

T X | BT
M X , Y (0) E{Y (0) | X } | BT

M X , Y (1) E{Y (1) | X } | BT
M X . (3)

The corresponding method in a complete-data setting can be found in Cook & Li (2002) and Xia
(2008). Note that the distribution T X | BT

M X remains the same as in the sufficient dimension
reduction model because T is binary and its distribution is determined by its mean. Since (3)
models the conditional means only and the mean is a functional of the distribution, one can verify
that span(BM ) ⊂ span(B0). Moreover, by Theorems 2 and 3 of Rosenbaum & Rubin (1983),
BT

M X is also a balancing score, for which Proposition 1 below holds. Thus we obtain a balancing
score with a possibly smaller dimension for the estimation of average treatment effects. However,
a comparison of σ 2

eff and (8) in § 3·1 reveals that the efficiency bound will not be generally attained
with use of BT

M X as a balancing score; that is, in general there is a trade-off between a lower
dimension and a smaller asymptotic variance. This trade-off is also discussed in Hu et al. (2014),
who studied mean estimation in missing data. Furthermore, the current formulation is sufficient
for the estimation of any conditional functionals, not just the conditional means, and does not
require re-estimation of the central subspace for different functionals of interest; see Remark 7.
Therefore, we consider model (1) so that all relevant information is kept.

2·2. Simultaneous estimation for the basis and dimension of the joint central subspace

Here we develop an estimation criterion for the joint central subspace with a random sample
{(Ti, Yi, Xi) : i = 1, . . . , n}. First, we note that model (1) is equivalent to

E(T | X ) = E(T | BTX ),

E[1{Y (k) � y} | X ] = E[1{Y (k) � y} | BTX ] ( y ∈ R; k = 0, 1),
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where 1(·) represents the indicator function. That is, we consider semiparametric regression
models g(BTX ) and G( y, BTX ), where g and G are unspecified, for responses T and 1{Y (k) � y}
on their corresponding mean functions π(X ) and Fk( y | X ) = pr{Y (k) � y | X } ( y ∈ R;
k = 0, 1). However, since 1{Y (0) � y} and 1{Y (1) � y} are not always observed, we must be
careful in using them as responses. Our key idea comes from the following proposition.

PROPOSITION 1. Under Assumption 1 and model (1),

E[1{Y (k) � y} | X ] = E{1(Y � y) | T = k , X }
= E{1(Y � y) | T = k , BT

0X } ( y ∈ R; k = 0, 1). (4)

The first equality in (4) indicates that the regression problem can be solved by considering
treatment and control groups separately. The second equality leads to a sieve approach for the
estimation of the unknown link function. Let

π̂(BTx) =
∑n

j=1 TjKh{BT(Xj − x)}∑n
j=1 Kh{BT(Xj − x)} ,

F̂k( y | BTx) =
∑n

j=1 T k
j (1 − Tj)

1−k 1(Yj � y)Kh{BT(Xj − x)}∑n
j=1 T k

j (1 − Tj)1−kKh{BT(Xj − x)} (k = 0, 1)

denote estimators for π(BTx) and Fk( y | BTx) = pr(Y � y | T = k , BTX = BTx), where
Kh(u) = ∏d

k=1 K(uk/h)/h with u = (u1, . . . , ud)T, h a positive bandwidth, and K a qth-order
kernel function. The choice of q will be discussed in Remark 5. Now we may use Proposition 1
to construct a crossvalidation-type criterion for the estimation of the joint central subspace.
Write 〈 f ( y), g( y)〉W = ∫

f T( y)Wg( y) dFY ( y) and ‖ f ( y)‖W = 〈 f ( y), f ( y)〉1/2
W for generic

vector-valued functions f , g and matrix W , where FY ( y) is the marginal distribution of Y . Let
(T 0, Y 0, X 0) be a future run, independent of the current data {(Ti, Yi, Xi) : i = 1, . . . , n}, and
define the prediction risk

E
{‖Y 0

y − F̂( y | BTX 0)‖2
W 0

}
(5)

where

Y 0
y = {T 0, 1(Y 0 � y), 1(Y 0 � y)}T,

F̂( y | BTX ) = {π̂(BTX ), F̂0( y | BTX ), F̂1( y | BTX )}T,

W 0 = (1 − π)e1eT
1 + (1 − T 0)e2eT

2 + T 0e3eT
3,

with π = pr(T = 1) being the marginal probability of treatment and (e1, e2, e3) the standard basis
of R

3. The weight 1−π is used to treat the squared error as an integration over the distribution of T .
Further, let F( y | BTX ) = {π(BTX ), F0( y | BTX ), F1( y | BTX )}T. A simple calculation shows
that the prediction risk in (5) can be decomposed into

σ 2
0 + b2

0(B) + MISEB(h) + C(B, h), (6)
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where

σ 2
0 = E

{‖Y 0
y − F( y | BT

0X 0)‖2
W 0

}
, b2

0(B) = E
{‖F( y | BT

0X 0) − F( y | BTX 0)‖2
W 0

}
,

MISEB(h) = E
{‖F( y | BTX 0) − F̂( y | BTX 0)‖2

W 0

}
,

C(B, h) = 2E
{〈F( y | BT

0X 0) − F( y | BTX 0), F( y | BTX 0) − F̂( y | BTX 0)〉W 0
}
.

As h → 0 and nhd → ∞, it is shown in the Supplementary Material that the last two terms of
(6) converge to zero and are dominated by the first two terms. Note that b2

0(B) � 0 and b2
0(B) = 0

when span(B) is a joint sufficient dimension reduction subspace. Hence, the minimum of the
prediction risk must occur when span(B) ⊇ span(B0). Moreover, since our model has a nested
structure, the prediction risk decreases with the working dimension d when d � d0. On the
other hand, when d � d0 and span(B) ⊇ span(B0), the prediction risk has an asymptotic order
of σ 2

0 + Op{n−2q/(2q+d)}, which increases with d. Therefore, for large enough n, the minimal
prediction risk occurs at the joint central subspace B0. A formal result is stated as follows.

PROPOSITION 2. Under Assumption 1 and model (1), the joint central subspace B0 and the
optimal bandwidth h0 = cd0n−1/(2q+d0) minimize the prediction risk in (5) as h → 0, nhd → ∞
and n → ∞, where the constant cd0 is given in the Supplementary Material.

The proof of Proposition 2 is given in the Supplementary Material. According to Proposition 2
and the fact that the prediction risk is asymptotically convex in d, we obtain our estimator through
the following algorithm.

Step 1. For d = 0, calculate

CV0 = 1

n

n∑
i=1

[
(Ti − T̄ )2(1 − T̄ ) +

1∑
k=0

T k
i (1 − Ti)

1−k
∫

{1(Yi � y) − F̂k( y)}2 dF̂Y ( y)

]
,

where T̄ = n−1∑n
i=1 Ti, F̂Y ( y) is the empirical distribution of (Y1, . . . , Yn), and F̂k( y) =

n−1∑n
i=1 T k

i (1 − Ti)
1−k1(Yi � y)/{T̄ k(1 − T̄ )1−k} (k = 0, 1).

Step 2. For d � 1, let (B̂d , ĥd) be the minimizer of CV(B, h) among all p × d matrices B and
positive h, where

CV(B, h) = 1

n

n∑
i=1

[
{Ti − π̂−i(BTXi)}2(1 − T̄ )

+
1∑

k=0

T k
i (1 − Ti)

1−k
∫

{1(Yi � y) − F̂−i
k ( y | BTXi)}2 dF̂Y ( y)

]
;

here the superscript −i indicates the estimator based on a sample with the ith subject deleted.
Then calculate CVd = CV(B̂d , ĥd).

Step 3. Repeat Step 2 until d = d̂ with CVd̂+1 > CVd̂ . The proposed estimator is (B̂, ĥ) =
(B̂d̂ , ĥd̂).
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We will show that CV(B, h) converges uniformly to the prediction risk as n → ∞ in the proof of
the following theorem, and the proposed algorithm can simultaneously estimate the joint central
subspace and the structural dimension consistently. In summary, our proposed method, which
is easily implemented in practice, can simultaneously estimate the basis matrix, the structural
dimension of the joint central subspace, and the optimal bandwidth. The asymptotic properties
of the proposed estimators are established in the following theorem.

THEOREM 1. Suppose thatAssumption 1 and ConditionsA1–A5 in the Supplementary Material
are satisfied. Then pr(d̂ = d0) → 1, ĥ = Op{n−1/(2q+d0)}, and

n1/2vec(B̂ − B0)1(d̂ = d0) = n−1/2
n∑

i=1

ξB0(Ti, Yi, Xi) + op(1) → N (0, �B0)

in distribution as n → ∞, where vec is the columnwise matrix vectorization operator,
ξB0(T , Y , X ) = V −1(B0)S(B0) and �B0 = V −1(B0)E{S⊗2(B0)}V −1(B0), with S(B) and V (B)

as defined in the Supplementary Material.

Remark 4. The proposed criterion selects the basis matrix and the structural dimension of the
joint central subspace simultaneously, which is different from most existing sufficient dimension
reduction methods such as inverse regression (Zhu et al., 2010), minimum average variance esti-
mation (Yin & Li, 2011) and semiparametric approaches (Ma & Zhu, 2012, 2013). Moreover, the
bandwidth chosen by this criterion is the rate-optimal bandwidth in terms of the mean integrated
squared error, which will be further discussed in § 2·3.

Remark 5. We use different bandwidths hd for the working dimension d in the proposed
algorithm, and we show in the proof of Theorem 1 that ĥd = Op{n−1/(2q+d)}. Coupled with the
restriction in Condition A3, the order of the kernel function should satisfy q > max{2, (d +2)/2}.
Since we always use a symmetric kernel function, whose order will be even, and require the
order to be as small as possible, a suitable choice is q = max{4, 2�(d + 6)/4�} for each working
dimension d, where �·� denotes the floor function.

Remark 6. Grassmanian optimization algorithms in Edelman et al. (1999) and Adragni et al.
(2012) can be used in Step 2 without fixing the reference variables a priori. Those algorithms
are a modification of conventional gradient-based algorithms, which consider movements along
geodesics based on a metric defined in the tangent space of the Grassmann manifold. Since the
optimization is nonconvex, a reliable initial value is needed. We suggest using the kernel-based
method of Fukumizu & Leng (2014), as it is the fastest method known to date. That method
is consistent but does not attain a n1/2 convergence rate. Given this initial value, Step 2 can be
implemented in a slightly different manner. The initial value could first be transformed into a local
coordinate representation by Gaussian elimination, where the reference variables are chosen to be
those with the largest columnwise coefficients in absolute value for numerical stability. Then the
optimization can be performed with respect to free parameters in the Euclidean local coordinate
system. We have compared these two methods and different initial values through simulations
reported in the Supplementary Material, and found them to yield similar performance.

2·3. Estimation of conditional effects

An important advantage of our proposed criterion is that it selects the bandwidth simultaneously
with the estimation of the joint central subspace, and the selected bandwidth ĥ minimizes the
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mean integrated squared error asymptotically. In particular, the bandwidth achieves the optimal
rate for estimating conditional regression functions. Hence, we may use the bandwidth directly
to obtain estimators of the conditional effects E{Y (k) | X = x}:

Ê{Y (k) | X = x} =
∑n

i=1 YiT k
i (1 − Ti)

1−kKĥ{B̂T(Xi − x)}∑n
i=1 T k

i (1 − Ti)1−kKĥ{B̂T(Xi − x)} (k = 0, 1). (7)

At the dimension reduction stage, we suggest using at least a fourth-order kernel function
to ensure the large-sample properties of the estimated joint central subspace, as discussed in
Remark 5. However, in practice the negative weights of a higher-order kernel can be detrimental
to the stability of the resulting estimators. One possible way to obtain a more stable estimate
is by using a second-order kernel function in (7) and substituting an adjusted bandwidth ĥ∗ =
ĥ(2q+d̂)/(4+d̂), so that the resulting convergence rate of ĥ∗ is optimal with respect to a mean
integrated squared error based on a second-order kernel function. In our numerical experiments
we have found that the finite-sample performance of (7) is much better if a second-order kernel
and an adjusted bandwidth have been used.

To estimate the variance of the estimated conditional effects, an infinitesimal jackknife esti-
mator can be applied. The idea is to perturb the empirical weight 1/n in the original estimator
by a small amount ε and then take ε → 0. More precisely, if we write Ê{Y (k) | X = x} as a
function of n variables

Qk(w1, . . . , wn) =
∑n

i=1 wiYiT k
i (1 − Ti)

1−kKĥ{B̂T(Xi − x)}∑n
i=1 wiT k

i (1 − Ti)1−kKĥ{B̂T(Xi − x)}

evaluated at w = (w1, . . . , wn) = (1/n, . . . , 1/n), the infinitesimal jackknife estimator of variance
is n−2∑n

i=1 D̂2
k ,i, where D̂k ,i is the derivative of Qk with respect to w evaluated at (1/n, . . . , 1/n),

i.e., for k = 0 or 1,

D̂k ,i = YiT k
i (1 − Ti)

1−kKĥ{B̂T(Xi − x)}∑n
i=1 T k

i (1 − Ti)1−kKĥ{B̂T(Xi − x)} − Tk
T k

i (1 − Ti)
1−kKĥ{B̂T(Xi − x)}∑n

i=1 T k
i (1 − Ti)1−kKĥ{B̂T(Xi − x)} .

To estimate the variance of Ê{Y (1) − Y (0) | X = x}, we can directly apply the infinitesimal
jackknife estimator n−2∑n

i=1(D̂1,i − D̂0,i)
2.

Remark 7. The estimator (7) can be extended to estimate E[g{Y (k)} | X = x] for real-valued
functions g in the following way:

Ê[g{Y (k)} | X = x] =
∑n

i=1 g(Yi)T k
i (1 − Ti)

1−kKĥ{B̂T(Xi − x)}∑n
i=1 T k

i (1 − Ti)1−kKĥ{B̂T(Xi − x)} (k = 0, 1).

Model (1) guarantees that E[g{Y (k)} | X = x] = E[g{Y (k)} | BT
0X = BT

0x] for an arbitrary
function g.
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3. EFFICIENT ESTIMATION OF AVERAGE TREATMENT EFFECTS

3·1. Semiparametric efficiency bound and the efficient estimator

One should note that σ 2
eff is the efficiency bound for the nonparametric model without any

specification of the forms of π(X ), F0( y | X ) and F1( y | X ). Since model (1) imposes a
multi-indices structure on these distribution functions, some efficiency gain might be expected.
However, we have found that the dimension reduction structure (1) is ancillary for the estimation
of τ , so knowledge of the joint central subspace does not reduce the asymptotic variance bound.

THEOREM 2. Under model (1), the semiparametric efficiency bound of τ is σ 2
eff .

According to Rosenbaum & Rubin (1983) and Hansen (2008), the average treatment effects
τ can be consistently estimated through balancing scores or prognostic scores. In fact, if b(X )

satisfies

T {Y (0), Y (1)} | b(X ),

then τ = E[E{Y | T = 1, b(X )} − E{Y | T = 0, b(X )}], and τ can be estimated by

τ̂b = 1

n

n∑
i=1

[
m̂1{b(Xi)} − m̂0{b(Xi)}

]

where

m̂k{b(x)} =
∑n

j=1 YjT k
j (1 − Tj)1−kKς {b(Xj) − b(x)}∑n

j=1 T k
j (1 − Tj)1−kKς {b(Xj) − b(x)} .

Since m̂k{b(x)} is an estimator of mk{b(x)} = E{Y | T = k , b(X ) = b(x)}, we can follow the
proof of Hahn (1998) for nonparametric imputation estimators and obtain the asymptotic variance
of τ̂b as

E

([
m1{b(X )} − m0{b(X )} − τ

]2 + σ 2
1 {b(X )}

π{b(X )} + σ 2
0 {b(X )}

1 − π{b(X )}

)
(8)

where σ 2
k {b(X )} = var{Y (k) | b(X )}, under some regularity conditions. Under model (1) and

with b(X ) = BT
0X , the asymptotic variance attains the semiparametric efficiency bound σ 2

eff of
Hahn (1998).

A simple estimator of τ is

τ̂ = 1

n

n∑
i=1

{m̂1(B̂
TXi) − m̂0(B̂

TXi)},

where B̂ is an estimator of B0. In this study, we further show that the asymptotic variance of B̂
does not affect the asymptotic behaviour of τ̂ and that τ̂ is semiparametrically efficient.

Although the estimator of the average treatment effect is an average of conditional treatment
effects, one requires a different bandwidth to attain optimal undersmoothing. We first provide the
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asymptotic distribution of the proposed estimator for a range of bandwidths satisfying Condi-
tion A6 in the Supplementary Material; then a data-adaptive method for choosing the bandwidth
is discussed in § 3·2.

THEOREM 3. Suppose thatAssumption 1 and ConditionsA1–A6 in the Supplementary Material
are satisfied. Then n1/2(τ̂ − τ) → N (0, σ 2

eff ) in distribution as n → ∞.

In practice, the semiparametric efficiency bound can be estimated by a direct plug-in estimator

σ̂ 2
eff = 1

n

n∑
i=1

[
{m̂1(B̂

TXi) − m̂0(B̂
TXi) − τ̂ }2 + σ̂ 2

1 (B̂TXi)

π̂(B̂TXi)
+ σ̂ 2

0 (B̂TXi)

1 − π̂(B̂TXi)

]

where

σ̂ 2
k (BTx) =

∑n
i=1 T k

i (1 − Ti)
kY 2

i Kς {BT(Xi − x)}∑n
i=1 T k

i (1 − Ti)kKς {BT(Xi − x)} − m̂2
k(B

Tx) (k = 0, 1).

The bandwidth ς can be replaced by that used to estimate τ̂ .

Remark 8. A slight variation of τ̂ can be constructed in the spirit of Cheng (1994). Since
the potential outcomes are only partially unobservable, Cheng (1994) suggested imputing an
unobserved value with its conditional expectation. More precisely, the estimator is

1

n

n∑
i=1

([
TiYi + (1 − Ti)m̂1{b(Xi)}

]− [
(1 − Ti)Yi + Tim̂0{b(Xi)}

])
.

By paralleling the proof of Cheng (1994), one can show that the asymptotic distribution of this
estimator is the same as that of τ̂ , and hence neither is better in general. In our simulation studies,
we have found that this alternative estimator has slightly smaller bias than τ̂ and a very similar
standard deviation.

3·2. Bandwidth selection

As indicated in Theorem 3, the bandwidth ς used in the nonparametric imputation should
be smaller than the classical optimal bandwidth with rate n−1/(2q+d), so an important issue in
practice is how to select a proper bandwidth. Häggström & de Luna (2014) suggested minimizing
the conditional mean squared error of τ̂ , which is of the form

E

⎛
⎝[τ̂ − 1

n

n∑
i=1

{m1(B
T
0Xi) − m0(B

T
0Xi)}

]2 ∣∣∣∣ X1, . . . , Xn

⎞
⎠ .

In our simulation experiments we have found that the bandwidth ςk which minimizes the sample
analogue of the conditional mean squared error

E

⎡
⎣{1

n

n∑
i=1

m̂k(B
T
0Xi) − 1

n

n∑
i=1

mk(B
T
0Xi)

}2 ∣∣∣∣ X1, . . . , Xn

⎤
⎦ (k = 0, 1) (9)
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leads to a slightly better estimator for τ . The main difference is that Häggström & de Luna (2014)
used a local linear regression instead of a Nadaraya–Watson estimator to estimate the conditional
effects. Since we directly adopt the local constant smoothing estimator and the estimated optimal
bandwidth in the dimension reduction stage, a separate criterion might be helpful for alleviating
the boundary effects of the Nadaraya–Watson estimator. Following the proof of Häggström &
de Luna (2014), we can show that (9) is asymptotically equivalent to

1

n

∫
σ 2

k (BT
0x)fX (x)

πk(BT
0x){1 − π(BT

0x)}1−k
dx + σ 2

K

n2ςd0

∫
σ 2

k (BT
0x)

πk(BT
0x){1 − π(BT

0x)}1−k
dx

+ ς2q
(

μq,K

q!
)2
(∫ Dq

BTx
[mk(BT

0x)πk(BT
0x){1 − π(BT

0x)}1−k fBT
0 X (BT

0x)]
πk(BT

0x){1 − π(BT
0x)}1−k

−
mk(BT

0x)Dq
BTx

[πk(BT
0x){1 − π(BT

0x)}1−k fBT
0 X (BT

0x)]
πk(BT

0x){1 − π(BT
0x)}1−k

(1d , . . . , 1d) dx

)2

,

where μq,K = ∫
vqK(v) dv, σ 2

K = ∫
K2(v) dv, Dqf is the qth-order derivative of f in tensor

form, 1d = (1, . . . , 1)T with dimension d, and the optimal bandwidth is asymptotically equiva-
lent to Op{n−2/(2q+d0)}. According to Condition A6 in the Supplementary Material, we require
q > 3d0/2 to ensure the asymptotic normality of τ̂ if the estimated optimal bandwidth is used.
However, we find that the second-order kernel still works very well in practice. In addition,
consistency can be guaranteed under the weaker assumptions that h → 0 and nhd0 → ∞ as
n → ∞.

4. APPLICATION

In this section, we demonstrate our proposed method by applying it to the 2007–2008 National
Health and Nutrition Examination Survey, the main goal of which was to investigate the health
and nutrition statuses of children and adults in the United States. We focus on a subset of the
data (Kohn et al., 2014) and study whether participation in the National School Lunch or School
Breakfast programme would lead to an increase in body mass index for children and youths aged
4 to 17. The dataset contains 2330 children and youths, of whom 1284, 55%, participated in
the school meal programme. The covariates are child age, X1, child gender, X2, black race, X3,
Hispanic race, X4, family above 200% of the federal poverty level, X5, participation in the Special
Supplemental Nutrition Program for Women, Infants, and Children, X6, participation in the Food
Stamp Program, X7, a childhood food security measurement, X8, health insurance coverage, X9,
gender of survey respondent, X10, and age of survey respondent, X11.

The estimated structural dimension of the joint central subspace is 1 and the estimated linear
index is shown in Table 1. Based on this balancing score, the estimated average difference
in body mass index between participants and nonparticipants is 0·297 with a standard error
of 0·206. Furthermore, the 95% confidence interval (−0·127, 0·721) indicates an insignificant
difference in body mass index between participants and nonparticipants, which is consistent
with the conclusion that Chan et al. (2016) reached through weighting estimators. Therefore,
participation in the school meal programme does not seem to be correlated with excessive food
consumption.
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Table 1. Estimated linear index for the 2007–2008 National
Health and Nutrition Examination Survey data

Estimate (SE) Estimate (SE)

X1 1
X2 0·006 (0·0025) X7 0·016 (0·0025)
X3 0·004 (0·0021) X8 0·020 (0·0028)
X4 0·031 (0·0039) X9 0·002 (0·0013)
X5 −0·030 (0·0039) X10 0·029 (0·0015)
X6 0·000 (0·0027) X11 0·965 (0·0002)

SE, standard error.
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Fig. 1. Estimated difference in body mass index between participants and nonpar-
ticipants of the school meal programme plotted against the estimated linear index
for the 2007–2008 National Health and Nutrition Examination Survey data. The
solid line represents the estimated conditional effects and the dashed lines represent

pointwise 95% confidence limits.

Figure 1 plots the estimated difference in body mass index between the two groups as a function
of the estimated linear index. The standard errors are obtained using the infinitesimal jackknife.
In general, the difference in average body mass index between the two groups is insignificant.
However, the participants tend to have slightly higher body mass index than non-participants
when the linear index lies between 40 to 50, which is a reason behind the slightly positive
average treatment effects.

5. DISCUSSION

Recently Ma & Zhu (2013) introduced an efficient estimating equation, which is obtained
through a likelihood approach, to achieve the semiparametric efficiency bound of the central
subspace. However, the efficiency bound is derived under a fixed dimension and, in practice, the
true structural dimension is unknown. Our proposed estimator estimates the structural dimension
and the basis matrix simultaneously.

In observational studies, continuous treatments or exposures are also common. In the litera-
ture, a generalized propensity score has been introduced to estimate continuous treatment effects;
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see, for example, Imbens (2000). Since our proposed model can adapt the propensity and out-
come regression jointly, it would be interesting to extend this modelling approach to continuous
treatment regimes.
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