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The aneuploidy testing of
blastocysts developing from 0PN
and 1PN zygotes in conventional
IVF through TE-biopsy PGT-A
and minimally invasive PGT-A
Haijing Zhao†, Ping Yuan†, Xiaoli Chen, Haiyan Lin, Jun Zhao,
Jia Huang, Qi Qiu, Xiaohui Ji, Qingxue Zhang*

and Wenjun Wang*

Reproductive Medicine Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial
Hospital of Sun Yat-sen University, Guangzhou, China

Zygotes without a pronuclear (0PN) or with one pronuclear (1PN) were defined
as abnormal fertilization in conventional in vitro fertilization (IVF). The removal
of 0PN and 1PN zygotes from conventional IVF cycles has always been
controversial. This study aimed to investigate the chromosomal aneuploidy
rates of 0PN- and 1PN-derived blastocysts in conventional IVF cycles and to
assess the concordance rate between TE-biopsy PGT-A and miPGT-A. TE
biopsies and culture media with blastocoel fluid (CM-BF) samples were
whole-genome amplified by multiple annealing and looping-based
amplification cycle-based single-cell ChromInst method. Next generation
sequencing was performed for comprehensive chromosomal screening on a
NextSeq550 sequencer using the NextSeq 500/550 High Output kit v2. The
aneuploidy rates of 0PN-derived blastocysts were 19.7% for TE-biopsy
PGT-A, and 36.1% for miPGT-A; the concordance rate for ploidy was 77.0%;
and the sensitivity and specificity were 83.3% and 75.5%, respectively. The
aneuploidy rates of 1PN-derived blastocysts were 37.5% and 37.5% by TE-
biopsy PGT-A and miPGT-A, respectively; the concordance rate between TE
biopsies and CM-BF samples was 83.3%; and the sensitivity and specificity
were 77.8% and 86.7%, respectively. Regarding TE-biopsy PGT-A, there were
no significant differences in aneuploidy rates among 0PN-, 1PN- and 2PN-
derived blastocysts (PGT-M cycles) (19.7% vs. 37.5% vs. 24.3%, P= 0.226), but
the aneuploidy rate of 1PN-derived blastocysts was slightly higher than the
other two groups. An increase in aneuploidy rates was observed for 0PN/
1PN-derived day 6 blastocysts compared to 0PN/1PN-derived day 5
blastocysts (TE-biopsy PGT-A: 35.7% vs. 19.3%, P= 0.099; miPGT-A: 39.3%
vs. 35.1%, P=0.705). The present study is the first that contributes to
understanding the chromosomal aneuploidies in 0PN- and 1PN-derived
blastocysts in conventional IVF cycles using TE-biopsy PGT-A and miPGT-A.
The clinical application value of 0PN- and 1PN-derived blastocysts in
conventional IVF should be assessed using TE-biopsy PGT-A or miPGT-A
due to the existence of chromosomal aneuploidies.. In terms of consistency,
the miPGT-A using blastocoel fluid enriched culture medium is promising as
an alternative to TE-biopsy PGT-A for aneuploidy testing of 0PN- or 1PN-
derived blastocysts in conventional IVF.
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Introduction

In conventional in vitro fertilization (IVF), the presence of

two distinct pronuclear (2PN) and two polar bodies (pb) in

zygotes 16–20 h after fertilization defines normal fertilization.

Zygotes without a pronucleus (non-pronuclear, 0PN) or with

one pronucleus (monopronuclear, 1PN) combined with the

presence/absence of a second polar body are considered

abnormally fertilized (1). To date, there is a general consensus

that embryos derived from 1PN zygotes in intracytoplasmic

sperm injection (ICSI) should be discarded for reproductive

purposes to avoid a high proportion of aneuploids (2, 3).

However, the removal of 0PN and 1PN zygotes from

conventional IVF cycles has always been controversial. Most

analyses suggested that blastocyst culture was a noninvasive

choice for 0PN and 1PN embryo selection (4–6). Recently, a

retrospective analysis revealed that 1PN-blastocyst transfers

had a higher abortion rate and a lower live birth rate, and

0PN-blastocyst transfers had higher birth weights than 2PN

blastocyst transfers (7), implying the role of genetic factors in

0PN and 1PN blastocysts. Although some cytogenetic analyses

have indicated that half of the 1PN-derived embryos and

57%–62% of 0PN-derived embryos are diploid (8), there

might be some limitations of fluorescence in situ

hybridization (FISH) analyses. Recent array comparative

genomic hybridization (aCGH) research showed that the

aneuploidy rate of 1PN-derived blastocysts was 30.8% (4/13)

in IVF and 33.3% (1/3) in ICSI, to 46.2% (6/13) in 2PN-

derived blastocysts with IVF and 100% (3/3) in ICSI (9).

Another study reported that the aneuploidy rates of 0PN-,

1PN-, and 2PN-derived blastocysts from conventional IVF

and ICSI cycles were 24.4% (10/41) and 30.8% (8/26) and

38.2% (78/204) by aCGH or next generation sequencing

(NGS), respectively (10). However, the sample size of the

above studies was limited, and the aneuploidy rates of 0PN-

and 1PN-derived blastocysts were below 2PN-derived

blastocyst, consistent with other studies (1).

Preimplantation genetic testing for aneuploidy (PGT-A)

using trophectoderm (TE) biopsy has been extensively applied

as a diagnostic tool in assisted reproductive therapy because it

improves pregnancy outcomes through comprehensive

embryonic chromosome screening (11, 12). Nonetheless, the

invasiveness, requirement of experienced technical skill, and

the complex operational procedures of TE biopsies limit its

widespread application (13). In addition, embryo mosaicism

leads to false positives and false negatives in TE biopsy

because the inner cell mass (ICM) cells are not tested (14).

Furthermore, invasive biopsies may weaken the embryo

developmental potential (15), and long-term biosafety of
02
biopsies is yet to be assessed (16, 17). Noninvasive PGT-A

with spent blastocyst medium (SBM) also has shortcomings,

as SBM is associated with a higher maternal contamination

(cumulus cells) than blastocoel fluid (BF), resulting in higher

levels of nuclear and mitochondrial DNA being detected in

the SBM, especially during the blastocyst stage (18, 19). Thus,

a reliable, effective and minimally invasive strategy would

promote the wider implementation of PGT-A. Embryonic

cell-free DNA from blastocoel fluid (BF) (20–22) is an ideal

genetic material for minimally invasive PGT-A (miPGT-A).

After the necessary artificial shrinkage of blastocysts prior to

vitrified cryopreservation, the junction of TE cells is broken

by a laser pulse, or the aspiration of the injection pipette is

used to release the BF into the culture medium (23, 24). The

culture medium combined with BF is then collected for

follow-up testing.

Currently, there are no full-scale investigations of

chromosomes from 0PN/1PN-derived blastocysts in a

conventional IVF by TE-biopsy PGT-A combined with

miPGT-A available. Consequently, there are many unanswered

questions. For example, is it necessary to detect aneuploidy in

0PN/1PN-derived blastocysts by TE-biopsy PGT-A or miPGT-

A before the transfer? Is there any real aneuploidy rate

difference between 0PN-, 1PN- and 2PN-derived blastocysts?

Therefore, for further clarifications, in this study, we

investigated the chromosomal aneuploidy rates of blastocysts

developing from 0PN or 1PN zygotes in conventional IVF

cycles through TE-biopsy PGT-A and miPGT-A and we

assessed the concordance of results from TE biopsies and

culture media with blastocoel fluid (CM-BF), and compared

the aneuploidy differences of 0PN-, 1PN- and 2PN-derived

blastocysts.
Materials and methods

Study population

All patients were recruited between October 2019 and

September 2020. A total of 101 blastocysts from 59 couples

undergoing conventional IVF treatment were included in this

study. Inclusion criteria: day 1: zygotes were 0PN with/

without the second polar body or 1PN with/without the

second polar body; day 3: 0PN- or 1PN-derived embryos with

more than four cells were included; day 5 or day 6: the

morphology score of blastocysts was above CC. Exclusion

criteria: day 1: zygotes were 2PN, 3PN, and multi-PN;

immature oocytes were excluded; day 3: 0PN- or 1PN-derived

embryos with fewer than four cells were excluded; day 5 or
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https://doi.org/10.3389/frph.2022.966909
https://www.frontiersin.org/journals/reproductive-health
https://www.frontiersin.org/


Zhao et al. 10.3389/frph.2022.966909
day 6: embryos arrested in cleavage stage, or with morphology

scores of CC were excluded.

A flow diagram is shown (Figure 1). A total of 85 blastocysts

(0PN = 61, 1PN = 24) with testing results from both TE and CM-

BF samples were compared. The remaining 16 blastocysts without

TE biopsies or CM-BF aneuploidy results were excluded. Four

scenarios were considered when comparing the ploidy results of

TE biopsies with the corresponding CM-BF: euploid-euploid,

euploid-aneuploid, aneuploid-euploid, and aneuploid-aneuploid.

The analysis of ploidy concordance included the matches

euploid-euploid and aneuploid-aneuploid and for discordance

euploid-aneuploid and vice versa (Figure 2). The analysis of

total concordance included full concordance (all 24

chromosomes) and partial concordance (some concordant

chromosomes). Similarly, the 2PN group (collection during the

same period), including 309 TE biopsies from 77 PGT-M

cycles, was recruited as the control group, and 58 TE biopsies
FIGURE 1

Flow diagram of the study. PN, pronuclear; pb, polar body; TE, trophectoderm
positive predictive value; NPV, negative predictive value.
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were excluded for unknown PGT-A results, so 251 TE biopsies

were compared to 61 TE biopsies in the 0PN group and 24 TE

biopsies in the 1PN group.
Ethics approval

This project was approved by the Institutional Medical

Ethics Committee of Sun Yat-Sen Memorial Hospital. All

participants signed an informed consent form after the study

details were explained.
Blastocyst culture

All 0PN, 1PN, and 2PN zygotes were cultured separately in

G1-plus (supplemented with HSA; Vitrolife, Göteborg, Sweden)
; PGT-M, preimplantation genetic testing for monogenic diseases; PPV,
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FIGURE 2

Examples of the comparison between TE-biopsy PGT-A and miPGT-A. (A,D) Concordance between TE biopsy and the corresponding CM-BF.
(B,) Discordance between TE biopsy and the corresponding CM-BF. TE, trophectoderm; CM-BF, culture media with blastocoel fluid.

Zhao et al. 10.3389/frph.2022.966909
medium using alight paraffin oil overlay (Vitrolife, Göteborg,

Sweden) on day one. 0PN-, 1PN- and 2PN-derived embryos

(≥four cells) were individually placed in G2-plus

(supplemented with HSA; Vitrolife, Göteborg, Sweden)

medium using alight paraffin oil overlay (Vitrolife, Göteborg,

Sweden) on day three, and they were further cultured till

the blastocyst stage under 6% CO2, 5% O2, and balanced N2

at 37 °C.

Blastocyst morphology was evaluated using the Gardner

scoring system (25). Blastocysts graded as 3–6, with either the

ICM or TE graded other than C, were considered suitable for

biopsy. High-quality blastocysts were scored as AA, AB, BA,

or BB, and low-quality blastocysts were scored as BC or CB.
Collection of CM-BF

A series of procedures have been implemented to avoid

maternal cumulus cells contamination. 0PN- and 1PN-derived

embryos of day 3 were washed several times to remove the

loose cumulus cells on the zona pellucida before transferred

to G2-plus culture medium. On day 5 or day 6, the original

G2-plus droplet for blastocyst culture was discarded. The

blastocyst was washed three times in different fresh droplets

(pre-equilibrium) to fully remove the loose cumulus cells on

the zona pellucida again. And then the blastocyst was

transferred into another fresh 15 µl G2-plus droplet (pre-

equilibrium) and perforated by a laser pulse (LYKOS®,

Hamilton Thorne, INC., USA) for 200 µs to release the

blastocoel fluid into the G2-plus droplet. After 4–6 h, the

blastocyst was transferred into the biopsy dish, the mixture of

G2-plus droplet with blastocoel fluid (15 µl) were collected

and placed in an RNAse/DNAse-free PCR tube with 5 µl of

phosphate-buffered saline (PBS) (Yikon, Jiangsu, China) (The

collection method referred to the report of Jiao Jiao et al. (23).

CM-BF samples were then marked clearly and immediately

stored at −80 °C for subsequent testing. A 15 µl of G2-plus
Frontiers in Reproductive health 04
medium without embryo culture was used as a negative

control (Figure 3).
Collection of blastocyst TE cells

TE biopsy was performed on day 5 or day 6 by zona

drilling with a laser, and a few biopsied TE cells (5–6 cells)

were removed and collected for genetic analysis (26).

Thereafter, TE cells were observed under a light

microscope, and no adherent sperms were observed.

Subsequently, TE cells were placed in RNAse/DNAse-free

PCR tubes with 5 µl of PBS (Yikon Genomics, Jiangsu,

China) and stored at −80 °C. Fresh PBS was used as a

negative control. A single blastocyst was vitrified in

sequence after biopsy, following the manufacturer’s

protocols (Kitazato Corporation).
Whole-genome amplification (WGA)
and NGS

WGA of biopsied TE cells and CM-BF samples was

performed using multiple annealing and looping-based

amplification cycle-based single-cell ChromInst method

(Yikon Genomics, Jiangsu, China), according to the

manufacturer’s protocol. NGS used for comprehensive

chromosomal screening was performed on a NextSeq550

sequencer (Illumina, USA) using the NextSeq 500/550High

Output kit v2 (75 cycles) to generate >1 M valid reads of

single-end 55 bp for analyzing the single-cell level

chromosome copy number variation. The results were

analyzed using Bioinformatics software ChromGo (http://

chromgo.yikongenomics.cn:7000/#/home) (Yikon Genomics,

Jiangsu, China) and aligned to the hg19 human reference

genome (http://hgdownload.cse.ucsc.edu/downloads.html). The

chromosomal aneuploidy and copy numbers of chromosomal
frontiersin.org
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FIGURE 3

Schematic diagram of collecting blastocoel fluid enriched culture
medium.
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segments larger than 4 Mb can be reliably predicted using the

CBS algorithm (27).
Pronuclear diameter measurement

All 1PN zygotes were photographed and their pronuclear

diameters were measured by OCTAX Eye-WareTM Olympus

system. Take the two largest diameters of the pronuclear

plane as the vertical line, and take their mean as the

pronuclear diameter (28).
Judgment polar body number

Based on the size, shape and distance of two polar bodies,

the judgment of polar body in 0PN or 1PN zygotes was as

follows: 2PB: two integrated polar bodies can be clearly seen

under the microscope, and there was a certain distance

between them, or one integrated polar body and polar body

fragments at a certain distance from it, or there was a certain

distance between the two polar body fragments; 1PB: only one

integrated polar body can be clearly seen under the

microscope, or one integrated polar body and adjacent polar

body fragments, or only one polar body fragments can be seen.
Statistical analysis

All statistical analyses were performed using SPSS 22.0

(IBM). Female age is expressed as the mean ± standard

deviation. A comparison of female age was performed using

one-way ANOVA. The analysis is expressed as the percentage

of probability. The chi-square test was used to compare the

differences in percentages, and Fisher’s exact test was applied
Frontiers in Reproductive health 05
in cases of low sample size. A logistic regression model was

used to analyze the association between female age, polar

body number, blastocyst score, pronuclear diameter, and

aneuploidy rates of 0PN- and 1PN-derived blastocysts. The

positive predictive value (PPV) and negative predictive value

(NPV) were determined. PPV: true positive/(true positive +

false positive) × 100. NPV: true negative/(true negative + false

negative) × 100. Sensitivity and specificity were estimated for

CM-BF related to TE biopsy as follows: Sensitivity: true

positive/(true positive + false negative) × 100. Specificity: True

negative/(true negative + false positive) × 100. All statistical

tests were two-sided, and P < 0.05.
Results

The aneuploidy rates of 0PN-derived blastocysts were 19.7%

for TE-biopsy PGT-A, and 36.1% for miPGT-A; the

concordance rate between TE biopsies and CM-BF samples

was 77.0%; and the sensitivity and specificity were 83.3% and

75.5%, respectively. The aneuploidy rates of 1PN-derived

blastocysts were 37.5% for TE-biopsy PGT-A, and 37.5% for

miPGT-A; the concordance rate across TE biopsies and the

corresponding CM-BF was 83.3%; and the sensitivity and

specificity were 77.8% and 86.7%, respectively. The aneuploidy

rates were high but not significantly higher in 1PN-derived

blastocysts than in 0PN-derived blastocysts, regardless of the

testing method used. There were no significant differences in

the concordance rate, sensitivity, and specificity between the

two groups (Table 1).

We compared the aneuploidy rates of 0PN- and 1PN-

derived blastocysts in conventional IVF cycles and 2PN-

derived blastocysts in PGT-M cycles. There were no

significant differences in the TE-biopsies aneuploidy rates

among 0PN-, 1PN- and 2PN-derived blastocysts (19.7% vs.

37.5% vs. 24.3%, P = 0.226), but the aneuploidy rate of 1PN-

derived blastocysts was slightly increased compared to the

other two groups. No significant differences were observed in

the aneuploidy rates of day 5 blastocysts among the three

groups and for day 6 blastocysts. However, in each group, the

aneuploidy rate was slightly higher on day 6 than on day 5

(Table 2). Furthermore, the percentages of high-quality

blastocysts were not significantly different among the three

groups (60.7% vs. 54.2% vs. 52.6%, P = 0.526). However, the

percentage of high-quality blastocyst on day 5 was

significantly higher than those on day 6 in the 0PN group

(71.7% vs. 26.7%, P = 0.005) and 2PN group (65.3% vs. 34.6%,

P = 0.002 × 103), as shown in Table 2.

For 0PN- and 1PN-derived blastocysts, the aneuploidy rates

of day 5 blastocysts were 19.3% for TE-biopsy PGT-A, and

35.1% for miPGT-A; the concordance rate was 73.7%; and the

sensitivity and specificity were 72.7% and 73.9%, respectively.

The aneuploidy rates of day 6 blastocysts were 35.7% for
frontiersin.org
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TABLE 1 Comparison of the results according to sample type and blastocyst type, % (n).

Characteristic 0PN-derived blastocysts 1PN-derived blastocysts Total P value

No. of blastocysts analyzed, n 72 29 101 –

blastocysts with informative TE + CM-BF 84.7% (61/72) 82.8% (24/29) 84.2% (85/101) 0.807

TE-aneuploidy rate 19.7% (12/61) 37.5% (9/24) 24.7% (21/85) 0.086

CM-BF-aneuploidy rate 36.1% (22/61) 37.5% (9/24) 36.5% (31/85) 0.902

PPV 45.5% (10/22) 77.8% (7/9) 54.8% (17/31) 0.132

NPV 94.9% (37/39) 86.7% (13/15) 92.6% (50/54) 0.652

Sensitivity 83.3% (10/12) 77.8% (7/9) 81.0% (17/21) 1.000

Specificity 75.5% (37/49) 86.7% (13/15) 78.1% (50/64) 0.577

Total concordance rate 77.0% (47/61) 83.3% (20/24) 78.8% (67/85) 0.731

Full concordance rate 37.7% (23/61) 41.65% (10/24) 38.8% (33/85) 0.736

Partial concordance rate 39.3% (24/61) 41.65% (10/24) 40.0% (34/85) 0.844

TE, trophectoderm; CM-BF, culture media with blastocoel fluid; PPV, positive predictive value; NPV, negative predictive value.

Total concordance includes blastocysts with full + partial concordances; full concordance is defined as TE and CM-BF both euploid or aneuploid for the same

chromosomes, and partial concordance is defined as aneuploid blastocysts but with at least one identical aneuploid chromosome in TE and CM-BF; 0PN, zygote

without pronuclear; 1PN, zygote with one pronuclear.

TABLE 2 Comparison of the results from 0PN/1PN-derived blastocysts in conventional IVF and 2PN-derived blastocysts in PGT-M, % (n).

Characteristic 0PN-derived blastocysts 1PN-derived blastocysts 2PN-derived blastocysts P value

Female age, years 31.5 ± 5.6 31.1 ± 4.0 31.7 ± 4.7 0.743

TE-aneuploidy rate 19.7% (12/61) 37.5% (9/24) 24.3% (61/251) 0.226

Day 5 17.4% (8/46)a 20.0% (2/10)b 21.1% (31/147)c 0.859

Day 6 26.7% (4/15) 50.0% (7/14) 28.8% (30/104) 0.280

High-quality blastocyst rate 60.7% (37/61) 54.2% (13/24) 52.6% (132/251) 0.526

Day 5 71.7% (33/46)d 70.0% (7/10)e 65.3% (96/147)f 0.705

Day 6 26.7% (4/15) 42.9% (6/14) 34.6% (36/104) 0.657

PN, pronuclear; TE, trophectoderm; IVF, in vitro fertilization; PGT-M, preimplantationgenetic testing for monogenic diseases.
aTE-aneuploidy rate in 0PN-derived blastocysts: Day 5 vs. Day 6 (P= 0.681).
bTE-aneuploidy rate in 1PN-derived blastocysts: Day 5 vs. Day 6 (P=0.210).
cTE-aneuploidy rate in 2PN-derived blastocysts: Day 5 vs. Day 6 (P=0.158).
dHigh-quality blastocyst rate in 0PN-derived blastocysts: Day 5 vs. Day 6 (P < 0.01).
eHigh-quality blastocyst rate in 1PN-derived blastocysts: Day 5 vs. Day 6 (P= 0.240).
fHigh-quality blastocyst rate in 2PN-derived blastocysts: Day 5 vs. Day 6 (P < 0.01).
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TE-biopsy PGT-A, and 39.3% for miPGT-A; the concordance

rate across TE biopsies and CM-BF samples was 89.3%; and

the sensitivity and specificity were 90.0% and 88.9%,

respectively. Regardless of the testing method, the aneuploidy

rates of day 6 blastocysts were higher than those of day 5

blastocysts, without significant differences. There were no

significant differences in the concordance rate, sensitivity, and

specificity between the two groups (Table 3).
Discussion

In this study, we analyzed the chromosomal aneuploidies in

0PN- and 1PN-derived blastocysts in conventional IVF cycles

using TE-biopsy PGT-A and miPGT-A for the first time. It is
Frontiers in Reproductive health 06
found necessary that 0PN- and 1PN-derived blastocysts in

conventional IVF should be advised by TE-biopsy PGT-A or

miPGT-A due to the existence chromosomal aneuploidy.

Due to the debate on the availability of 0PN and 1PN

zygotes in conventional IVF, the general consensus was to

give 2PN zygotes, when they are available, priority over 0PN

and 1PN zygotes, and the blastocyst culture would be applied

to 0PN and 1PN zygotes. A retrospective cohort study

revealed that the value of 1PN blastocyst FET would be

without an increased risk of miscarriage rate, congenital

malformations, or defects of psychomotor development

similar to that of 2PN blastocyst FET (6). However, another

study denied the above view and showed that 1PN blastocyst

FET would increase miscarriage rate and decrease live birth

rate compared with 2PN blastocyst FET (7). In our study,
frontiersin.org
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TABLE 3 Comparison of the results according to sample type and day of biopsy, % (n).

Characteristic 0PN/1PN-derived blastocysts Total P value

Day 5 Day 6

No. of blastocysts analyzed, n 69 32 101 –

blastocysts with informative TE + CM-BF 82.6% (57/69) 87.5% (28/32) 84.2% (85/101) 0.739

TE-aneuploidy rate 19.3% (11/57) 35.7% (10/28) 24.7% (21/85) 0.099

CM-BF-aneuploidy rate 35.1% (20/57) 39.3% (11/28) 36.5% (31/85) 0.705

PPV 40.0% (8/20) 81.8% (9/11) 54.8% (17/31) 0.057

NPV 91.9% (34/37) 94.1% (16/17) 92.6% (50/54) 1.000

Sensitivity 72.7% (8/11) 90.0% (9/10) 81.0% (17/21) 0.586

Specificity 73.9% (34/46) 88.9% (16/18) 78.1% (50/64) 0.334

Total concordance rate 73.7% (42/57) 89.3% (25/28) 78.8% (67/85) 0.170

PN, pronuclear; TE, trophectoderm; CM-BF, culture media with blastocoel fluid; PPV, positive predictive value; NPV, negative predictive value.

Total concordance includes blastocysts with full + partial concordances.
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1PN-derived blastocysts had a higher aneuploidy rate compared

to 0PN- or 2PN-derived blastocysts by TE-biopsy PGT-A,

which implied that 1PN-derived blastocysts had a higher risk

of miscarriage. The aneuploidy rate of 0PN-derived blastocysts

was the lowest among the three groups (Table 2), suggesting

that transfer of 0PN-derived blastocysts did not seem to

increase the risk of miscarriage and decrease the implantation

rate, pregnancy rate and live birth rate (7, 29).

In addition, our study also revealed that day 5 blastocysts

had lower aneuploidy rates and higher high-quality blastocyst

rates than day 6 blastocysts, significantly in the 0PN and 2PN

groups (Table 2). This implies that the single embryo should

be transferred prior to day 5, regardless of it being in the

0PN, 1PN or 2PN groups, whereas day 6 blastocysts had

lower pregnancy and live birth rates (30). Our in-house data

on PGT also showed that day 5 single blastocyst FET had a

higher clinical pregnancy rate (78.33% vs. 42.86%) and a

lower miscarriage rate (4.26% vs. 20%) than day 6 (data not

shown), which might be associated with the aneuploidy rate

and embryo’s developmental potential.

Furthermore, since the application of TE-biopsy PGT-A has

been limited primarily due to its invasiveness and sampling bias

with five to six cells extracted from the TE layer (31), the

detection of chromosomal aneuploidy by noninvasive or

minimally invasive methods should be considered. However,

noninvasive PGT-A with SBM is also involved with maternal

contamination (18, 19). Therefore, in our study minimally

invasive PGT-A using BF was implemented, and laser-assisted

collapse of the blastocoele cavity was used to release the BF.

The consistency of TE biopsies and BF samples has been

reported in other studies at lower rates (2.9% in PGT-M tests

and 37.5% in PGT-A tests (18). Nevertheless, in our study,

the concordance between TE-biopsies and CM-BF was high

(78.8%) and reached 89.3% on day 6 blastocysts (Table 3).

The highest concordance was observed in TE-biopsy PGT-A

vs. miPGT-A. The concordance of 0PN- and 1PN-derived day
Frontiers in Reproductive health 07
6 blastocysts between TE-biopsy PGT-A and miPGT-A was

higher than of day 5 blastocysts (89.3% vs. 73.7%, P = 0.170),

which was consistent with the report of Rubio et al. (84.0%

vs. 63.0%, P = 0.029) (31). Moreover, in our study, when

analyzing the discordance rates between TE biopsies and CM-

BF samples, false positives were 21.9% (14 of 64), false

negatives were 19.0% (4 of 21), and the corresponding

sensitivity and specificity were 81.0% and 78.1%, respectively.

Particularly on day 6, miPGT-A had a higher predicted value

with increased sensitivity (90.0%) and specificity (88.9%) in

comparison with previous studies where the sensitivity and

specificity were 73.3% and 66.7% (32), 88.2%, and 84.0% (13),

and 80.0% and 61.0% (33), respectively.

According to the formation mechanism of 0PN and 1PN

zygotes described in previous reports (8, 34, 35), there might

be three possible situations: (1) disappearance or delayed

formation of female and male pronuclei during fertilization;

(2) female pronucleus and male pronucleus fused and formed

diploid 1PN zygotes; and (3) parthenogenetic activation. The

FISH analysis demonstrated that 62.5% (10/16) of 1PN

zygotes from IVF were haploid, suggesting that these 1PN

zygotes might be due to parthenogenetic activation (35).

Furthermore, based on the haplotype analysis using NGS,

there were 40%–42.83% diploid biparental in 1PN-derived

blastocysts from ICSI and 75.51% in 0PN-derived blastocysts

and 80.13% 2PN-derived blastocysts, respectively (1, 36).

However, there were no haplotyping analyses of 0PN or 1PN

from conventional IVF. In our study, we did not exclude

uniparental disomy and ploidy anomalies due to the

limitation of TE-biopsy PGT-A, which requires further

investigation.

In addition, other factors, including female age, polar body

number, pronuclear diameter and blastocyst score, were also

investigated in our study. Advanced maternal age contributes

to an increased incidence of chromosomal aneuploidies (37).

Our logistic regression showed that there were significant
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associations between female age, blastocyst score, and TE-

biopsy aneuploidy rate; however, no significant association

was observed between the polar body number and TE-biopsy

aneuploidy rate in 0PN-derived blastocysts (Supplementary

Table S1). The phenotype of blastocyst score associated with

chromosomal aneuploidy was verified in our previous study

and other studies (38, 39), however, there was no significant

association between blastocyst score and CM-BF aneuploidy

rate in 0PN-derived blastocysts (Supplementary Table S1),

which might be the result of different detection methods.

Moreover, our previous study showed that the bigger

pronuclear diameter (≥25 µm) of the 1PN zygote was more

likely to form blastocysts (28). In this study, we measured the

pronuclear diameter of the 1PN zygotes and divided them

into two subgroups (<25 µm and ≥25 µm) to determine the

chromosomal aneuploidy. No significant associations were

observed between the pronuclear diameter, female age, polar

body number, blastocyst score and aneuploidy rates of 1PN-

derived blastocysts, regardless of the TE biopsy or CM-BF

aneuploidy rates (Supplementary Table S2).

For the first time, our study contributes to the

understanding of chromosomal aneuploidies in 0PN- and

1PN-derived blastocysts in conventional IVF cycles through

TE-biopsy PGT-A and miPGT-A. Our findings indicate that

the clinical application value of 0PN- and 1PN-derived

blastocysts in conventional IVF should be assessed using TE-

biopsy PGT-A or miPGT-A. The above results will help

provide accurate genetic counseling and embryonic selection

for IVF couples with 0PN or 1PN embryos. Furthermore, in

terms of consistency, the miPGT-A using blastocoel fluid

enriched culture medium is promising as an alternative to

TE-biopsy PGT-A for aneuploidy testing of 0PN- or 1PN-

derived blastocysts in conventional IVF.
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