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�
 ABSTRACT 

Purpose: Peritoneal metastases (PM) in colorectal cancer 
portend a poor prognosis. We sought to elucidate molecular 
features differentiating primary tumors (PT) from PMs and ac-
tionable targets facilitating transcoelomic dissemination and 
progression. 

Experimental Design: We performed multiomic profiling of 
227 samples from 136 patients, including 56 PTs and 120 syn-
chronous PMs comprising 34 matched PT–PM pairs. Whole- 
exome and bulk RNA sequencing analyses were conducted to 
identify underlying genomic aberrations and transcriptomic dif-
ferences between primary and peritoneal lesions. We spatially 
characterized the microenvironment of tumor–stroma compart-
ments and studied the roles of stromal phenotypes in promul-
gating tumorigenesis. 

Results: Whole-exome sequencing found that genomic alter-
ations and clonality patterns between PTs and PMs remain 
broadly similar. Transcriptomic profiles, however, suggest a 

transition as tumors reach the peritoneum toward a more mes-
enchymal tumor profile and fibrotic tumor microenvironment. 
Applying spatial profiling, we identify a fibro-collagenous and 
immune-infiltrated stromal phenotype [stromal cluster (SC) 2] 
characterized by increased cancer-associated fibroblasts, memory 
B cells, M2 macrophages, and T-cell exhaustion. These findings 
were orthogonally validated by multiplex IHC. Patients with 
SC2 stroma had poorer survival and were characterized by high 
SERPINE-1 (PAI-1) expression. PMs in patients with SC2 stroma 
were associated with enriched oncogenic pathways such as TGF- 
β. PAI-1 inhibition of colorectal cancer PM cell lines with a novel 
biologic demonstrated reduced IL2–STAT5 and TGF-β pathways 
and cell death. 

Conclusions: Our findings unveil distinctive and actionable 
molecular signatures, offering deeper insights into the intricate 
cross-talk between tumor cells and stromal microenvironments 
enabling PM in colorectal cancer. 

Introduction 
Colorectal cancer, a leading cause of cancer-related death, often me-

tastasizes to the peritoneum, significantly worsening patient outcomes. 
For colorectal cancer peritoneal metastases (PM), systemic therapies are 
inadequate, necessitating novel treatment strategies (1). In the process 
of transcoelomic metastases, primary tumor (PT) cells undergo a 

multistep process, including detachment, migration, invasion, and 
neovascularization facilitated by the tumor microenvironment’s (TME) 
stromal compartment (2–6). Stromal and tumor cells engage in bidi-
rectional cell to cell communication in which tumor cells exploit stroma 
cells to acquire distinctive cancer hallmarks (7). 

Although the role of stroma in tumorigenesis is increasingly rec-
ognized, effective therapeutic targeting of the stromal compartment 
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remains conspicuously absent in modern clinical practice for colo-
rectal cancer PM. This stems from a lack of well-defined paracrine 
signaling targets in colorectal cancer PM, compared with other PM 
cancers such as in pancreatic or gastric cancer (6, 8–10). Although 
initial studies have provided some insights, further investigations are 
needed to identify unique actionable biomarkers within the colorectal 
cancer PM niche (10–12). 

This study aims to address this gap by analyzing the exomes, 
transcriptomes, and spatial profiles of both cross-sectional and pa-
tient matched PT and PM. Our findings unveil distinctive molecular 
signatures, offering deeper insights into the intricate paracrine 
communication pathways between the stromal microenvironment 
and tumor cells that enable PM in colorectal cancer. 

Materials and Methods 
Tissue samples from patients with colorectal cancer and co-

lorectal cancer PM who underwent surgery at the Singapore 
General Hospital, National Cancer Centre Singapore, and Fon-
dazione IRCCS Istituto Nazionale dei Tumori of Milan, Italy, 
between July 2001 and December 2021 were obtained. PT, PM, 
and adjacent normal tissue were obtained and constructed into 
two cohorts of tissue microarrays (TMA)—PM tissue samples 
from patients with colorectal cancer PM and matched PT tissue 
samples with PM tissue samples from patients with colorectal 
cancer PM. Patients with colorectal cancer PM who underwent 
surgery at the Singapore General Hospital and National Cancer 
Centre Singapore were prospectively recruited between August 
2006 and March 2022 (SingHealth Centralised Institutional Re-
view Board reference numbers 2015/2479 and 2020/2145). PT, 
PM, and adjacent normal tissue were sampled, and clinical data 
were obtained prospectively. This study was conducted in 

accordance with ethical principles consistent with the Declara-
tion of Helsinki. 

Whole-exome and whole-transcriptome sequencing 
For tissue that was rapidly frozen, bulk whole-exome sequencing 

(WES) and whole-transcriptome sequencing (WTS) analyses were 
conducted. Briefly, genomic DNA from snap-frozen tissue was 
extracted using the QIAamp DNA Mini Kit (Qiagen) and subse-
quently sequenced on the HiSeq platform to generate 150 bp paired- 
end sequencing reads (NovogeneAIT). Exome sequencing reads 
were aligned to the reference human genome hs37d5 using BWA- 
MEM (13). Mutect2 (14) was used in paired mode to generate so-
matic single-nucleotide variants and indels by comparing BAM files 
from tumor and matched normal or blood samples. Germline var-
iants were filtered using the gnomAD database, and a panel of 
normals was generated from all normal samples. Analysis of somatic 
variants was conducted with the maftools package (15). For RNA 
sequencing experiments, total RNA was extracted using the RNeasy 
Mini Kit (Qiagen). Libraries were sequenced on a HiSeq4000 se-
quencer using the paired-end 150 bp read option. Quality control 
(QC)–passed reads were aligned to the human reference CGRh38/ 
hg38 genome using STAR v.2.7.9a. Transcript abundance quantifi-
cation was performed using RSEM v1.3.3 (16). 

Spatial profiling—spatial transcriptomics and proteomics 
In the case of tissue preserved in formalin-fixed paraffin em-

bedding, spatial profiling was carried out utilizing the NanoString 
GeoMx digital spatial profiling (DSP) platform for spatial tran-
scriptomics and Lunaphore COMET for spatial proteomics. For 
NanoString GeoMX, a standard fluorescence-labeled morphology 
marker panel consisting of pan-cytokeratin for epithelial regions, 
CD45 for immune cells, α-smooth muscle actin for fibroblast, and 
nuclear stain was used as region of interest (ROI) selection refer-
ences. ROIs for each slide were drawn and selected. Data were 
analyzed by uploading the counts dataset from the Illumina run into 
the GeoMx DSP analysis suite. Biological probe QC was performed 
using default settings. For Lunaphore COMET, 4-µm-thick 
formalin-fixed, paraffin-embedded sections were first subjected to 
heat-mediated antigen retrieval. Sequential immunofluorescence 
protocol was then performed on the tissue sections using the 
COMET platform for the detection of six primary antibodies 
(aSMA, CD163, CD20, CD3, CD45, and CD68), with subsequent 
image acquisition. Positive cells for each marker were identified 
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Translational Relevance 
The discovery of stromal cluster 2, a stromal phenotype tied 

to poor prognosis, highlights molecular signatures that offer 
insights into tumor–stromal interactions, potentially leading to 
therapies targeting the tumor microenvironment in colorectal 
cancer. 
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using a web-based hyperplex tissue scoring system (Immuno-
Threshold; ImmunoQs Pte. Ltd.) through Gaussian mixture 
modeling. 

Unsupervised clustering of stromal compartments 
Unsupervised clustering of DSP-profiled samples was conducted 

with consensus clustering (17) with the CancerSubtypes (18) 
workflow. Q3-averaged normalized DSP-NGS GeoMx mRNA ex-
pression was utilized. The top 1000 genes of highest variance were 
utilized. Distances between patients were defined by Canberra dis-
tances and clustering was conducted with the partitioning around 
medoids (PAM) algorithm. 

Retrieval of the stromal cluster 2 signature 
The stromal cluster 2 (SC2) signature was retrieved by identifying 

the top 1000 genes of highest variance which were ranked by the sum 
of t-statistics (unpaired t tests) across the following comparisons: 
SC2 versus SC1, SC2 versus SC3, and SC2 versus tumor ROIs. Only 
genes with P-adjusted values of <0.05 across all three comparisons 
were included. Top 10 (up- and downregulated) differentially 
expressed genes were selected. The final composite and bidirectional 
SC2 signature was retrieved through the singscore (19) package in R. 

Methods of A5 discovery and validation 
Ascites collection 

All patients provided written informed consent according to the 
study protocol approved by the SingHealth Centralised Institutional 
Review Board (ref: 2015/2479). Ascitic fluid was collected from the 
peritoneal cavity at the beginning of cytoreductive surgery (CRS) or 
during routine paracentesis and subjected to centrifugation at 
2,000 g for 10 minutes to remove cellular components. The fluid 
component was then filter-sterilized using the 0.22 µm filter and 
stored at �80°C. 

Cell line 
Colo-205, a human colorectal cell line representative of PM, was 

purchased from ATCC (CCL-222) in November 2015 and cultured 
in RPMI-1640 with 10% FBS (HyClone, SV30160) supplemented 
with 100 U/mL penicillin and 100 µg/mL streptomycin (HyClone, 
SV30010) at 37°C with 5% CO2. Cell line authentication was per-
formed by ATCC via short tandem repeat profiling. Before experi-
ments, Colo-205 cells were starved overnight in serum-free RPMI 
medium (SFM). The cells were maintained in culture for no more 
than 20 passages and/or less than 6 months following retrieval from 
liquid nitrogen storage and were free from Mycoplasma as tested 
using the MycoAlert Mycoplasma detection kit (Lonza, LT07-318). 

Animal 
All mice experiments were carried out according to the protocol 

approved by the SingHealth Institutional Animal Care and Use 
Committee (ref: 2020-/SHS/1610). All mice used in this study 
were 6- to 9-week-old NCr nude mice purchased from InVivos 
(CrTac:NCr-Foxn1nu). Mice were provided Teklad global 18% 
protein rodent diet (Envigo) and water ad libitum. 

Antibody discovery by phage display 
Phage display was performed to screen for antibodies from the 

single-chain antibody variable fragment (scFv) human-näıve LiAb- 
SFMAX library generated from 368 healthy donors of five ethnic 
groups (ProteoGenix). Briefly, a 50% to 50% mixture of stable active 

(Innovative Research, IHUPAI1RSM1MG) and latent (Innovative 
Research, IHUPAI1RWTL1MG) forms of human PAI-1 recombinant 
protein was used as antigens to attract phages that recognize PAI-1 in 
four subsequent biopanning rounds. ELISA was performed with 
elution of each round on the PAI-1 mixture to evaluate their recog-
nition of PAI-1. The specificity of 240 monoclonal phages from the 
selected elution to the PAI-1 mixture, active PAI-1, and latent PAI-1 
was evaluated by ELISA. Subsequently, competitive ELISA was per-
formed to screen for phages capable of competing with PAI-1 small- 
molecule inhibitors (50%–50% mix of TM5441 and tiplaxtinin). 
Eventually, one phage sequence was identified and expressed in the 
format of IgG kappa in the Chinese hamster ovary cells. The 
endotoxin-removal process was performed on the antibody to 
reach <1 EU/mL for the in vitro and in vivo experiments. 

Western blotting 
A total of 100 ng of active (Innovative Research, IHU-

PAI1ARWT1MG), stable active, and latent forms of PAI-1 
recombinant proteins were denatured at 97°C for 5 minutes and re-
solved in 12% polyacrylamide gels in Tris/glycine/SDS running buffer 
(24.76 mmol/L Tris, 191.83 mmol/L glycine, and 0.1% SDS), followed 
by transfer to 0.45 μm nitrocellulose membranes (Bio-Rad, 1620115) 
in Tris/glycine/methanol transfer buffer (24.76 mmol/L Tris, 
191.83 mmol/L glycine, and 20% methanol). Precision Plus Protein 
Dual Color Standards (Bio-Rad, #1610374) was used as the protein 
ladder. The following steps were performed at room temperature. The 
membranes were blocked with 5% non-fat milk in 1� PBS containing 
0.1% Tween 20 (PBST) for 1 hour before blotting with 1 µg/mL 
A5 antibody, 1 µg/mL unspecific human IgG (Sigma, I5154), or 
1:10,000 rabbit anti–PAI-1 antibody (Cell Signaling Technology, 
11907) for 2 hours. After four washes (5 minutes per wash) in PBST, 
the membranes were blotted with 1:5,000 peroxidase anti–human IgG 
antibody (Jackson ImmunoResearch, 109-035-003) or 1:5,000 anti– 
rabbit horseradish peroxidase–conjugated antibody (GE Healthcare, 
NA934) for 30 minutes. After another four washes in PBST, the 
membranes were incubated with SuperSignal West Dura Substrate 
(Thermo Fisher Scientific, 34076) for 5 minutes and the signals were 
captured by the ChemiDoc imaging system (Bio-Rad). 

PAI-1 neutralization assay 
The PAI-1 function in inhibiting tissue-type plasminogen acti-

vator (tPA) activity was assessed by the PAI-1 Activity Assay Kit 
(Abcam, ab283368). In a 100 μL reaction, 300 ng/mL stable active 
PAI-1 was incubated with 1 µg A5, 1 µg unspecific human IgG 
(Sigma, I5154), or PBS vehicle for 60 minutes at 37°C. Then 20 µL of 
this mixture was incubated with 20 µL of 40 U/mL tPA supplied in 
the kit at room temperature for 20 minutes. The rest steps followed 
the manufacturer’s instructions. Triplicates were performed for 
statistical analyses. 

The PAI-1 function in inhibiting urokinase-type plasminogen 
activator (uPA) activity was assessed by the uPA Activity Assay Kit 
(Merck, ECM600). In a 200 µL reaction, 100 ng stable active PAI-1 
was incubated with 1 µg A5, 1 µg unspecific human IgG (Sigma, 
I5154), or PBS vehicle for 60 minutes at 37°C. Then 150 µL of this 
mixture was incubated with 10 µL uPA supplied in the kit. The rest 
steps followed the manufacturer’s instructions. Triplicates were 
performed for statistical analyses. 

Nuclear magnetic resonance spectroscopy 
19F nuclear magnetic resonance (NMR) spectroscopy was ob-

tained on a Bruker 400 MHz equipped with a BBO probe at 25°C 
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(Bruker Instruments). In a 500 μL reaction, 75 µmol/L tiplaxtinin 
was incubated with 3.2 µmol/L stable active PAI-1 in PBS buffer for 
20 minutes at room temperature. In the sample, 0.00067% 1,1,1- 
trifluoroacetate and 10% D2O were included and used as the 
chemical shift reference and lock reagent, respectively. The NMR 
spectra of tiplaxtinin in the absence and presence of 10 μg A5 were 
collected by standard 1D 19F-NMR. The parameters for data ac-
quisition were the number of scans of 128, the spectra width of 
80 parts per million, the sample temperature of 298k, the delays of 
1 second, and the middle point of spectrum at �80 parts per mil-
lion. The data were baseline-corrected and axis-calibrated using 
Topspin (Bruker, version 4.0.9). 

In vitro proliferation inhibition 
In 96-well plates, 5,000 Colo-205 cells/well were seeded in tech-

nical triplicate and were grown in SFM supplemented with 5% as-
cites or SFM supplemented with 10% FBS for 24 hours, followed by 
the treatment with 150 µg/mL A5, 150 µg/mL unspecific human IgG 
(Sigma, I4506), or PBS vehicle for 72 hours at 37°C. Cell viability 
was then determined by the CellTiter-Glo assay (Promega, G7570). 
Cell viability was normalized to the PBS control and statistical an-
alyses were performed on biological triplicates. 

STAT3 inhibition assay 
In 12-well plates, 8 � 105 Colo-205 cells/well were seeded and 

incubated in SFM supplemented with 5% ascites and various con-
centrations of A5, unspecific human IgG (Sigma, I4506), or PBS 
vehicle for 16 hours at 37°C. The harvested cells were lysed with lysis 
buffer (Cell Signaling Technology, 9803S) in the presence of pro-
tease and phosphatase inhibitors (Thermo Fisher Scientific, 
1861281), followed by total protein concentration measured by 
Bradford protein assay (Bio-Rad, 5000006). Then 25 μg of the 
protein lysate was used to measure total STAT3 and p-STAT3 
(Tyr705) by ELISA using the PathScan Total Stat3 Sandwich ELISA 
kit (Cell Signaling Technology, 7305C) and the PathScan Phospho- 
Stat3 (Tyr705) Sandwich ELISA kit (Cell Signaling Technology, 
7300C), respectively. All samples were measured in two technical 
replicates as per the manufacturer’s instructions. Biological tripli-
cates were performed for statistical analyses. 

Transcriptome sequencing 
In 12-well plates, 8 � 105 Colo-205 cells/well were seeded and 

incubated in SFM supplemented with 5% ascites and 100 µg/mL of 
A5 or 100 µg/mL unspecific human IgG (Sigma, I4506) for 24 hours 
at 37°C in two biological replicates. The total RNA was extracted 
using the AllPrep RNA/DNA/miRNA Universal kit (Qiagen, 
80224). Total RNA libraries were generated using TruSeq Stranded 
Total RNA with Ribo-Zero H/M/R_Gold (Illumina) and then se-
quenced on the Illumina NovaSeq platform at paired-end 
151 bp. Expression profiles were calculated for each sample and 
transcript/gene as read count, fragment per kilobase of transcript 
per million mapped reads, was used for downstream analyses. 

Other statistical methods and reproducibility 
Survival analysis was conducted using a multi-variate Cox pro-

portional hazards model with the survival package in R. The median 
follow-up time was retrieved using the reverse Kaplan–Meier 
method with the prodlim package in R. A two-sided t test was used 
for continuous variables with normal distributions, and a two-sided 
Wilcoxon test was used for non-normally distributed variables. 
ANOVA was used for comparisons between multiple groups. The 

Fisher exact test was applied to unpaired count data, and the 
McNemar test was applied to paired data. 

Further details are reported in the Supplementary Methods S1. 
All analyses were undertaken in R-4.2.0. A two-sided P value of less 
than 0.05 was considered statistically significant. 

Data availability 
The genomic and transcriptomic data have been deposited at the 

European Genome-phenome Archive under accession number 
EGAS50000000813. Other data used in this study are available on 
request. Correspondence and requests for materials should be 
addressed to Raghav Sundar, Patrick Tan, or Chin-Ann Johnny 
Ong. The code utilized in this study is publicly available in the 
following Github repository: github.com/josephjzhao/crcpm. 

Results 
Cohort overview 

Peritoneal tissue samples were predominantly collected during 
diagnostic laparoscopies or laparotomies and oncological surgical 
resections including CRS and hyperthermic intraperitoneal che-
motherapy (HIPEC). One hundred and thirty-six patients with 
synchronous colorectal cancer PM were recruited. The median age 
was 54.00 years (IQR, 45.90–63.38) and the majority were female 
(66.9%), Chinese (71.8%), and advanced PT (T4 tumor, 70.1%; 
N2 tumor, 44.7%). The median peritoneal carcinomatosis index 
score was 11 (Supplementary Table S1A). From these patients, a 
total of 227 samples, comprising 56 colorectal cancer PT and 
120 PM samples were included (Fig. 1A and B). A total of 34 pa-
tients had paired PT–PM samples. Further information on the 
availability of paired samples is reported in Supplementary Table 
S1B and S1C. 

Clonality and shared genomic alterations in primary and 
peritoneal metastatic colorectal cancer 

WES was performed on 25 PT and 43 PM colorectal cancer 
samples from 30 patients to assess differences in genomic land-
scapes and clonality patterns. The most frequently mutated genes in 
our cohort included tumor suppressor genes TP53 (51%) and APC 
(38%), oncogene KRAS (26%), and tumor suppressor gene SMAD4 
(18%; Fig. 1C; Supplementary Fig. S1). In line with previous reports 
(20–22), a relatively lower proportion of APC mutations were found 
in PM samples (Fig. 1C). In contrast to previous reports by Stein 
and colleagues (21), no significant differences were found in the 
frequency of driver mutations between PT and PM. Notwith-
standing, it is worth noting that a lower proportion of SMAD4 
(OR ¼ 0.344, P ¼ 0.108), NBEA (OR ¼ 0.306, P ¼ 0.132), and 
RNF43 (OR ¼ 0.400, P ¼ 0.409) mutations were found in peritoneal 
tumors and a higher proportion of HSPG2 (OR ¼ 3.829, P ¼ 0.248) 
mutations were found in PM, although these comparisons did not 
reach statistical significance (Fig. 1D). Consistent with previous 
reports by Stein and colleagues (21), no significant differences in 
tumor mutational burden (P ¼ 0.708) were found. Likewise, no 
significant differences in the fraction of altered genome compart-
ments (P ¼ 0.810), median minor allele frequency (P ¼ 0.860), 
whole-genome duplication (P ¼ 0.736), and clonality (P ¼ 1.000) 
were found (Fig. 1E). These findings suggest that through the 
process of transcoelomic PMs, tumor cells remain largely clonal in 
origin, arising from the same ancestral cell as the PT. This may 
indicate that the metastatic process may not have involved signifi-
cant additional driver mutations or suggest a phenomenon in which 
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tumor cells evolved linearly with clonal dominance (23). This lack of 
genomic divergence between PT and PM, despite the differing 
peritoneal organotropism, motivated our investigation of the TME 
and gene expression patterns using WTS. 

Transcriptional landscape of colorectal cancer PM reveals 
niche adaptation and microenvironmental remodeling 

WTS was conducted on 28 PT, 44 PM, 18 primary normal, and 
14 grossly uninvolved peritoneal normal (PMN) samples from 
34 patients. In contrast to the broadly similar PT/PM genomic 
landscapes revealed by WES, we appreciated greater distinction 
across gene expression profiles, suggesting greater involvement of 
transcriptional reprogramming in the metastatic process (Fig. 2A). 
Pathways such as IL6–JAK–STAT3 signaling, TGF-β, and angio-
genesis were found to be significantly enriched in PM (Fig. 2B; 

Supplementary Table S2A). This suggests an active TME with po-
tential roles in supporting tumor cell survival and growth in the 
peritoneal cavity. Analysis of cell type proportions using various 
deconvolution algorithms (CIBERSORT/xCell) revealed significant 
increases in M2 macrophages, endothelial cells, myeloid dendritic 
cells, and cancer-associated fibroblast (CAF) proportions in perito-
neal tumors. Conversely, plasma B cells and memory resting CD4+ 

T cells were reduced in peritoneal tumors (Fig. 2C). These changes 
are consistent with a more immunosuppressive and pro-angiogenic 
TME in the peritoneal cavity, potentially facilitating metastasis. 

We also found that as tumor samples transition toward the peri-
toneum, samples become increasingly mesenchymal [epithelial– 
mesenchymal transition (EMT) score (24), P ¼ 0.02] and have 
lower tumor purity scores [ESTIMATE (25) algorithm, P ¼ 0.0026]. 
Consistent with previous reports by Lenos and colleagues (20), a 
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greater proportion of consensus molecular subtypes (refs. 26, 27) 4 
(mesenchymal) subtype (P ¼ 0.009) were found among peritoneal 
samples. Peritoneal samples were characterized by prominent TGF-β 
activation, stromal invasion, and angiogenesis among PM samples. 
We also noted a trend toward PM samples more likely to be char-
acterized with a fibrotic or an immune-enriched/fibrotic TME 

(Fig. 2D). These TME subtypes were previously described to have 
dense collagen formation, stromal content, and poor prognosis 
(Supplementary Table S2B; ref. 28). Although these differences could 
be partly attributed to sampling bias (in which PT biopsies were more 
enriched in epithelial cells whereas PM biopsies were more fibrotic), 
the WTS data suggest a potential role for TME remodeling in PM. 
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Figure 2. 
Transcriptomic and microenvironmental evolution in transcoelomic metastasis. A, UMAP of gene expression profiles of primary and peritoneal tumor samples in 
colorectal cancer (PT, n ¼ 28; PM, n ¼ 44). B, Gene set enrichment analysis pathway changes between primary and peritoneal tumor samples (PT, n ¼ 28; PM, 
n ¼ 44). Pathways were shown if |NES| was greater than 1.00. Pathways were highlighted if adjusted P values were less than 0.05. C, Immune deconvoluted cell 
subtypes by xCell and CIBERSORT (PT, n ¼ 28; PM, n ¼ 44). Comparisons were undertaken with an unpaired t test. Immune cells were shown if |t-statistic| was 
greater than 1.75. Immune cells were highlighted if P values retrieved from an unpaired t test were less than 0.05. D, Differences in EMT score (24), tumor purity 
[ESTIMATE (25) algorithm], CMS (26, 27) subtype, and TME subtype (PT, n ¼ 28; PM, n ¼ 44; ref. 28). E, Ranked analysis of putative targets in paired PT–PM 
comparisons. Genes were highlighted if P < 0.05 on a paired t test. F, Violin plots of tumor and (G) immune-related putative therapeutic targets in colorectal 
cancer PM (unpaired: PT n ¼ 28 and PM n ¼ 44; paired: PT n ¼ 27 and PM n ¼ 36). H, Overview of prognostic significance (overall survival) of identified putative 
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low) was dichotomized by median gene expression. I, Kaplan–Meier plots of SERPINE-1 expression vs. overall survival in primary and peritoneal tumor samples. J, 
Scatter plot of EMT score and SERPINE-1 gene expression. The relationship was assessed using Pearson correlation. CMS, consensus molecular subtype; F, 
fibrotic; FPKM, fragment per kilobase of transcript per million; IE, immuno-enriched; NES, normalized enrichment score; UMAP, Uniform Manifold Approximation 
and Projection for Dimension Reduction. 
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To better understand the inherent phenotype of the grossly unin-
volved peritoneum, we also compared PM to PMN. As anticipated, 
we identified enrichment of several oncogenic pathways when com-
paring PM to adjacent PMN samples. The enrichment of 
MTORC1 signaling, E2F targets, the G2–M checkpoint, stem cell 
pathways, and TGF-β signaling in PM highlights the aggressive 
proliferative nature of metastatic cells (Supplementary Fig. S2A). On 
immune deconvolution, we found a corresponding increase in 
CD4 T cells, M1 and M2 macrophages, and plasmacytoid dendritic 
cells within PM (Supplementary Fig. S2B). However, CAFs and 
endothelial cells, which were previously identified to be enriched 
in PM when compared with PT, were found to be even greater in 
adjacent PMN samples compared with PM. To further investi-
gate this, we compared the adjacent PMN samples (n ¼ 14) 
against six benign PMN samples retrieved from patients with 
nonmalignant and non-infectious conditions (primary diagnoses 
detailed in Supplementary Table S2C; ref. 6). We found that the 
corresponding increased preponderance of CAFs and endothelial 
cells was not observed in these benign PMN samples (Supple-
mentary Fig. S2C and S2D). Together, these data suggest a 
process in which the grossly uninvolved peritoneum also un-
dergoes remodeling to create a supportive niche for colorectal 
cancer PM, primarily driven by endothelial cells and CAFs. This 
phenomenon emphasizes the dynamic interactions within the 
peritoneum microenvironment that support metastasis. 

Clinically relevant genes of interest in colorectal cancer PM 
We inspected several clinically relevant tumor and immune- 

related genes of interest with therapeutic relevance, comparing ex-
pression levels between PT and PM. Twelve genes (six tumor- 
related and six immune-related) were identified to be differentially 
expressed between PT and PM on paired analyses (Fig. 2E, full list 
of genes in Supplementary Table S2D). Notable examples are DKK1 
(dickkopf WNT signaling pathway inhibitor 1), known as an an-
tagonist of the Wnt/β-catenin signaling pathway, which was found 
to have significantly higher expressions in PM samples (paired t test, 
P ¼ 2.6e�06). Likewise, SERPINE-1 (or PAI-1), known for its in-
volvement in remodeling of the colon cancer microenvironment 
and the infiltration of immune cells via the Notch pathway (29), was 
found to have significantly higher expressions in PM samples 
(paired t test, P ¼ 6.9e�04). Other notable tumor-related genes with 
higher expressions in PM samples include FGFR1, NTRK2, and 
TEAD1 (Fig. 2F). Among the immune-related targets, higher ex-
pression of PDCD1 (or PD-1), PRF1, IFNG, HAVCR2, and 
TNFRSF17 was found in PM samples (Fig. 2G). 

We evaluated whether gene expression profiles of these differ-
entially expressed genes had a prognostic significance. Patients with 
high SERPINE-1 expression in peritoneal tumors were associated 
with poorer survival (HR ¼ 4.01, log-rank, P ¼ 0.042). A similar 
trend toward poorer survival was observed in patients with high 
SERPINE-1 expression in PT samples as well, although this was not 
statistically significant (HR ¼ 2.48, log-rank, P ¼ 0.28; Supple-
mentary Fig. S2E). In a similar cohort of patients with colorectal 
cancer PM by Lenos and colleagues (20), patients with higher PAI-1 
expression in PM samples were also found to have poorer survival 
(HR ¼ 2.20, P ¼ 0.047; Supplementary Fig. S2F). In the same vein, 
patients with high SERPINE-1 expression in The Cancer Genome 
Atlas (TCGA) COAD cohort were found to have poorer survival, 
although this did not reach statistical significance (HR ¼ 1.42, 
P ¼ 0.14; Supplementary Fig. S2G). No significant survival differ-
ences were found with the other identified gene targets (Fig. 2H and 

I). SERPINE-1 was also found to be significantly associated with 
EMT scores (Pearson r ¼ 0.437, P ¼ 1.39e�04), in which samples 
with higher SERPINE-1 expression were more mesenchymal 
(Fig. 2J). 

Microenvironmental convergence at spatial resolution 
between PT–PM 

To further dissect the interplay between tumor cells and the 
surrounding stroma, we also performed spatial profiling, aiming to 
investigate gene expression programs specifically within the tumor 
and stromal compartments of both PT and PM. A total of 
342 spatially resolved ROIs from 96 patients were analyzed with 
NanoString GeoMx DSP (Figs. 1B and 3A). QC parameters were 
reported in Supplementary Table S3A. Hematoxylin and eosin 
(H&E) staining was performed from each TMA block, and a pa-
thologist (S. Srivasava) delineated specific ROIs, including tumor, 
stroma, and normal for each tissue core within the TMA map. The 
initial pathologist readings were verified by a second pathologist (M. 
Teh). The adjacent slide was processed using the GeoMx Human 
Whole Transcriptome Atlas protocol (NanoString). ROI selection 
was guided by immunostaining with four markers: DNA, CD45, 
pan-cytokeratin, and smooth muscle actin. A median of 37 ROIs 
(IQR, 32–38) was selected from a total of nine TMA slides. A total of 
269 ROIs (181 tumor and 88 stroma) from PM samples, 45 ROIs 
(34 tumor and 11 stroma) from PT samples, and 28 (all stroma) 
ROIs from primary normal samples were retrieved and profiled. 

Uniform Manifold Approximation and Projection analysis of 
DSP ROIs demonstrated clear segregation of tumor and stromal 
compartments from primary adjacent normal ROIs. Interestingly, 
compartment specific overlap (tumor and stroma) was seen between 
PT and PM (Fig. 3B). Between stromal and tumor compartments, 
CD8 T cells, CD4 T cells, and neutrophils were higher in tumor 
compartments whereas fibroblasts, macrophages, endothelial cells, 
B cells, and NK were higher in stromal compartments (Fig. 3C and 
D). The immune cell type changes found between tumor and 
stromal compartments were shown to be concordant between pri-
mary and peritoneal samples (Pearson r ¼ 0.963, P < 0.001; 
Fig. 3D). The spatially resolved patterns of similarity in the mi-
croenvironment of PT and PM tumors reflect hypotheses previously 
suggested by Cambria and colleagues (30), in which physical ad-
aptations conducive to metastasis persist as cellular mechanical 
memory during the metastatic journey, enhancing the ability of 
tumor cells to exit blood vessels, survive, and establish themselves in 
distant organs. These immune cell types were also consistent with 
changes identified in our earlier WTS PT–PM comparisons, rein-
forcing their likely role in transcoelomic metastasis. 

We validated these findings with spatial multiplex IHC (mIHC; 
Fig. 3E). A total of 773,803 cells were retrieved from 495 ROIs from 
10 slides (n ¼ 6 PT and n ¼ 4 PM) from six patients. Retrieval of 
cell types is described in the Supplementary Methods in the Spatial 
Proteomics – Lunaphore COMET section. A total of 525,859 im-
mune cells were retrieved with minimal overlap found (Supple-
mentary Table S3B; Supplementary Fig. S3A and S3B). Consistent 
with the TME convergence phenomenon shown in our DSP data, 
compartment-specific PT–PM comparisons of cell type proportions 
were broadly consistent (Fig. 3F) with spatial coordinate informa-
tion surrounding the tumor stromal interface. We observed in-
creased CD163 macrophages in peritoneal stromal compartments, 
reduced CD68 macrophages in peritoneal tumor compartments, 
and reduced T cells within stromal compartments of peritoneal 
samples. There is a relative increase in fibroblast infiltration within 
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peritoneal tumor compartments compared with PT compartments 
(Fig. 3G and H). Furthermore, we observed a significantly increased 
proportion of exhausted cytotoxic T cells (CD8+PD-L1+, PM: 14.5% 

vs. PT: 2.6%; χ2 test, P < 2.2e�16) and regulatory T cells (CD4+-
FOXP3+, PM: 28.7% vs. PT: 18.2%; χ2 test, P < 2.2e�16) within 
tumor compartments of PM versus PT (Supplementary Fig. S3C). 
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Figure 3. 
Microenvironmental convergence between PT–PM. A, Illustration of DSP ROI retrieval with NanoString GeoMx. B, UMAP of spatially resolved ROIs in CRC PM. C, 
Heatmap of SpatialDecon (31) enumerated immune cell types. D, Scatter plot of immune cell type comparisons between tumor–stromal compartments in PT and 
PM. Immune cell types were highlighted if P < 0.05 from the Dirichlet regression model in either comparison. E, Illustration of COMET Lunaphore mIHC. F, 
Stacked barchart of cell type proportions stratified by ROI location (stroma vs. TSI vs. tumor) and site (PT vs. PM). G, Immune cell type density curves against 
distance from TSI stratified by PT vs. PM. H, Immune cell type density curves against distance from TSI stratified by immune cell types. Tumor compartments 
were taken to be at negative distance whereas stromal compartments were taken to be at a positive distance from the TSI. Smoothed conditional means density 
curves were retrieved with the geom_smooth() function in ggplot2. I, Average immune cell type–specific nearest neighbor distance per ROI stratified by immune 
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We also inspected the degree of cell-specific clustering, reflected by 
the average nearest neighbor distance per ROI, and found that 
compared within stromal compartments, B cells (P ¼ 0.039) and 
CD68 macrophages (P ¼ 0.053) in peritoneal stromal compartments 
were more dispersed compared with PT stromal compartments. 
Conversely CD163 macrophages were more clustered in PM 
(P ¼ 0.0022; Fig. 3I). These findings underscore that although 
broad cell type distributions were converged between PT–PM, some 
degree of cell subtype spatial heterogeneity is appreciated. 

Spatially resolved stromal phenotypes in colorectal cancer PM 
Considering the differential immune cell proportions within the 

tumor and stroma compartments, we sought to further delineate 
stromal phenotypes of colorectal cancer PM. We selected stroma 
ROIs and performed consensus clustering, identifying three dis-
tinct clusters of stromal ROIs [stromal cluster 1 (SC1) n ¼ 58; 
SC2 n ¼ 36; and SC3 n ¼ 19; Fig. 4A; Supplementary Fig. S4A and 
S4B]. SC3 was found to predominantly comprise primary normal 
stroma, whereas SC1 and SC2 had a mix of primary and peritoneal 
ROIs, with SC2 having a greater proportion of peritoneal samples 
(91.7% vs. 77.6%; Fig. 4B). After excluding patients with only tumor 
ROIs (n ¼ 37, no profiled stromal ROI available), minimal intra- 
patient stroma cluster heterogeneity was noted, with only nine 
(15.3%) patients displaying two or more stromal clusters (Fig. 4C). 
We found that patients with SC2, regardless of sample site, were 
significantly associated with poorer overall survival (log-rank, 
P ¼ 0.036; Fig. 4D). For patients with SC2 in PM alone, a trend 
toward poorer overall survival was appreciated (log-rank, P ¼ 0.10; 
Supplementary Fig. S4C). Conversely, no significant association was 
found between SC2 and survival among patients with SC2 in PT 
alone (log-rank, P ¼ 0.39). Notwithstanding, survival analysis of the 
PT subgroup was difficult to interpret in view of the small number 
of patients (n ¼ 7; Supplementary Fig. S4D). On gross inspection of 
H&E slides of stromal ROIs, we found that histologic features of 
fibro-collagenous stroma (SC1 50.0% vs. SC2 75.0%, P ¼ 0.019) and 
the presence of inflammatory immune cells (SC1 3.4% vs. SC2 
25.0%, P ¼ 0.002) were more commonly noted in SC2 compared 
with SC1 ROIs. SC1 also had a higher proportion of grossly bland 
stroma on H&E inspection as compared with SC2, although this did 
not reach statistical significance (15.5% vs. 5.6%, P ¼ 0.195; Fig. 4E; 
Supplementary Table S4). 

Characteristics of SC2 stromal compartments 
Consistent with gross histologic appearances, several inflamma-

tory pathways such as the IL6–JAK–STAT3, IL2–STAT5, and TGF- 
β were enriched in SC2. EMT scores were also higher in 
SC2 compared with other stromal phenotypes and tumor com-
partments (Fig. 4F). SC2 ROIs were characterized by increased fi-
broblasts, macrophages, myeloid dendritic cells, and B cells (31). 
Conversely, CD4 and CD8 T cells were found to be decreased in 
SC2 ROIs (Fig. 4G). We further inspected cell subtypes with pre-
viously described signatures of CAF subtypes (32), B-cell subtypes 
(33), and macrophage subtypes (34). Specifically, we found that 
gene set variation analysis scores of B memory cells and M0 
and M2 macrophages were uniquely higher in SC2 compart-
ments whereas a majority of CAF subtypes were higher in SC2. We 
also found that T-cell exhaustion signatures (35) were higher in 
SC2 compartments (Supplementary Fig. S4E). Gene expression 
profiles of SERPINE-1 were specifically high in SC2 stroma 
(Fig. 4H). Consistent with the upstream WTS findings, SERPINE-1 
expression was associated with gene set variation analysis EMT 

enrichment scores (Pearson r ¼ 0.483, P ¼ 6.06e�08; Fig. 4I). The 
TGF-β signaling pathway, recognized as a key player in PT–PM 
WTS comparisons, was found to be enriched in tumor compart-
ments from patients with SC2 stroma in contrast to those without 
SC2. Other pathways such as the TNF-α, hypoxia, and JAK–STAT 
were also enriched but these did not reach statistical significance. 
Conversely, p53 and PI3K pathway activity was found to be sig-
nificantly lower (Fig. 4J). 

By inspecting mIHC retrieved immune cell type densities across 
ROIs, we confirmed a similar phenomenon in which two distinct 
stromal clusters were found—one being fibroblast infiltrated but 
T-cell depleted (SC2-like, n ¼ 67 ROI) and another which is T-cell 
infiltrated but fibroblast depleted (SC1-like, n ¼ 104 ROI; Fig. 4K). 
There was no significant difference between distance from the tumor 
stromal interface between stromal phenotypes in both PT and PM (t 
test, PT P ¼ 0.65; PM, P ¼ 0.20; Supplementary Fig. S4F). In contrast 
to what we identified in the DSP data, we note that a higher pro-
portion of SC2-like stromal ROIs conversely originated from PT (χ2 

test, P ¼ 0.036, Supplementary Fig. S4G). We demonstrate diverging 
spatial distributions of T cells and fibroblasts between SC1 and SC2- 
like stroma. Between both PT and PM, we find close clustering of 
T cells in SC1-like stromal compartments (t test, PT: P ¼ 4.2e�11; 
PM, P ¼ 4.1e�07) and fibroblasts in SC2-like stromal compartments 
(t test, PT: P ¼ 1.9e�05; PM, P ¼ 5.5e�04; Fig. 4L and M). 

Prognostic significance of the SC2 phenotype 
Next, a 20-gene composite and bidirectional SC2 signature 

(Fig. 5A; Methods: Retrieval of the SC2 signature) was curated by 
collating top differentially expressed genes (both up- and down-
regulated) between SC2 versus SC1, SC2 versus SC3, and SC2 versus 
tumor ROIs (Supplementary Table S5). The SC2 signature dem-
onstrates good internal validation in discriminating SC2 from other 
compartments (Fig. 5B and C). We applied the SC2 signature in a 
parallel colorectal cancer PM cohort described by Lenos and col-
leagues (20). Patients with a high SC2 signature were likewise found 
to have poorer survival (log-rank, P ¼ 0.041) and higher expression 
of SERPINE-1 (t test, P ¼ 1.3e�07). A subgroup survival analysis of 
only peritoneal samples from Lenos and colleagues demonstrated a 
similar trend, although statistically significance was not reached 
(log-rank, P ¼ 0.15; Supplementary Fig. S5). Similar findings were 
also seen in other colorectal cancer cohorts of PT samples (Q1 vs. 
Q4 comparisons: TCGA (36), log-rank P ¼ 0.004; Gallois and col-
leagues (37), log-rank P ¼ 0.086), along with corresponding higher 
expressions of SERPINE-1 (TCGA, P < 2.2e�16; Gallois and col-
leagues, P ¼ 0.049; Fig. 5D). Overall, these findings suggest a pro- 
tumorigenic stromal phenotype which is characterized by increased 
CAFs, T-cell exhaustion, and high SERPINE-1 and is associated with 
poor prognosis in colorectal cancer PM. 

SERPINE-1 (or PAI-1) inhibition reverses EMT in colorectal 
cancer PM in a PAI-1–positive environment 

Having identified SERPINE-1, also known as PAI-1, as a crucial 
target involved in transcoelomic metastasis, we sought to develop a 
PAI-1–neutralizing antibody as a potential therapeutic strategy for 
colorectal cancer PM. 

Discovery of A5, a PAI-1–neutralizing antibody 
A phage display was performed with a large human-näıve library 

of scFv by panning on a mixture of PAI-1 of active and latent 
conformations followed by screening for phages recognizing PAI-1 
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using ELISA (Fig. 6A). Additionally, competitive ELISA was per-
formed to select those capable of competing with PAI-1 small- 
molecule inhibitors (tiplaxtinin and TM5441). One scFv was se-
lected for expression into IgG kappa format. This antibody, coined 
“A5,” was able to recognize all wild-type active, wild-type latent, and 
stable active conformations of PAI-1 (Fig. 6B) and showed high 
binding affinity to three conformations of PAI-1 with KD at 
nanomolar ranges (Supplementary Table S6A). Furthermore, 
A5 neutralized PAI-1 functions in inhibiting tPA (P ¼ 0.0002) and 
uPA ((P ¼ 6.10e�04) in chromogenic enzymatic assays (Fig. 6C 
and D). By utilizing NMR, we also found that A5 competes with the 
binding of tiplaxtinin to PAI-1, highlighting the binding affinity and 
potency of A5 compared with a known PAI-1 inhibitor (Fig. 6D). 

Efficacy of A5 on colorectal cell lines in a PAI-1–positive 
environment 

We investigated the efficacy of A5 in inhibiting PM cell prolifer-
ation in the presence of PAI-1–positive ascites in vitro by utilizing a 
cell line model representative of colorectal cancer PM, Colo-205 
(Supplementary Table S6B). At a concentration of 150 µg/mL, 
A5 reduces proliferation of PM cells treated with seven PAI-1– 
positive ascites samples retrieved from patients with colorectal cancer 
PM in contrast to IgG controls (Fig. 6E). We further investigated the 
effects of the identified biologics on downstream pathways activated 
by PAI-1 in ascites and found that the treatment of A5 reduces the 
pSTAT3/STAT3 ratio in PM cancer cells treated with PAI-1–positive 

ascites from a patient with colorectal cancer PM (Fig. 6F). Next, we 
sought to investigate the effects of A5 on the transcriptome. Tran-
scriptomes of Colo-205 PM cancer cells upon A5 treatment were 
profiled by RNA sequencing. Compared with cells treated with IgG, 
cells treated with A5 had reduced pathways such as IL2–STAT5, TGF- 
β, and IL6–JAK–STAT3 signaling (Fig. 6G). 

Safety of systematic administration 
In preparation for future human trials in which A5 is intended to 

be administered intraperitoneally to maximize its effect, we evalu-
ated the safety of intravenous A5 administration in NCr nude mice. 
If A5 demonstrates safety when administered intravenously, we can 
reasonably conclude that it is unlikely to cause significant systemic 
toxicity when administered intraperitoneally even if some systemic 
absorption occurs. Into NCr nude mice, 50, 100, 150, and 200 µg 
A5 was administered (n ¼ 2 female and 2 male mice for each dose) 
via intravenous injection. Bodyweight and behavior were assessed 
on a daily basis, followed by 16-hour fasting from day 13 before the 
final assessment of hematologic counts, clinical chemistry profiles, 
and pathologic evaluation (Supplementary Fig. S6A). The body-
weight of each mouse did not drop 14 days upon administration 
(Supplementary Fig. S6B and S6C). Counts of white blood cells, red 
blood cells, and platelets did not differ (Supplementary Fig. S6D– 
S6F). Clinical chemistry profiles of total protein, glucose, and al-
bumin were comparable between A5 and PBS control (Supple-
mentary Fig. S6G–S6I). Pathologic evaluation demonstrates 
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intravenous administration of A5 at as high as 200 µg did not 
damage mice organs (Supplementary Table S6C). These data suggest 
that A5 is safe and unlikely to cause significant toxicity, even if it 
were to leak from the peritoneal cavity. 

Discussion 
To our knowledge, our study represents one of the first studies 

with a comprehensive multiomic analysis at spatial resolution of 

both PT and its paired PM tissue samples in the context of colo-
rectal cancer PM. Distinctively, our research sets itself apart by re-
vealing prognostically significant targets crucial for stroma–tumor 
interaction that hold potential for therapeutic exploitation. Com-
bining CRS with HIPEC (38) marked a significant breakthrough in 
colorectal cancer PM treatment by directly targeting and resecting 
tumor lesions in the peritoneum (39). However, for patients unable 
to undergo surgery, systemic chemotherapy remains limited in its 
effectiveness (1). Patients with PM still present with poor response 
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to chemotherapy (1, 40), highlighting the urgent need for alternative 
therapeutic strategies in this sub-cohort of patients. 

The dismal outlook of current non-surgical therapeutic strategies 
in colorectal cancer with PM amplifies the clinical significance of 
our study for its role in identifying potential therapeutic targets, 
unearthing the role of stroma in tumor progression. Current 
treatment modalities targeting tumor cells often fall short partly 
because cancers do not manifest disease progression alone; stroma– 
tumor interactions are also key drivers of tumor progression (41). In 
particular, the stroma environment facilitates tumor cell evolution 
and chemo-resistance, diminishing the efficacy of tumor cell– 
targeted treatments. For instance, some studies have demonstrated 
that in a cell-free ascites environment, the addition of tumor cell– 
specific therapy such as mitomycin C demonstrated resistance to the 
therapy (7). Hence, by homing in on specific paracrine targets, our 
study lays a crucial foundation for developing more effective 
treatments disrupting critical paracrine signaling pathways. 

WES found that genomic alterations and clonality patterns be-
tween PTs and PMs remain broadly similar. In contrast, WTS showed 
clear differences between PT and PM samples. IL6–JAK– 
STAT3 signaling, TGF-β, and neovascularization were enhanced in 
PM. Differences in the composition of TME were also observed be-
tween PT and PM tumors in which PM demonstrated more macro-
phages and CAFs and lower plasma B cells and CD4+ T cells; these 
findings corroborate with the existing pool of molecular studies (42). 
As tumor samples migrate to the peritoneum, they adopt a mesen-
chymal phenotype and fibrotic TME. We also studied putative tumor 
and immune gene targets of therapeutic significance involved in 
stroma–tumor communications in matched PT and PM samples. 
From the genes identified, we found PAI-1 to be of prognostic sig-
nificance, with patients having high PAI-1 expression having poorer 
outcomes. With spatial profiling, we found that the tumor and stroma 
compartment make-up was more similar than thought to be between 
PT and PM. Findings on the similarities between the stroma com-
partment in PT and PM challenge existing notions of heterogeneity 
between PT and PM as seen in other types of cancer (43, 44). 

Our study is not without its limitations. Although we performed 
WES, WTS, and spatial profiling of PT and matched PM samples, an 
in-depth analysis of other molecular characteristics such as pro-
teomic and epigenomic studies of PT and PM samples would have 
provided another layer of insights into the multifaceted molecular 
landscape of colorectal cancer with PM. Demonstrating that intro-
ducing a PAI-1 inhibitor could lead to an improvement in patients 
with colorectal cancer PM would have further fortified our claim of 
PAI-1 as one of the cardinal factors mediating stroma–tumor 
communication and a viable therapeutic target. Notwithstanding, 
our previous study has notably demonstrated the therapeutic ef-
ficacy of PAI-1 inhibition through in vitro and in vivo mouse 
models (7). Upon introduction of PAI-1 inhibitor (TM5441) to 
PM cells in vitro, cells that were exposed to cell-free ascites with 
higher PAI-1 levels (>20 ng/mL) were more responsive to PAI-1 
inhibition. Herein, we successfully illustrated the concept of 
paracrine addiction in peritoneal metastatic lesions and the pro-
found impact of targeting paracrine signaling pathways in miti-
gating colorectal cancer with PM. We also illustrated that the 
administration of a PAI-1 biologic could be useful therapeutically 
through downregulation of key upstream pathways leading to EMT. 
In the pragmatic clinical setting, the use of biologics is potentially 
more desirable than small-molecule inhibitors, as the risk of systemic 
reabsorption through the peritoneal cavity is expected to be lower 
because of their larger size. Although PAI-1 is known to play a key 

role in fibrosis and extracellular matrix remodeling (45), and neu-
tralizing it with A5 could potentially disrupt the fibrotic stroma to 
enhance drug penetration and immune response, in vivo studies are 
still needed. These studies will be crucial to determine whether PAI-1 
inhibition can effectively penetrate and overcome the fibrotic and 
immune-suppressive stromal features characteristic of PMs, ulti-
mately assessing its therapeutic potential within the complex TME. 

Next, discrepancies in relative proportions of the site of origin 
were identified between stromal phenotypes between DSP and 
mIHC profiling approaches. In the DSP data, SC2 had a higher 
proportion of ROIs originating from PM samples. Conversely, in 
the mIHC data, the majority of SC2-like ROIs originated from PT. 
We cautioned on overinterpretation of these relative proportions, as 
ROIs were manually retrieved in both profiling methods, which may 
have introduced selection bias. Another limitation in this study is 
the absence of treatment data, including intra-peritoneal therapeu-
tics such as HIPEC. Although incorporating such information could 
offer additional insights, its interpretation would be challenging 
given the variability in clinical contexts, as samples were retrieved 
for a range of reasons, including palliative and emergency surgeries. 
Furthermore, the survival benefit of CRS with HIPEC remains un-
certain, with previous trials such as PRODIGE 7 (46) and PRO-
PHYLOCHIP-PRODIGE 15 (47) showing no clear survival 
advantage. The complexity of HIPEC regimens and the lack of 
consensus on optimal chemotherapeutic agents further complicate 
efforts to assess its influence on clinical outcomes. Despite the ab-
sence of treatment data, our findings show that the SC2 stromal 
phenotype demonstrates consistent prognostic value across different 
stages, such as in TCGA, and was validated in an independent co-
lorectal cancer PM dataset by Lenos and colleagues (20). This 
suggests that the poor prognostic impact of the SC2 phenotype is 
driven by its underlying biology rather than treatment effects. 

In conclusion, we identified novel pro-tumorigenic therapeutic 
signatures governing stroma–tumor interactions. Our study identified 
and demonstrated the significant potential of PAI-1 as a viable bio-
marker in stroma-targeted therapy (48). To firmly establish stroma- 
targeted therapy in modern medicine, it is imperative to delineate 
other paracrine targets governing tumor–stroma cross-talk in colo-
rectal cancer with PM. Exploring additional paracrine signatures may 
unveil a myriad of other targets, allowing us to fully realize the po-
tential of stroma-targeted therapy. Our study heralds a new direction 
for modern cancer therapeutics in colorectal cancer PM, redefining 
the approach to treatment for this challenging disease. 
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