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Abstract

A recent study identified SCYL1 as one of the components of the oncogenic STP axis,

which promotes triple-negative breast cancer by regulating degradation of the REST tumor

suppressor. Contrary to the findings of that study, herein we show by using 3 distinct genetic

approaches that SCYL1 does not regulate REST turnover. Specifically, REST protein levels

and turnover were identical in Scyl1+/+ and Scyl1-/- mouse embryonic fibroblasts. Similarly,

targeted inactivation of SCYL1 in Hek293T cells by using CRIPSR-Cas9 technology did not

affect REST steady-state level and turnover. Furthermore, RNA interference–mediated

depletion of SCYL1 in Hek293T or MDA-MB-231 cells did not alter REST steady-state level

and turnover. Together, our findings indicate that SCYL1 does not contribute to REST turn-

over and thus do not support a previous study suggesting a role for SCYL1 in mediating

REST degradation.

Introduction

The RE-1 silencing transcription factor (REST), also known as the neuron-restrictive silencer

factor, is a transcriptional repressor that regulates early lineage commitment and neuronal

plasticity [1]. During the transition from pluripotent to neural stem/progenitor cells, REST is

actively degraded by the proteasome [1, 2], and downregulation of REST triggers neuronal

gene expression critical to nervous system development [1]. In addition to regulating neuronal

development, REST also functions as a tumor suppressor in epithelial tissues. An RNA inter-

ference (RNAi)–based screen identified REST as an important regulator of human mammary

epithelial cell proliferation [3]. Consistent with the role of REST in regulating epithelial cell

transformation, inactivating mutations, gene deletions, gene silencing, and alternative splicing

of REST have been associated with epithelial malignancies [3–6]. During neuronal develop-

ment and epithelial cell transformation, REST is degraded by the ubiquitin-proteasome path-

way through the recognition of a phospho-degron located in the C-terminal region by the

ubiquitin ligase βTRCP [1, 2]. In search of signaling pathways that regulate the phosphoryla-

tion and degradation of REST, Karlin et al. identified a novel oncogenic complex comprising

SCYL1, TEX14, and PLK1 (STP axis), which cooperatively promotes the degradation of REST

by phosphorylating a conserved phospho-degron, thereby linking REST to βTRCP [7].
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SCYL1 is a critical regulator of motor neuron survival [8–10]. In mice, loss of SCYL1 func-

tion leads to an early onset motor neuron disorder with characteristic features of amyotrophic

lateral sclerosis (ALS), including mislocalization of TDP43 and ubiquilin-2 in cytoplasmic

aggregates in spinal motor neurons [9]. The mechanism underlying the neuroprotective func-

tion of SCYL1, however, has remained elusive. Interestingly, an early study in chicken embryos

showed that ectopic expression of REST in the developing spinal cord leads to axonal pathfind-

ing errors and suggested that downregulation of REST is necessary for proper neuronal devel-

opment [11]. In light of recent findings suggesting a role for SCYL1 in regulating REST [7]

turnover, we hypothesized that REST could be stabilized in Scyl1-deficient mice causing errors

in motor neuron pathfindings and motor neuron degeneration.

To test this hypothesis, we first validated the findings of Karlin et al. that suggest a role for

SCYL1 in regulating REST expression and turnover by using 3 distinct genetic approaches.

Unexpectedly, we found that SCYL1 is dispensable for REST turnover. Specifically, we show

that targeted inactivation of Scyl1 by conventional gene targeting in mouse embryonic fibro-

blasts (MEFs), CRIPSR-Cas9–mediated inactivation of SCYL1 in Hek293T cells, or RNAi-

mediated knockdown of SCYL1 in Hek293T or MDA-MB-231 cells did not affect the steady-

state expression level and turnover of REST. Thus, our data do not support the previously pub-

lished data by Karlin et al. demonstrating a role for SCYL1 in regulating the REST level and

turnover.

Materials and methods

Antibodies

The anti-REST rabbit polyclonal antibody (07–579) was purchased from EMD Millipore.

The polyclonal anti-SCYL1 antibody produced in rabbit, Human Protein Atlas Number

HPA015015, was purchased from Sigma-Aldrich. The monoclonal anti-β-actin antibody clone

AC-15 produced in mouse (A1978) was purchased from Sigma-Aldrich. The anti-rabbit IgG

HRP-linked antibody (111-035-003) and anti-mouse IgG HRP-linked antibody (115-035-174)

were purchased from Jackson ImmunoResearch.

Tissue culture

Hek293T cells (ATCC1 CRL-3216™) and SV40-transformed MEFs obtained from E15 Scyl1
+/+ and Scyl1-/- mouse embryos [9] were cultured in DMEM, high glucose, supplemented

with FBS, L-glutamine, penicillin, and streptomycin. MDA-MB-231 (ATCC1 HTB-26™) cells

were cultured in L-15 medium (Sigma-Aldrich, SLBN4238V), supplemented with fetal bovine

serum to a final concentration of 10%, penicillin, and streptomycin. MDA-MB-231 cells were

cultured with atmospheric air.

Generation CRISPR-Cas9 constructs

SCYL1 gene ablation in Hek293T cells was performed by using CRISPR-Cas9 technology. Two

single-guide RNAs (sgRNAs) targeting exon 4 of SCYL1 were selected as described previously

[12]: hScyl1sgRNA1, TCGTGGACCGAGCTGGCGAG(chr11:65,526,191–65,526,213, GRCh38/

hg38) and the hScyl1sgRNA2, CTGCTGTCAGCCAACTCCGG(chr11:65,526,304–65,526,326,

GRCh38/hg38). The selected guide sequences have no potential off-target sites with fewer than

3 mismatches, and the protospacer-adjacent motif-proximal 13-nucleotide seed sequences

are unique in the human genome. The guide sequences were cloned in PX458 to generate

px458-hScyl1-1 and px458-hScyl1-2, respectively. pSpCas9(BB)-2A-GFP (PX458) was a gift

from Dr. Feng Zhang (Addgene plasmid # 48138) [13].
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Generation of SCYL1-deficient Hek293T cells

Hek293T cells were transfected with both sgRNAs. Two days later, GFP-positive cells were sin-

gle sorted by fluorescence-activated cell sorting into individual wells of 96-well plates. The

region surrounding the target sequences was PCR amplified with the following primers:

hScyl1-F01, GAGATCTCCTGGGGGCTACA, and hScyl1-R01, CAGAATCACCCAACCCCGAA.

PCR products were TOPO cloned, and more than 12 mini-preps for each clone were se-

quenced. Three clones were obtained in which both SCYL1 alleles contained distinct deletions

that caused a frame shift and premature stop codon, leading to mRNA decay. Also, 3 addi-

tional clones were selected in which SCYL1 remained unaltered. SCYL1 deletion was con-

firmed by western blot analysis.

Depletion of SCYL1 by RNA interference

Hek293T and MDA-MB-231 cells were transfected by using Lipofectamine1 RNAiMAX

transfection reagents (Invitrogen), as per manufacturer’s instructions, with the following RNAi

duplexes (Invitrogen): SCYL1HSS126245 (50-CCGUUGGGAAUAUACCUCAAGGCGA-30),
SCYL1HSS183826 (50-CCAACCUCAAUGAGGAGCUGAUGAA-30) and SCYL1HSS183827 (50-
UGCAACACCACAGUCUGCCUGGGCA-30). Then, 30 pmole of RNAi duplexes in 250 μL Opti-

MEM1I Reduced-Serum Medium without serum were combined with 5 μL Lipofectamine1

RNAiMAX transfection reagents in 250 μL Opti-MEM1I Reduced Serum Medium without

serum and mixed gently. After 20 min at room temperature, the RNAi duplex–lipofectamine

complexes were added to each well of a 6-well plate containing 2.5 mL of culture medium. At

48 h post-transfection, cells were treated as described below.

REST half-life

Scyl1+/+ and Scyl1-/- MEFs, Hek293T cells, Hek293T-SCYL1KO cells and RNAi-treated

Hek293T or MDA-MB-231 cells were plated in 6-well plates. At 24 (MEFs and Hek293T-S-

CYL1KO cells) or 48 h post-plating/transfection, cells were treated with 10 μg/mL of cyclohexi-

mide (CHX) for the indicated times. Cells were then lysed in RIPA buffer (50 mM Tris-HCl, pH

8.0, 150 mM NaCl, 1% NP-40 [Igepal-CA-630], 0.5% sodium deoxycholate, 0.1% SDS) containing

Complete™ protease inhibitors and PhosSTOP™ phosphatase inhibitors (Roche). Endogenous

REST, SCYL1, and β-actin protein levels were determined by western blot analysis, and band

intensities were quantified by using NIH Image J software version 1.42q (http://rsbweb.nih.gov/ij).

Cell cycle analysis by flow cytometry

Hek293T and Hek293T-SCYL1KO cells were incubated for 6 hours in the presence of DMSO

or BI 2536 (100nM). The cells were then harvested and washed three times in PBS. The cells

were then fixed in cold 70% ethanol for 30 minutes on ice. Next, the cells were washed twice

with PBS, spun down and treated with 50 μL of RNase A (100 μg/mL). Then 200uL of propi-

dium Iodide (50 μg/mL) was added to the cells and the cells were analyzed by flow cytometry

(FACScan, Becton Dickinson, San Jose, CA). The % of cells in each stage of the cell cycle was

determined using ModFit (Verity Software house, Topsham, ME) and plotted.

Results

To determine whether SCYL1 was involved in REST turnover, we measured the steady-state

level and half-life of REST in Scyl1+/+ and Scyl1-/- MEFs by using cycloheximide chase experi-

ments. We recognize the fact that protein synthesis inhibition by CHX can alter protein degra-

dation via AKT activation [14]and that 35S-methionine/cysteine metabolic labeling represents
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a better approach to follow the degradation of proteins. However, for the sake of reproducibil-

ity, we have used CHX to prevent de novo synthesis of REST as did Karlin et al. in their studies

[7]. Unexpectedly, both the steady-state level and half-life of REST were identical in Scyl1+/+
and Scyl1-/- MEFs (Fig 1), indicating that SCYL1 is dispensable for REST turnover in murine

fibroblasts.

Because MEFs may express factors that regulate REST turnover independently of the STP

axis, we tested whether targeted ablation of SCYL1 in Hek293T cells, the cells used in the Kar-

lin et al. study, affected REST turnover. We generated 3 independent Hek293T cell lines in

which SCYL1 was disrupted by using CRISPR-Cas9 technology and measured the half-life of

REST in each line. As seen in Scyl1-/- MEFs, the half-life and steady-state level of REST were

identical in both Hek293T and Hek293T-SCYL1KO cells, indicating that SCYL1 is also dis-

pensable for REST turnover in Hek293T cells (Fig 2).

Fig 1. REST protein turnover and levels in Scyl1+/+ and Scyl1-/- mouse embryonic fibroblasts (MEFs).

(A) REST protein turnover in Scyl1+/+ and Scyl1-/- MEFs. MEFs were seeded at a density of 250,000 cells

per well of 6-well plates. The following day, cells were treated with 10 μg/mL of cycloheximide (CHX) for the

indicated times. Endogenous REST, SCYL1, and β-actin levels were determined by western blot analysis.

The images are representative of 2 independent experiments performed on 2 independently derived Scyl1+/+

and 3 Scyl1-/- MEF lines. Note the absence of SCYL1 in Scyl1-/- MEFs. (B) Quantification of REST protein

levels in Scyl1+/+ and Scyl1-/- MEFs. The ratio of the band intensity of REST to β-actin was normalized to the

ratio of untreated cells (time = 0 h). Data represent mean ± standard error of the mean.

https://doi.org/10.1371/journal.pone.0178680.g001
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We hypothesized that REST turnover might be differentially regulated under acute versus

chronic depletion of SCYL1, which might explain the differences between our findings and

those of Karlin et al. To test this, we depleted SCYL1 in Hek293T cells by using 3 distinct

RNAi duplexes and measured REST half-life and turnover. Although all 3 RNAi duplexes effi-

ciently depleted SCYL1, REST half-life and steady-state expression remained unchanged (Fig

3A). Although Karlin et al. performed most of their studies related to REST protein turnover

in Hek293T cells, some of their studies were also performed in MDA-MB-231 cells. Therefore,

to rule out the possibility that discrepancy between both studies is due to the use of different

cell lines, we tested whether REST protein expression and turnover were differently regulated

in the breast cancer cell line MDA-MB-231. We assessed the role of SCYL1 in regulating REST

turnover in MDA-MB-231 by using RNAi-mediated knockdowns. Although all 3 RNAi

duplexes efficiently depleted SCYL1 (Fig 3B), REST half-life and steady-state expression

Fig 2. REST protein turnover and expression in Hek293T and Hek293T-SCYL1KO cells. (A) REST protein

turnover in Hek293T cells. Hek293T-SCYL1KO cell lines (n = 3) were generated by using CRISPR-Cas9

technology (see Materials and Methods). Three Hek293T cell lines in which SCYL1 was unaltered (Hek293T)

and three Hek293T-SCYL1KO cell lines were seeded at a density of 250,000 cells per well of 6-well plates. The

following day, the cells were treated with 10 μg/mL of CHX for the indicated time. Endogenous REST, SCYL1,

and β-actin levels were determined by western blot analysis. The images are representative of 2 independent

experiments performed on 3 different independently derived clones for each genotype. (B) Quantification of

REST protein levels in cell lines Hek293T and Hek293T-SCYL1KO. The ratio of the band intensity of REST to β-

actin was normalized to the ratio of untreated (time = 0 h). Data represent mean ± standard error of the mean.

https://doi.org/10.1371/journal.pone.0178680.g002
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remained unchanged (Fig 3B). Altogether, our results indicate that SCYL1 is dispensable for

the downregulation of REST.

Lastly, we tested whether inhibition of polo-like kinase 1 (PLK1) activity using the small

molecule BI2436 affected REST protein levels and turnover in Hek293T cells as reported by

Karlin et al. Surprisingly, although incubation of Hek293T or Hek293T-SCYL1KO cells with

BI 2536 (100nM) for 6h induced cell cycle arrest in G2M phase (Fig 4C), consistent with previ-

ous findings [15], it failed to affect REST expression and turnover (Fig 4A and 4B). Similarly,

incubation of MDA-MB-231 cells with BI 2536 (100nM) had no effect on the steady levels of

REST (Fig 4D and 4E). These results indicate that PLK1 activity is also dispensable for REST

turnover in both Hek293T cells and MDA-MB-231.

Discussion

A novel oncogenic pathway regulating REST tumor suppressor turnover was recently de-

scribed [7]. The STP axis, comprising SCYL1, Tex14 and PLK1, was identified in a kinome-

Fig 3. REST turnover and expression in SCYL1-depleted Hek293T cells. Hek293T (A) or MDA-MB-231 (B) cells were

transfected with or without RNAi duplexes targeting SCYL1 (RNAi-1: SCYL1HSS126245, RNAi-2: SCYL1HSS183826,

RNAi-3: SCYL1HSS183827). At 48 h post- transfection, cells were treated with 10 μg/mL of CHX for the indicated time.

Endogenous REST, SCYL1, and β-actin levels were determined by western blot analysis. Comparable knockdown

efficiencies were achieved for all 3 RNAi duplexes.

https://doi.org/10.1371/journal.pone.0178680.g003
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Fig 4. Effect of PLK1 inhibition by BI 2536 on REST protein expression and turnover. (A) Three Hek293T cell lines in which SCYL1 was unaltered

(Hek293T) and three Hek293T-SCYL1KO cell lines were seeded at a density of 250,000 cells per well of 6-well plates. The following day, the cells were

treated with 10 μg/mL of CHX for 6 h in the presence or absence of absence of BI 2536 (100nM). Endogenous REST, SCYL1, and β-actin levels were

determined by western blot analysis. The images are representative of 2 independent experiments performed on 3 different independently derived clones

for each genotype. (B) Quantification of REST protein levels in cell lines Hek293T and Hek293T-SCYL1KO. The ratio of the band intensity of REST to β-

actin was normalized to the ratio of untreated (time = 0 h). Data represent mean ± standard error of the mean. (C) Flow cytometric analysis of cell cycle with

propidium iodide DNA staining of exponentially growing Hek293T (n = 3) and Hek293T-SCYL1KO (n = 3) cells treated for 6 h with 100nM BI 2536 or DMSO.

In the presence of BI 2536, cells accumulated to 4N DNA content, indicative of G2/M arrest. Data represent mean ± standard error of the mean. (D) Four
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wide RNAi screen for kinases that regulate REST turnover [7]. These findings were of parti-

cular interest to us because of our efforts in understanding the neuroprotective function of

SCYL1 [9]. Thus, to validate these findings, we first analyzed REST expression and turnover in

Scyl1-/- and Scyl1-/- MEFs. Unexpectedly, we found that loss of SCYL1 had no effect on REST

levels and turnover. Because Karlin et al. used Hek293T cells to demonstrate that SCYL1 regu-

lates REST turnover and because MEFs may express additional proteins that regulate REST

turnover, we next targeted SCYL1 in Hek293T cells by using the CRISPR-Cas9 technology.

Again, the loss of SCYL1 did not influence REST expression and turnover. In their study,

Karlin et al. used an RNAi-mediated strategy to demonstrate a role for SCYL1 in regulating

REST turnover in Hek293T cells and triple-negative cancer cells. We also performed RNAi-

mediated studies by using 3 distinct RNAi duplexes (SCYL1HSS126245, SCYL1HSS183826,

SCYL1HSS183827, Invitrogen) in Hek293T and MDA-MB-231 cells and found that despite

significantly reducing SCYL1 expression, none of the RNAi duplexes affected REST expression

and turnover. Altogether, our findings clearly indicate that SCYL1 is not required for REST

degradation.

The reason for the discrepancy between our results and Karlin et al. is unknown. One expla-

nation however is that the RNAi duplexes used in their study had off-target activity. Karlin

et al. initially used RNAi duplexes SCYL1HSS126244, SCYL1HSS126245, and an unspecified

one to identify SCYL1 as one of the STP axis genes. HSS126244 had the most prominent effect

on REST protein expression, followed by HSS126245, and the third RNAi had no effect [7].

Subsequent experiments essentially relied on SCYL1HSS126244, which was shown to affect

REST protein expression levels and delay REST turnover in Hek293T cells and triple-negative

breast cancer cell lines [7]. Considering that RNAi screens are notorious for producing false-

positive outcomes due to gene-silencing pathways based on microRNAs [16–18], it is possible

that SCYL1HSS126244, in addition to targeting SCYL1, has other target sites and thereby

affects the expression of other genes that regulate REST protein expression and turnover.

Functional genome-wide RNAi-based gene silencing screens have been instrumental in identi-

fying novel cellular pathways and potential drug targets and should be continued to be used.

However, potential hits from these screens should be validated by using additional robust

genetic approaches such as conventional and CRISPR-Cas9–mediated gene targeting [19].

Here we used three distinct genetic strategies to directly assess whether SCYL1 is involved in

regulating REST protein levels and turnover. Although REST half-life was similar in parental

cell lines (Hek293T and MDA-MB-231) between the two studies, we found that depletion of

SCYL1 using three distinct RNAi duplexes in MDA-MB-231 cells or Hek293T cells or by gene

disruption using CRISPR-Cas9 in Hek293T cells or conventional targeting in mouse embry-

onic fibroblasts had no effect on REST protein level or turnover. Our findings directly chal-

lenge the mechanism put forth by Karlin et al.

Our findings also argue against a role for PLK1 activity in regulating REST protein expres-

sion and turnover and suggest that another pathway, perhaps the MAP kinase signaling path-

way as shown recently [20], regulates REST turnover in Hek293T cells. Inhibition of PLK1 had

no effect on REST protein expression or turnover in Hek293T and MDA-MB-231 cells. Our

studies, however, do not contest the possible role of Tex14 in mediating REST turnover; the

formation of an STP complex; or the possibility of SCYL1, Tex14, PLK1, and REST being aber-

rantly expressed in triple-negative breast cancer cells [7].

distinct cultures of MDA-MB-231 cells were incubated with DMSO or BI2 2536 (100nM) for 6 h. Endogenous REST, SCYL1, and β-actin levels were

determined by western blot analysis. (E) Quantification of REST protein levels in MDA-MB-231 cells. The ratio of the band intensity of REST to β-actin was

normalized to the ratio of DMSO treated cells. Data represent mean ± standard error of the mean.

https://doi.org/10.1371/journal.pone.0178680.g004
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