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Effects of an lodine-Containing Prenatal Multiple
Micronutrient on Maternal and Infant lodine
Status and Thyroid Function:

A Randomized Trial in The Gambia

Kamilla G. Eriksen, Maria Andersson? Sandra Hunziker? Michael B. Zimmermann,? and Sophie E. Moore*

Background: lodine supplementation is recommended to pregnant women in iodine-deficient populations, but
the impact in moderate iodine deficiency is uncertain. We assessed the effect of an iodine-containing prenatal
multiple micronutrient (MMN) supplement in a rural Gambian population at risk of moderate iodine deficiency.
Materials and Methods: This study uses data and samples collected as a part of the randomized controlled trial Early
Nutrition and Immune Development (ENID; ISRCTN49285450) conducted in Keneba, The Gambia. Pregnant women
(<20 weeks gestation) were randomized to either a daily supplement of MMNs containing 300 g of iodine or an iron
and folic acid (FeFol) supplement. Randomization was double blinded (participants and investigators). The coprimary
outcomes were maternal urinary iodine concentration (UIC) and serum thyroglobulin (Tg), assessed at baseline and at
30 weeks’ gestation. Secondary outcomes were maternal serum thyrotropin (TSH), total triiodothyronine (TT3), total
thyroxine (TT4) (assessed at baseline and at 30 weeks’ gestation), breast milk iodine concentration (BMIC) (assessed at
8, 12, and 24 weeks postpartum), infant serum Tg (assessed at birth [cord], 12, and 24 weeks postpartum), and serum
TSH (assessed at birth [cord]). The effect of supplementation was evaluated using mixed effects models.

Results: A total of 875 pregnant women were enrolled between April 2010 and February 2015. In this secondary
analysis, we included women from the MMN (n=219) and FeFol (n=219) arm of the ENID trial. At baseline, median
(interquartile range or IQR) maternal UIC and Tg was 51 ug/L (33-82) and 22 ug/L (12-39), respectively, indicating
moderate iodine deficiency. Maternal MMN supplement increased maternal UIC (p <0.001), decreased maternal Tg
(p<0.001), and cord blood Tg ( p <0.001) compared with FeFol. Maternal thyroid function tests (TSH, TT3, TT4, and
TT3/TT4 ratio) and BMIC did not differ according to maternal supplement group over the course of the study. Median
(IQR) BMIC, maternal UIC, and infant Tg in the MMN group were 51 ug/L (35-72), 39 ug/L. (25-64), and 87 ug/L (59—
127), respectively, at 12 weeks postpartum, and did not differ between supplement groups.

Conclusions: Supplementing moderately iodine-deficient women during pregnancy improved maternal iodine status
and reduced Tg concentration. However, the effects were not attained postpartum and maternal and infant iodine
nutrition remained inadequate during the first six months after birth. Consideration should be given to ensuring adequate
maternal status through pregnancy and lactation in populations with moderate deficiency.
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Introduction risk of deficiency for the fetus and infant is high. Infants are
particularly sensitive to iodine deficiency because they have

IODINE IS AN ESSENTIAL SUBSTRATE for the production of the highest production of thyroid hormones per kilogram
thyroid hormone and adequate iodine nutrition is espe- body weight, and are born with minimal thyroidal iodine
cially important during the first 1000 days of life, when the stores (1). Exclusively breastfed infants rely on iodine from
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breast milk alone to cover their high rates of thyroid hormone
production (2).

Severe iodine deficiency during pregnancy may result in
maternal and fetal hypothyroidism, increased risk for infant
and perinatal mortality, pregnancy loss, maternal and fetal
goiter, and growth retardation (2). Thyroid hormone is crit-
ical for fetal and infant neurodevelopment, and severe iodine
deficiency during pregnancy is associated with neurologic
deficits and cretinism in children (3,4). Mild-to-moderate
iodine deficiency may affect maternal and fetal thyroid
function (5), but the impact on neurodevelopmental out-
comes in offspring remains uncertain (4,6,7). lodine defi-
ciency during infancy may also result in altered thyroid
function and impaired brain development, but data are lim-
ited (8).

Salt iodization is the primary intervention strategy to
prevent iodine deficiency in the general population (9).
However, poor coverage of iodized salt or use of noniodized
alternatives may increase the risk for mild-to-moderate io-
dine deficiency during the first 1000 days (from conception to
the child’s second birthday) when dietary iodine require-
ments are high (10). In The Gambia, the coverage of ade-
quately iodized salt is poor, and a recent nationally
representative cross-sectional survey found rural pregnant
women to be iodine deficient (11).

Iodine supplementation of pregnant and lactating women
is recommended in iodine-deficient populations wherein salt
iodization is insufficient (12). Iodine supplementation during
pregnancy in mildly iodine-deficient women improves ma-
ternal iodine status, thyroid volume, and thyroid indices (5,7).
However, studies conducted in moderately iodine-deficient
populations are small and did not follow women and infants
after delivery (4,5,13,14). A growing body of evidence
demonstrates the beneficial effects of prenatal multiple mi-
cronutrient (MMN) supplements, particularly in women en-
tering pregnancy with a poor nutritional status (15-17).
Todine is commonly added to MMN supplements, but to our
knowledge, the specific impact of iodine delivered in an
MMN supplement on iodine status and thyroid function has
not been evaluated in moderately iodine-deficient pregnant
and lactating women and infants.

The aim of this study was to investigate the effect of an
iodine-containing MMN supplement given during pregnancy
(providing 300 pg of iodine) in a rural Gambian population
exposed to moderate iodine deficiency. We hypothesized that
iodine supplementation would improve maternal iodine sta-
tus and thyroid function in pregnant women and that the
impact would last postpartum and improve breast milk iodine
concentration (BMIC) and infant iodine status.

Materials and Methods

The current analysis used data and samples collected as
part of the Early Nutrition and Immune Development (ENID)
trial (ISRCTN49285450), a randomized trial conducted in
The Gambia between April 2010 and February 2015.

The objective of the main trial was to assess the effect of
combined prenatal and infant nutritional supplementation on
infant immune development (18). Full details of the ENID
trial have been described in detail in the published trial pro-
tocol (18). In brief, pregnant women (aged 18—45 years) from
the rural West Kiang region of The Gambia were enrolled.
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Exclusion criteria were gestational age at enrolment >20 weeks,
multiple pregnancy, severe anemia (hemoglobin <7 g/dL), or
confirmed as HIV positive. When scheduled for prenatal care,
pregnant women were randomized to four intervention
groups of prenatal dietary supplements: (a) MMNS, (b) iron
and folic acid (FeFol=standard care), (c) protein energy
(PE), and (d) PE + MMN. Supplementation continued until
delivery. In this secondary analysis, we included participants
from the two prenatal tablet arms (a) MMN and (b) FeFol).
This decision was made on the basis of evidence of differ-
ential adherence between the tablet and the lipid-based nu-
tritional supplement (LNS) groups, with significantly lower
adherence to supplementation in the LNS groups (19). In
ENID, infants were further supplemented with daily LNS or
LNS + micronutrients after six months of age. However, the
infant intervention arms will not be described here as the
present analyses stops at six months after delivery.

The protocol of the original ENID trial was approved by
the joint Gambia Government/Medical Research Council
(MRC) Unit, The Gambia Ethics Committee (Project No.
SCC1126v2). Written informed consent was obtained from
all women before enrolment into the trial. The trial observed
good clinical practice standards and the current version of the
Helsinki Declaration.

Randomization

The women included in this subanalysis of the ENID trial
were randomized to one of the two following intervention
arms:

1. MMNs, a combination of 15 micronutrients, specifi-
cally designed for use during pregnancy as formulated
by the World Health Organization (WHO), United
Nations University, and United Nations Children’s
Fund (20), and containing twice the recommended
daily allowance for all contained micronutrients, with
the exception of FeFol that was set at Gambian Gov-
ernment Guidelines (Supplementary Table S1). The
MMN supplement contained 300 ug iodine as potas-
sium iodide.

2. FeFol, representing the usual standard of care during
pregnancy as per Gambian Government Guidelines
(iron 60 mg/day, folic acid 400 p/day), with no iodine.

The MMN and FeFol supplements were formulated as
tablets and manufactured by Scanpharm, Birkergd, Denmark.
The iodine content of the MMN supplement was not verified
by independent laboratory testing.

Randomization into the trial was performed in blocks of 8,
using an automated system, with the 8 groups reflecting the 8
combinations of prenatal and infancy supplements. The
prenatal arm of the full ENID trial was partly open, as it was
not possible to blind the field assistants or the women to the
supplement type (tablet vs. LNS). However, for the purpose
of this analysis, wherein only the two prenatal tablet arms are
considered, the trial can be considered as double blinded as
the tablets were identical.

Procedures

Clinical visits were performed at baseline, 20 and 30
weeks’ gestation, at birth, and 1, 8, 12, 24, and 52 weeks
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postpartum. Women received an MMN tablet containing
300 g iodine or a FeFol tablet without iodine, taken once
daily at baseline (<20 weeks’ gestation) until delivery. Field
assistants provided the prenatal supplements on a weekly
basis. Compliance was assessed through a count of remaining
tablets at the end of each week, and an average weekly
compliance was calculated to assess study mean compliance
for each group. We assessed side effects by use of a ques-
tionnaire at these weekly visits. Serious adverse events were
defined as death or hospital admission of either mother or
infant for a cause other than delivery. At baseline, a struc-
tured questionnaire was administered to collect data on
general subject characteristics, race/ethnicity, and educa-
tional level.

At baseline, participants’ height and weight were mea-
sured and gestational age was determined by ultrasound.
Body mass index (BMI) was calculated by bodyweight (kg)
divided by height (m) squared. A venous blood sample col-
lected from the women after an overnight fast at baseline
(<20 weeks’ gestation) and 30 weeks’ gestation, for mea-
surement of maternal thyroid function, was used in this
analysis. The blood samples were immediately put on ice,
and then centrifuged, aliquoted, and stored at —80°C. An 24-
hour urine sample was collected for measurement of maternal
urinary iodine concentration (UIC) at baseline, at 30 weeks’
gestation, and 12 weeks postpartum. A field worker visited
the women’s home every four hours during the day to collect
the urine samples (which were stored on ice), and transported
the samples to the MRC Keneba field station where they were
refrigerated. At the end of 24 hours, the urine samples from
each individual woman were pooled, aliquoted, and stored at
—20°C.

Immediately after delivery, the placenta was passed to an
attending field assistant and a blood sample collected from
the umbilical vein. If the woman delivered at home, the
sample was put on ice and transported to the MRC Keneba
field station. On arrival in the laboratory, samples were
centrifuged, aliquoted, and stored at —80°C until processing.
Infant birth weight and length were obtained within 72 hours
after delivery, by using electronic scales (Seca 336) and
length boards (Seca 417), which were precise to 10g and
1 mm, respectively. Head circumference was also measured
at birth, using a circumference measuring tape (Seca 201).
Low birth weight is defined as weight at birth of <2500 g
irrespective of gestational age (21), preterm birth as gesta-
tional age at birth of <37 completed weeks, stunting as
height-for-age >2 standard deviations (SDs) below the WHO
Child Growth Standards median (22), and wasting as weight-
for-length < -2 SDs.

At 8, 12, and 24 weeks postpartum, the women provided a
5 mL breast milk sample from each breast. The samples from
right and left breasts were pooled for analysis. The breast
milk sample was not collected during a feed or standardized
according to the infant’s last feed, and was, therefore, a
mixture of hind- and foremilk. The breast milk sample was
manually expressed between ~9 and 11 a.m. at the MRC
Keneba field station, and immediately put on ice, and stored
at —80°C. The majority of the women were fasting when the
milk sample was collected, as breakfast (provided at the
MRC clinic) was served after the last sample collection.
Throughout the trial, participants were asked weekly about
breastfeeding practices and introduction of complementary
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foods. Exclusive breastfeeding (EBF) was defined according
to the WHO definition: no other foods or liquids consumed
than breast milk with the exception of medicines, or essential
vitamins or minerals.

A venous blood sample from each participating infant at 12
and 24 weeks postpartum was used in this analysis. Samples
of infant blood were collected by venipuncture, and imme-
diately put on ice before being centrifuged, aliquoted, and
stored at —80°C.

The coprimary outcomes in this analysis were maternal
UIC and serum thyroglobulin (Tg) concentration (baseline
and 30 weeks’ gestation). Secondary outcomes were mater-
nal UIC at 12 weeks postpartum, serum thyrotropin (TSH),
total triiodothyronine (TT3), total thyroxine (TT4), TT3/TT4
ratio (baseline and 30 weeks’ gestation), thyroglobulin anti-
bodies (TgAbs) (baseline), and BMIC (weeks 8, 12, and 24
postpartum) as well as infant serum Tg concentration (birth
[cord], 12, and 24 weeks postpartum) and serum TSH in cord
blood.

Sample analysis

UIC was measured using inductively coupled plasma mass
spectrometry (ICP-MS) (23), at the Human Nutrition La-
boratory of Eidgendssische Technische Hochschule (ETH)
Zurich (Zurich, Switzerland). WHO criterion based on the
median UIC was used to classify adequate iodine intake for
pregnant women (=150 ug/L) (9).

BMIC was measured by ICP-MS at MRC Elsie Widdow-
son Laboratory (Cambridge, UK). Breast milk samples were
first diluted (1:50) with a solution of ultragrade tetra-
methylammonium hydroxide (TMAH) containing tellurium
as internal standard (0.5% TMAH, 20 ug/L tellurium). The
samples were then analyzed by ICP-MS along with external
matrix-matched calibration standards (commercially sourced
pooled breast milk; Sera Laboratories International, Ltd.).
Serum and whole blood (RECIPE Chemicals+, Instruments
GmbH and Sero AS) were used as quality controls.

Tg was measured in maternal and infant serum using a
sandwich serum-Tg enzyme-linked immunosorbent assay
(ELISA) (24), at the Human Nutrition Laboratory of ETH
Zurich. Liquicheck™ Tumor Marker Control (Bio-Rad La-
boratories AG, Cressier, Switzerland; LOT. 19990 and LOT.
19970) was used as the standard. Elevated Tg concentrations
during pregnancy, indicating iodine deficiency, is defined as
Tg >43.5 ug/L (24,25).

Serum TSH, TT3, TT4, and cord blood TSH were mea-
sured by immunoassay (IMMULITE; Siemens Healthcare
Diagnostics, UK) at the Human Nutrition Laboratory of ETH
Zurich using analyte-specific kits and controls. For TSH
during pregnancy, we used trimester-specific reference ran-
ges: 0.1-2.5 mIU/L for the first trimester, 0.2-3.0 mIU/L for
the second trimester, and 0.3-3.0 mIU/L for the third tri-
mester (26). For TT4 until gestational week 6, we used the
reference range of 58-161nmol/L; from week 7, we in-
creased the upper reference range by 5% per week until week
15; from week 16 until delivery, we multiplied the non-
pregnancy reference range by 1.5 and used the resulting range
of 87.0-241.5 nmol/L as a reference (26). For TT3, we used
the manufacturer’s reference ranges of 1.3—2.6 nmol/L.

Subclinical hypothyroidism was defined as a high TSH and
a normal TT4, overt hypothyroidism was defined as a high
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TSH and a low TT4, overt hyperthyroidism was defined as a
low TSH and a high TT4, subclinical hyperthyroidism was
defined as low TSH and normal TT4, and isolated hy-
pothyroxinemia was defined as a normal TSH and a low TT4.

Maternal TgAb concentrations were analyzed in baseline
samples using a serum ELISA (TgAb ELISA, version 2;
RSR, Cardiff, UK). The manufacturer cutoff for TgAb pos-
itivity is 265 U/mL.

The interassay variability for all analyses are reported in
Supplementary Data.

Statistical analysis

Full details of the power calculations applied are provided
in the published trial protocol (18). A post hoc power cal-
culation was made based on maternal Tg concentrations from
a recent trial of mildly iodine-deficient pregnant women (7),
using an SD of 7.5 ug/L. In this study, a total of 175 samples
in each supplement arm give 96% power to detect a differ-
ence of 3 ug/L or more between the MMN and FeFol arm.

The data were analyzed using STATA version 15 and R
(27). Descriptive statistics were applied for all variables.
Outliers were identified and removed after visual inspection
of box plots stratified by group and time point. Values in the
text and tables are presented as mean (SD) for normally
distributed data, median (interquartile range or IQR) for non-
normal data, and number (%) for prevalence. Baseline
characteristics of the study population according to maternal
supplement groups were assessed by unpaired ¢-tests for
parametric data, Mann—Whitney U-test for nonparametric
data, and Fisher’s exact test for categorical dependent vari-
ables.

We assessed the intervention effect by fitting individual
linear mixed effects models to continuous dependent vari-
ables using maximum likelihood procedure for the estimation
of variance components. For each variable, an individual
mixed effects model was derived with time (two visits for
maternal UIC, Tg, TSH, TT3, TT4, infant Tg, and three visits
for BMIC), coded as a categorical variable, and maternal
supplementation group (MMN or FeFol) as fixed effects. An
interaction between time and supplementation was included
in the mixed effects models. Between-individual variation
was modeled using random effects. For categorical depen-
dent variables, mixed effects logistic regression models were
used, using R. For some of the categorical variable analyses,
prevalence of thyroid disorders was nonexisting at one or
several time points and, therefore, time was not included in
these mixed effects logistic regression models.

The residuals were tested for normality and homogeneity
of variance using residual plots, and non-normally distributed
data were log-transformed and then reanalysed. Outliers were
defined as data with residuals >3 SDs from the mean in the
linear mixed effects models and were excluded from the
models (UIC n=5 data points removed, maternal Tg n=3,
maternal TSH n=13, TT3 n=4, TT4 n=5, BMIC n=4, in-
fant Tg n=5). These outliers were not excluded from the
mixed effects logistic regression models.

Interactions between time and supplementation for the
linear mixed effects model on BMIC were assessed by
likelihood-ratio tests between two nested linear mixed effects
models, one model with and the other without the interaction
terms. The overall supplementation effect for BMIC inde-
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pendent of time was assessed by a likelihood-ratio test
comparing two nested mixed effects models, one with ma-
ternal supplement group (and its time interaction) and the
other without maternal supplement group (i.e., with fixed
effects for time only). The likelihood-ratio test tests whether
the model including maternal supplement group as a pre-
dictor gave a significantly better fit to the data than that
without.

The Mann—Whitney U-test was used to assess group dif-
ferences in Tg and TSH at birth (cord blood), and maternal
UIC at 12 weeks postpartum. Estimated daily maternal iodine
intake was calculated using daily iodine excretion at baseline
(using UIC and measured urine volume of the 24-hour urine
excretion) and assuming an average iodine bioavailability of
90% (28).

Statistical significance was set at p <0.05.

Results

A total of 2798 women consented to the ENID study and
875 pregnant women were eligible. In this study, we only
included pregnant women randomly assigned from the MMN
(n=219) and FeFol arms (n=219). For the analyses con-
ducted during pregnancy, 397 mother—infant pairs were in-
cluded and 387 mother—infant pairs for the analyses during
lactation (Fig. 1).

At baseline, mean age of the participating women was 29.5
years (SD 6.7) and the mean gestational age was 13.7 weeks
(3.4) (Table 1). The mean BMI at baseline was 21.1 kg/m2
(3.5), and 20% (88 of 437) of the women were underweight
(BMI <18.5 kg/mz) and 10% (45 of 437) were overweight
(BMI >25kg/m?). The majority (77%, 329 of 430) of the
participating women had received no formal Arabic or En-
glish schooling. The study population had a mean parity of
4.1 (2.7). There were no differences in baseline characteris-
tics between women from the two supplement groups.
A small, but significant (1.79 cm, p=0.04), difference was
observed in height between women who were initially ran-
domized to supplementation, and those who were lost to
follow-up, but no other differences in baseline characteristics
were observed (data not presented). Compliance rates for
women receiving the MMN and FeFol were 93.1% and
95.7%, respectively (19).

Infants were born with a mean birth weight of 3002 g (0.4)
and 9.5% (31 of 328) were born with a low birth weight
(<2500 ¢g) (Table 1). Infant mean weight-for-age z-score,
length-for-age z-score (LAZ), and weight-for-length z-score
(WLZ) at birth were —0.64 (0.9), —0.09 (1.0), and —0.96 (1.3)
with no difference according to maternal supplement group
(Table 1). Mean infant head circumference was 33.3 cm (1.4)
at birth. The majority of infants (93%, 359 of 385) were
exclusively breastfed to 3 months of age and 31% (121 of
385) to 6 months of age. The mean age of discontinuation of
EBF was 5.2 (1.3) months. Age of discontinuation of EBF did
not differ between maternal supplement groups (data not
presented). Infants were growth faltering, with 23% (81 of
347) stunting (LAZ <—2) and 14% (50 of 347) wasting (WLZ
< —2) at 2 years of age.

Maternal median UIC at baseline was 51 ug/L (IQR 33—
82), and the estimated median iodine intake was 71 ug/day
(44-104), indicating moderate iodine deficiency. Maternal
MMN supplementation during pregnancy significantly
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Enrolled to supplement (n=875)

l

Randomised to PE or PE + MMN (n=437)

N\
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Randomised to MMN (n=219)
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Randomised to FeFol (n=219)

Excluded (n=24)

Mother and infant-pairs during
pregnancy in this analysis (n=202)

(n=7)

Miscarriage= 2 Miscarriage= 2
Moved= 4 Moved= 5
Stillbirth= 3 > Stillbirth= 7
Medical= 1 ¢ v v Other=6

No data on UIC or No data on UIC or
thyroid disorders thyroid disorders

Mother and infant-pairs during
pregnancy in this analysis (n=195)

(n=4)

Excluded (n=5) <« — Excluded (n=5)
Died=2 v  J Moved=4
Other=3 Died=1
Mother and infant-pairs during Mother and infant-pairs during
lactation in this analysis (n=197) lactation in this analysis (n=190)
Included in ENID to 12 months (n=187) Included in ENID to 12 months (n=179)
FIG. 1. Trial profile for the ENID MMN and FeFol supplement groups and data included in this analysis. ENID, Early

Nutrition and Immune Development; FeFol, iron and folic acid; MMN, multiple micronutrient; PE, protein energy; UIC,

urinary iodine concentration.

improved maternal UIC compared with FeFol (p<0.001;
Table 2). Maternal median UIC at 12 weeks postpartum
was 34 ug/L (22-52) and 39 pg/L. (25-64) for the FeFol
and MMN groups, respectively (p=0.08). Between 30
weeks’ gestation and 12 weeks postpartum, maternal UIC
decreased in both supplement groups (p<0.001 for both
groups).

Median BMIC at 8 weeks postpartum was 54 ug/LL (37—
79), with 57 ug/L (41-83) and 51 ug/L (35-74) for the MMN
and FeFol groups, respectively (Table 3). There were no
difference in BMIC between supplement groups over the
course of the study (p=0.3; Table 3); however, there was a
significant difference in BMIC independent of time
(p=0.006), with a higher BMIC in the MMN group (Fig. 2).

At baseline, maternal median Tg concentration was
22 ug/L (12-39), and 22% (81 of 366) of women had elevated
Tg (>43.5 ug/L). Maternal MMN supplementation during
pregnancy significantly decreased maternal Tg concentration
compared with FeFol (p <0.001; Table 2), and significantly
decreased the prevalence of elevated Tg (p <0.001; Table 2).
Only 3.3% (9 of 271) of the pregnant women tested positive
for TgAb at baseline, and with no difference between the
supplement groups (p=0.3; Table 2).

There were no differences in the mean or median concen-
trations between supplement groups in any of the other ma-
ternal thyroid function tests (TSH, TT3, TT4, and TT3/TT4
ratio) during pregnancy (Table 2). At baseline, 1.0% (3 of

298) of the mothers had subclinical hypothyroidism and none
(0 of 298) had overt hypothyroidism.

At baseline, 2.7% (8 of 298) had overt hyperthyroidism,
2.0% (6 of 298) were hypothyroxinemic, and 10.7% (32 of
298) were affected by subclinical hyperthyroidism, but the
prevalence was reduced in both groups at 30 weeks’ gestation
with no significant overall difference between groups
(Table 2).

Maternal MMN supplementation during pregnancy had an
effect on cord blood Tg (p <0.001), with lower cord blood Tg
concentration in the MMN group. The median cord blood Tg
concentration was 100 pug/L. (51-140) in the MMN group
(n=121) and 127 ug/L (81-191) in the FeFol group (n=108).
Furthermore, maternal Tg at 30 week’s gestation was asso-
ciated with cord blood Tg (f coefficient=0.295 [confidence
interval 0.077-0.512], p=0.008).

Maternal MMN supplementation during pregnancy did not
have an effect on infant serum Tg concentration postpartum
(p=0.9; Table 3). Infant Tg concentrations significantly
decreased between 12 and 24 weeks postpartum for both
maternal supplement groups (p <0.001).

Median infant TSH concentration in cord blood did not
differ between the two supplement groups: 5 mIU/L (4-9) in
the MMN group (n = 114) versus 6 mIU/L (4-10) in the FeFol
group (n=105, p=0.2).

A subanalysis was performed investigating the relation-
ship between gestational age at baseline and maternal Tg,
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TABLE 1. CHARACTERISTICS OF WOMEN AT BASELINE
AND INFANTS AT BIRTH

N MMN FeFol
Maternal age (years) 438 29.1 (6.7) 29.9 (6.7)
Maternal weight (kg) 437 554 (9.8) 55.0 (9.0)
Maternal height (cm) 438 162.1 (5.7) 161.6 (6.2)
Maternal BMI (kg/m?) 437 21.1 (3.8) 21.0 (3.2)
Gestational age at 436 13.7 (3.4) 13.8 (3.4)
baseline (weeks)
Parity 431
Primiparous 27 (13%) 22 (10%)
Multiparous (=1 189 (88%) 193 (90%)
previous pregnancy)
Maternal education® 430
No education 159 (73%) 170 (80%)
Low (1-7 years) 28 (13%) 25 (12%)
Medium (8-14 years) 31 (14%) 17 (8%)
Still birth 438 3 (1.4%) 7 (3.2%)
Gestational age at birth 389 40.3 (1.6) 40.1 (1.7)
Gestational age at birth 389
categories
<37 weeks 7 (4%) 6 (3%)
37-40 weeks 70 (36%) 82 (43%)
>40 weeks 120 (61%) 104 (54%)
Infant birth weight 328 3.010 (0.4) 2.992 (0.4)
Birth weight categories
Low birth weight 15 9%) 16 (10%)
(<2.5kg)
Normal birth weight 155 (91%) 140 (89%)
(2.5-3.9kg)
High birth weight 1 (1%) 1 (1%)
(=24.0kg)
Infant birth length (cm) 340 49.5 (2.0) 49.6 (1.8)
WAZ at birth 328 —-0.62 (0.9) -0.65 (0.9)
LAZ at birth 340 —0.10 (1.05) —0.08 (1.0)
WLZ at birth 320 -0.90 (1.3) -1.02 (1.2)
Infant head 339 332 (1.4) 334 (1.4)

circumference at birth

Data are n (%) or mean (SD).

“Maternal education was defined as completed years of either
English or Arabic schooling.

BMI, body mass index; FeFol, iron and folic acid; LAZ, length-
for-age z-score; MMN, multiple micronutrient; SD, standard
deviation; WAZ, weight-for-age z-score; WLZ, weight-for-length
zZ-score.

TSH, and TT4 at 30 weeks’ gestation in the MMN group;
however, no associations were found (data not shown).

Discussion

Our study shows that supplementing moderately iodine-
deficient pregnant women with an MMN supplement con-
taining 300 pg/day of iodine versus FeFol improved maternal
iodine status and reduced maternal Tg concentration at 30
weeks’ gestation, but had negligible impact on maternal
thyroid hormone production. Our results further show that
prenatal iodine supplementation alone is not sufficient to
ensure adequate iodine status in mothers and infants after
delivery.

The estimated maternal iodine intake at baseline was
71 pg/day, which falls far below the recommended intake of
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250 pg/day (9). Compliance with supplementation regimen
was high and although the median UIC increased at 30
weeks’ gestation in the group receiving MMN, the median
UIC concentration remained below the recommended
threshold of 150 ug/L (9). This threshold is, however, based
on UIC from spot urine, which has been shown to have a
higher UIC than the 24-hour urine samples (29). The finding
is in agreement with earlier studies (5,30) and is perhaps not
surprising, considering this study was conducted in rural
Gambia where pregnant women are at risk of iodine defi-
ciency (11). The women likely had largely depleted thyroid
iodine stores when entering pregnancy, and most of the in-
gested iodine was taken up by the thyroid for both production
of thyroid hormone and rebuilding stores, resulting in a lower
fraction excreted in the urine.

The median maternal Tg concentration at baseline
(22 pug/L) was elevated above the assay-specific target me-
dian of 10 ug/L typically observed in a iodine sufficient
population (25). The turnover and excretion of Tg from the
thyroid are increased during iodine deficiency as thyroid
activity increases to adapt to low iodine intakes (31). The
elevated Tg concentration thus suggest thyroid stress, that is
increased thyroid activity to produce adequate thyroid hor-
mone in the face of limited iodine supply. The improvement
in iodine status in the MMN group decreased the Tg con-
centration and reduced thyroid stress. Tg is a sensitive bio-
marker of iodine status throughout the life cycle (25,32). Our
results agree well with previous studies on maternal Tg
concentration of prenatal iodine supplementation in mild and
moderate iodine deficiency (5,7), and findings confirm the
sensitivity of Tg to assess changes in thyroid stress in re-
sponse to changes in iodine intake during pregnancy (33). In
mild-to-moderate iodine deficiency, increased thyroid ac-
tivity can compensate for low iodine intake and maintain
euthyroidism in most individuals (34). This is confirmed in
our study by TSH, TT3, and TT4 concentrations within the
normal reference ranges (26) and low prevalence of maternal
hypothyroidism and hypothyroxinemia: the prevalence of
subclinical hyperthyroidism was 10.7% in the mothers at
baseline, but the prevalence of overt hyperthyroidism was
lower at 2.7%. We observed no effect of prenatal iodine
supplementation on maternal thyroid function.

Our findings on maternal iodine and thyroid status agree
with earlier intervention studies conducted in mild-to-
moderately iodine-deficient populations (5,30) and a recent
randomized controlled trial of prenatal iodine supplementa-
tion (200 ug/day) in mildly iodine-deficient pregnant women
(7). The latter study reported improved maternal iodine status
and reduced thyroid stress, but no effect on maternal thyroid
function, and no long-term benefits on development were
observed in children at 5-6 years. It is uncertain how low the
iodine intake can be without affecting circulating thyroxine
and triiodothyronine concentrations. Our data suggest that
thyroid adaptation maintains euthyroidism also at moderately
deficient iodine status. Therefore, the lack of effect of iodine
supplementation on thyroid hormone concentrations is not
surprising. Iodine supplementation of pregnant women is
recommended in populations with mild-to-moderate mater-
nal iodine deficiency, particularly where the coverage of io-
dized salt is low (12), as in our study population (11). The
supplemental dose of 300 ug iodine slightly exceeds the re-
commended dietary intake of 250 ug, but is appropriate and
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TABLE 2. MATERNAL IODINE STATUS AND THYROID FUNCTION AND DISORDERS DURING PREGNANCY ACCORDING
TO MATERNAL SUPPLEMENT GROUP

N Baseline N 30 weeks’ gestation p*

UIC (ug/L)

MMN 171 56 (29-89) 159 90 (45-177)

FeFol 167 48 (35-80) 156 41 (28-74) <0.001
Tg (ug/L)

MMN 186 20.8 (11.3-41.6) 191 16.8 (8.6-32.8)

FeFol 180 21.8 (12.6-38.2) 184 24.4 (13.1-41.2) <0.001
TSH (mIU/L)

MMN 170 0.7 (0.3-1.2) 182 1.1 (0.7-1.6)

FeFol 162 0.7 (0.4-1.1) 182 1.2 (0.8-1.6) 0.3
TT3 (nmol/L)

MMN 153 2.5 (0.6) 166 3.1 (0.6)

FeFol 147 2.5(0.7) 169 3.1 (0.6) 0.9
TT4 (nmol/L)

MMN 156 142.9 (35.6) 171 149.2 (24.9)

FeFol 151 138.0 (42.0) 172 146.0 (26.4) 0.5
TT3/TT4 ratio

MMN 152 0.018 (0.004) 166 0.021 (0.005)

FeFol 147 0.019 (0.005) 169 0.021 (0.005) 0.4
Elevated Tg

MMN 186 23.7% (44) 191 13.1% (25)

FeFol 180 20.6% (37) 184 22.3% (41) <0.001
Positive TgAb

MMN 135 2.2% (3) —

FeFol 136 4.4% (6) — —
Subclinical hypothyroidism

MMN 153 0.0 (0) 170 2.9% (5)

FeFol 145 2.1% (3) 172 2.9% (5) 0.8%*
Overt hypothyroidism

MMN 153 0.0 (0) 170 0.0 (0)

FeFol 145 0.0 (0) 172 0.0 (0) —
Subclinical hyperthyroidism

MMN 153 12.4% (19) 170 5.9% (10)

FeFol 145 9.0% (13) 172 2.3% (4) 0.6
Overt hyperthyroidism

MMN 153 3.4% (5) 170 0.0 (0)

FeFol 145 2.1% (3) 172 0.0 (0) 0.5%*
Isolated hypothyroxinemia

MM 153 1.3% (2) 170 0.0 (0)

FeFol 145 2.8% (4) 172 0.0 (0) 0.4

Data are median (IQR) (non-normally distributed data), means (SD), or % (n) derived from raw data. Non-normally distributed data were
log-transformed before analysis. Continuous dependent variables were analyzed using linear mixed effects models and categorical
dependent variables were analyzed using mixed effects logistic regression models. Subclinical hypothyroidism is defined as high TSH and
normal TT4 (relative to gestational age specific cutoffs), overt hypothyroidism is defined as high TSH and low TT4, subclinical
hyperthyroidism is defined as low TSH and normal TT4, overt hyperthyroidism is defined as low TSH and high TT4, and isolated

hypothyroxinemia is defined as normal TSH and low TT4.
*The p-value tests time by supplement interaction.

**This p-value is derived without time included in the mixed effects model.
IQR, interquartile range; Tg, thyroglobulin; TgAbs, thyroglobulin antibodies; TSH, thyrotropin; TT3, total triiodothyronine; TT4, total

thyroxine; UIC, urinary iodine concentration.

safe considering the degree of iodine deficiency in our pop-
ulation. A high dose of iodine given to chronically iodine-
deficient adults may transiently induce hyperthyroidism
(35,36), but this was not observed in our study. The 8 cases
of overt hyperthyroidism observed at baseline resolved over
the course of the study and no cases were observed at
30 weeks’ gestation. Furthermore, we observed no decrease
in TT4 in supplemented women, as previously reported in a

cross-sectional study conducted in a moderately iodine-
deficient population (37).

BMIC is strongly associated with the iodine intake of the
mother (38), and is the most accurate biomarker of iodine
status during lactation (39). BMIC did not differ according to
supplement group over the course of the study and the median
concentration was more than three times lower than reported
in lactating women in iodine replete populations (39).
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TABLE 3. BREAST MILK IODINE CONCENTRATION AND INFANT THYROGLOBULIN CONCENTRATION ACCORDING
TO MATERNAL SUPPLEMENT GROUP

8 Weeks 12 Weeks 24 Weeks
N postpartum N postpartum N postpartum p*
Breast milk
BMIC (ug/L)
MMN 160 57 (41-83) 175 51 (35-72) 175 51 (32-74)
FeFol 154 51 (35-74) 153 44 (33-73) 157 39 (30-57) 0.3
Infants
Tg (ug/L)
MMN — 163 87 (59-127) 152 67 (42-95)
FeFol 165 87 (58-124) 159 70 (47-91) 0.9

Data are median (IQR) derived from raw data. Data were log-transformed before analysis. Data were analyzed using linear mixed effects

models.
*The p-value tests time by supplement interaction.
BMIC, breast milk iodine concentration.

Furthermore, the median UIC in the women at 12 weeks
postpartum did not differ between the groups and was below
the WHO threshold of 100 ug/L (9). Our data suggest that in a
population with persistently low dietary iodine intakes
postpartum, prenatal supplemental iodine has minimal long-
term effect on excretion in breast milk. In areas of iodine
deficiency, maternal postnatal iodine supplementation may
be justified to ensure adequate maternal iodine status during
lactation, to maintain adequate BMIC and infant iodine status
12).

The estimated iodine intake in the breastfeeding infants in
our study was 42 ug/day [assuming a breast milk intake of
0-78L (40)], only half of the dietary iodine requirements
(41,42). The elevated Tg concentration observed in the in-
fants from both supplement groups at 12 and 24 weeks
postpartum suggests deficient iodine intakes, although no
reference range has been established for this age group for the
assay used. Circulating Tg levels are typically high in early
infancy but fall over the first year of life, likely stabilizing by
about 6 months to 2 years of age (43), and the Tg concen-
trations in the infants in our study followed this pattern. We
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observed no group differences in the infant Tg concentra-
tions, and thus no long-term effect of maternal prenatal iodine
supplementation in the infants. At birth, the cord blood Tg
concentration was lower in the MMN group than in the FeFol
group, at a ratio comparable with the maternal serum Tg
concentration at 30 weeks’ gestation. The TSH concentration
in cord blood was comparable between the two supplement
groups. These findings add to previous observational data and
controlled studies reporting associations between Tg, TSH,
and thyroid hormone concentrations measured in cord blood
and maternal thyroid function (5,7,44,45).

Our finding would support the need for iodine supple-
mentation or the inclusion of iodine in MMN supplements in
moderately iodine-deficient populations to improve the io-
dine intake during pregnancy. However, universal salt iodi-
zation is the primary intervention strategy to prevent iodine
deficiency in the general population (9). Recent data dem-
onstrate that adequately iodized salt at high coverage meets
the requirements of all population groups, including pregnant
and lactating women (46). The developing fetal brain is es-
pecially vulnerable during the first trimester when the fetus
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relies on maternal thyroid hormone supply (3). Universal salt
iodization ensures adequate iodine intake and sufficient ma-
ternal iodine stores when the mother enters pregnancy to
maintain optimal fetal thyroid hormone supply at a critical
time window when targeted supplementation unlikely is in-
troduced yet. The current WHO position recommending
targeted iodine supplementation to pregnant and lactating
women primarily in populations with poor coverage of io-
dized salt remains valid. For this rural Gambian population,
important prevention strategies are to ensure that locally
produced salt is iodized adequately or that MMN supple-
mentation during pregnancy is standard care rather than
FeFol supplementation (47).

The strengths of this study are the randomized design of
the ENID trial conducted in a moderately deficient popula-
tion of pregnant and lactating women, with multiple pre- and
postnatal measures of iodine status and thyroid function pa-
rameters, along with BMIC during the first six months of
lactation. Few well-powered studies have been conducted in
areas with moderate iodine deficiency, and even fewer have
studied pregnancy, lactation, and infancy and measured the
range of biomarkers as done in this study. The drop-out rate
was overall low, with only 10% dropouts between birth and
1 year follow-up; furthermore, attrition was low and balanced
between study arms. Furthermore, ICP-MS was used to
measure UIC and BMIC, the gold standard method for these
markers (39,48). Moreover, a 24-hour UIC sample was used
rather than a spot UIC and we estimated the iodine intake
using the daily iodine excretion obtained from the urine
volume measured in the 24-hour urine collection. A limita-
tion of this study is that the intervention of focus was a MMN,
and not a trial of an iodine supplement in isolation. Fur-
thermore, we did not measure selenium status in these wo-
men. We recognize that the results obtained could be
influenced by known or unknown interactions between mi-
cronutrients. However, the potential interaction of iron defi-
ciency and folate status was accounted for as the same FeFol
dose was used in the two groups and thereby accounted for a
possible confounder in this iron-deficient population (49).
Infant thyroid hormones were not investigated longitudi-
nally, and infant UIC was not measured, as infant urine was
not collected as a part of ENID. This could have improved the
interpretation of infant iodine status in this population.
Lastly, there were no data available regarding serum TPO
levels, thyroid-, or antithyroid medication use in this study
population.

In conclusion, we observed that in this moderately iodine-
deficient population, supplementation during pregnancy
with an iodine-containing MMN improved maternal iodine
status. Despite markedly inadequate iodine intake, pregnant
women were overall euthyroid and supplemental iodine had
limited impact on maternal thyroid hormone production.
Our data suggest that prenatal iodine supplementation does
not ensure optimal postnatal maternal iodine status, BMIC,
and infant iodine status during the first six months after
birth. Universal salt iodization should remain the main
strategy to prevent iodine deficiency during pregnancy,
lactation, and early infancy. If the coverage of iodized salt is
poor and prenatal supplementation is required, maternal
iodine supplementation should be continued through lacta-
tion to increase maternal iodine status, BMIC, and infant
iodine status.
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