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ABSTRACT

We developed a computational procedure for opti-
mizing the binding site detections in a given
ChIP-seq experiment by maximizing their reprodu-
cibility under bootstrap sampling. We demonstrate
how the procedure can improve the detection
accuracies beyond those obtained with the default
settings of popular peak calling software, or inform
the user whether the peak detection results are
compromised, circumventing the need for arbitrary
re-iterative peak calling under varying parameter
settings. The generic, open-source implementation
is easily extendable to accommodate additional fea-
tures and to promote its widespread application in
future ChIP-seq studies. The peakROTS R-package
and user guide are freely available at http://www
.nic.funet.fi/pub/sci/molbio/peakROTS.

INTRODUCTION

Chromatin immunoprecipitation coupled with deep se-
quencing (ChIP-seq) has offered a powerful means for
genome-wide mapping of transcription factor-binding sites
(1–4). Owing to the recent advances in the next-generation
sequencing technology, the current ChIP-seq experiments
are generating increasing amounts of data, the analysis of
which is a computational challenge (4–6).

Despite the availability of a number of advanced soft-
ware packages (4), the users are still facing the crucial
challenge of deciding which package, along with its adjust-
able parameters, is most suitable for their specific needs so
that they can extract full information from the data under

analysis. We have recently demonstrated that the choice of
the software package may considerably affect the biologic-
al conclusions made from the ChIP-seq data (7), calling
into question the validity of the binding site detections
unless they are carefully confirmed in independent qPCR
experiments. Another practical challenge is to decide
whether the data is similar enough to those on which a
specific peak calling algorithm was tuned to, in order to
justify the use of its default parameters (6). However, even
among the same type of data, variability in data quality
may necessitate using various parameter settings (8).
Accordingly, with the fixed default parameter settings,
the choice of the best package is strongly dependent on
the ChIP-seq data under analysis, making the selection
between the different packages and optimization of their
performance for a given data a challenging task (7,9,10).
To this end, we introduce here an adaptive procedure,

which provides the user with an informed means to opti-
mally adjust the parameters of a given software package
to the intrinsic properties of each ChIP-seq data set sep-
arately. The procedure is based on the concept of
maximizing the reproducibility of the binding site detec-
tions under random bootstrap sampling of the original
data, while preserving the given ChIP and control sample
labels. We have successfully used a similar concept in the
context of other high-throughput profiling platforms, such
as those based on gene-expression microarray or quanti-
tative mass-spectrometry (MS) technologies (11). From an
end-user perspective, rather than introducing new variants
of the existing algorithmic solutions, some of which have
been developed on—and perhaps also tuned to—particu-
lar data sets, it is more important to make the most of the
currently used data analysis packages in a wide variety of
application use cases. Here, using five human and one
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mouse ChIP-seq data sets (Table 1), we demonstrate how
our generic reproducibility-optimized test statistic ROTS
(12) can provide significant practical benefits to two
popular ChIP-seq peak detection packages MACS (13)
and PeakSeq (14).

MATERIALS AND METHODS

The ROTS procedure for ChIP-seq studies

The generic data-adaptive procedure, based on
reproducibility-optimized test statistic (ROTS), uses the
maximal reproducibility across bootstrap samples as a sys-
tematic means to learn those parameters that are best
adjusted to the high-throughput data under analysis
(11,12). Here, the ROTS procedure was modified to deal
with the genome-wide ChIP-seq data sets. Instead of
making the bootstrap data pairs by re-sampling the indi-
vidual samples, such as in the previous applications
(11,12), the ChIP-seq ROTS procedure makes bootstrap
samples of the reads within a single data set. More specif-
ically, an equal number of reads as in the original data is
sampled with replacement for each bootstrap data. The
peak detection is then performed on each bootstrap data
and the average peak list reproducibility between the
bootstrapped data pairs is calculated at various top list
sizes. To deal with the ambiguity that a peak in one
data set may overlap with multiple peaks in another data
set, the reproducibility calculations were made using the
efficient approach introduced earlier (15). It first merges
the two peak lists under comparison into a union set of
n detected regions and then determines the number m of
these regions found in both of the original lists. The peak
list reproducibility is finally defined as R=m/n, which
obtains value one if all the regions are overlapping and
value zero if none of the regions overlaps. Two regions
were considered overlapping if they shared at least one
base pair.
The ROTS-based parameter combination for peak de-

tection is selected by maximizing the reproducibility

Z-score over increasing top list sizes (k) and with respect
to various parameter combinations (�):

Zk,� ¼
Rk,� � R0

k,�

sk,�
:

The reproducibility Rk,� is defined as the average peak
list reproducibility of the k top peaks as defined above
over pairs of bootstrapped data sets, sk,� is the estimated
standard deviation of the bootstrap distribution of the
peak list reproducibility at top list size k, and R0

k,� corres-
ponds to the null reproducibility in randomized data sets.
In the present results, 1000 bootstrap data pairs were con-
sidered for each parameter combination � under investi-
gation. To obtain a random reference for the null
reproducibility, we used here data sets containing both a
ChIP and a control sample, which are generally preferred
in ChIP-seq studies (5–7,17,21,22), and applied the same
peak detection procedure after switching the ChIP and
control sample. The ROTS output is the peak list
obtained from the original data using the parameters
selected with the ROTS procedure.

The peak calling software packages

To test the benefits of ROTS in the parameter selection for
binding site detection, we considered two popular
software packages, MACS (version 1.3.5, http://liulab
.dfci.harvard.edu/MACS) (13) and PeakSeq (version
1.01, http://archive.gersteinlab.org/proj/PeakSeq) (14),
which both make use of the control sample and also
include a number of user-adjustable parameters.

Model-based Analysis of ChIP-Seq (MACS) package
(13) was selected because of its popularity in many
ChIP-seq studies. MACS uses tag shifting and window-
ing to scan chromosome regions and a dynamic Poisson
distribution to model the background signal. Within
the ROTS procedure, we considered various param-
eter combinations, involving shift size between the
strands (model-based,1,50,100,150,200), band width for
the peak detection (100,300,500), and background model

Table 1. The ChIP datasets used in the present study

Transcription
factor data

Study
organism

ChIP-seq test data ChIP-qPCR validation data

Reference(s) #ChIP tags #Control tags Reference(s) #Positives #Negatives

STAT1_1a human (14) 2 430 958 4 513 107 (15) 120 160
STAT1_2a human (14) 8 184 450 4 513 107 (15) 120 160
NRSF_1b human (1) 1 697 991 2 319 153 (16) 83 30
NRSF_2c human (17) 5 349 088 10 162 151 (16) 83 30
FoxA1d human (13) 3 909 804 5 233 682 (18) 26 12
FoxA2e mouse (19) 2 813 847 4 428 744 (19,20) 55 11

aFrom the STAT1 study, two replicate datasets were downloaded from the Gene Expression Omnibus (GEO accession GSE12782).
STAT1_1: ChIP (rep1 lane A), control (rep1 lane C); STAT1_2: ChIP (rep2 lane B), control (rep1 lane C)
bThe NRSF_1 data was downloaded from the Illumina website: http://www.illumina.com/downloads/Illumina_ChIPSeq_Demo_Data_
Johnson_Science_2007.zip.
cThe NRSF_2 data corresponding to the monoclonal antibody was downloaded from the QuEST website: http://mendel.stanford.edu/
sidowlab/downloads/quest/.
dThe FoxA1 data was downloaded from the MACS website: http://liulab.dfci.harvard.edu/MACS/.
eFrom the mouse FoxA2 study, the first replicate pair of the ChIP and control samples was used (kindly provided by Dr Geetu Tuteja).
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(global or local Poisson). The default values were used for
the remaining parameters. In the bootstrap runs, the
MACS algorithm was modified to allow a maximum of
100 reads having exactly the same location in the genome.
In the original ChIP-seq data sets, MACS was applied
without any modifications. In each data set, peaks
with significance threshold P< 10�3 according to MACS
were recorded and the reproducibility was optimized
over a wide range of top list sizes, here specifically
k ¼ 25, 50, 100, 200, . . . ,1900, 2000, 2500, 3000, 4000, 5000,
7000, 10000, 20000, . . . ,80000, 90000, or as long as >90%
of the bootstrap peak lists with each parameter setting
were at least of length k, using regions 500 bp around
the peak summits.

PeakSeq is a more recent software package (14), which
uses extended tag aggregation to profile genome regions,
taking into account also the variability in genomic map-
pability, and a conditional binomial model to find enriched
regions, under the assumption that the reads should occur
with equal likelihood from the ChIP and control sample.
Within the ROTS procedure, we varied two peak detec-
tion parameters, namely, max gap (100, 200, 300), which
defines how distant peaks can be aggregated, and read
length (50, 100, 150, 200, 250, 300, 350, 400), which de-
fines the length of the extended tags. When varying
some of the other parameters from their default values,
we encountered stability problems with the original C-
implementation that was used as part of the ROTS pro-
cedure. Therefore, the present results were obtained using
this rather limited parameter space only. In the human
data sets, the default parameter value for the number
of windows per chromosome W_PER_C was used,
whereas in the mouse FoxA2 data set, its value was
changed from 250 to 200, to reflect better the chromosome
size with the fixed window size W_SIZE of 1Mb. In each
data set, peaks with significance threshold q< 0.2 accord-
ing to the PeakSeq definition of false discovery rate (FDR)
were recorded and the reproducibility was calculated
at the same top list sizes k as in the MACS runs
(see above), using regions 500-bp around the peak centers.

The ChIP-seq and ChIP-qPCR data sets

We applied the ROTS procedure to five human and one
mouse ChIP-seq data sets (Table 1). The data sets were
selected on the basis of their public availability and the
availability of ChIP-qPCR validation data for evaluation
purposes. All the ChIP-seq data sets were sequenced with
the Illumina/Solexa sequencing technology. The data sets
were aligned in the original studies and these pre-
processed data were used here. The two STAT1 data
sets downloaded from the Gene Expression Omnibus
(GEO) were further pre-processed before bootstrapping by
removing reads not U0, U1, U2 in the ELAND format.
The other data sets were used as downloaded and trans-
formed into ELAND format if not already in that format.
In the FoxA2 data set, we used initially the first replicate
pair only due to computational reasons. Later, we
extended the ROTS analyses to the other replicate pairs
as well to study their relative performance. The genome
build of the ChIP-seq data sets was used. If needed,

the qPCR regions were converted into the same build
using the UCSC Genome Browser liftOver tool (http://
genome.ucsc.edu/cgi-bin/hgLiftOver).

The evaluation procedure

The relative performance of the ROTS-based parameter
values was compared to that of the default parameters in
terms of the accuracy of binding site detections. The peak
calling was based solely on the ChIP-seq data, whereas the
respective ground truth set of positive and negative sites
came from independent confirmation studies performed
by qPCR (Table 1). As an evaluation metric, we used
the popular F-score, which takes values between zero
(none correct detections) and one (perfect accuracy). The
F-score takes into account both the precision (P or positive
predictive value) and the recall (R or sensitivity) of the
detections by calculating their harmonic mean:

F ¼
2PR

P+R
:

The ChIP-seq peaks were compared to the qPCR
regions using the function regionOverlap in the
Bioconductor Ringo package (version 1.10.0), which
counts the number qPCR regions covered by at least
one ChIP-seq peak (23). The regions 500 bp around the
peak summit or the area center as reported by MACS or
PeakSeq, respectively, were considered. The F-traces
depicting the accuracy of the binding site detections were
smoothed to better display the underlying detection per-
formance of the ROTS and default settings in the rela-
tively sparse ChIP-qPCR validation data sets (Figure 1
and Supplementary Figure S1). Here, we used the standard
R smoothing function lowess with a smoothing parameter
value of 0.1. To summarize the detection accuracies across
the six data sets and two software in one histogram
(Figure 2), the top-k levels at which the increase in the
accuracy stabilized were used as cut-offs (stable F-score,
indicated by arrows in Figure 1 and Supplementary
Figure S1). However, all the original trace graphs are
provided as Supplementary Figure S1.
The stable F-scores were determined separately for the

ROTS-defined and default parameter settings of the par-
ticular peak detection algorithm (Figure 1). In the ROTS
runs, we also recorded the ideal and worst F-scores, i.e. the
highest and lowest possible accuracies that can be
obtained given the independent qPCR validations and
the pre-defined parameter space at each level of top
peaks separately, even if this information is not available
during the peak detection. The minimum and maximum
accuracies were used to calculate the scaled F-score:

F0 ¼
F�minF

maxF�minF
:

The scaled F-values were used here when comparing the
performance of ROTS to that originating from the default
settings of the peak calling software across the various data
sets (Figure 2), because it can effectively normalize the
differences between the ChIP data sets due to their differ-
ent size, coverage, quality, etc. By taking into account the
possible range of detection accuracies obtained with
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different parameter settings (including the ROTS-defined
and default settings), the scaled F-levels can quantify the
relative difference between any given parameter combin-
ations from a more practical point of view. The original
F-scores (Default, ROTS, Min and Max) are available in
Supplementary Figure S2.
The calculation of the F and F0-scores was based on the

relative frequency of the true positives with respect to
regions that were confirmed in independent qPCR experi-
ments to be bound by the particular transcription factor
(known positives), as well as regions that did not show
binding in these experiments (known negatives). As has
been noted before, assessing the relative frequency of
false positives (or specificity) in the binding site detection
is challenging, because of the question how to define
reliably the true negative detections (9,22). Therefore,
the specificity was not assessed in this study.

Implementation of the peakROTS package

We have made available an implementation of the ROTS
procedure for ChIP-seq data (named peakROTS) as a stand-
alone, open-source R package (Supplementary Tutorial,
http://www.nic.funet.fi/pub/sci/molbio/peakROTS) The im-
plementation is platform independent, requiring only an
R environment (http://www.r-project.org). To facilitate

in-depth searching through large parameter spaces, we
have modularized the implementation so that it can be
efficiently distributed across multiple computing cores,
allowing large computational resources to be utilized
effectively. The infrastructure needed for the distributed
computing is included in the R package. The current im-
plementation supports both a local process-based distri-
bution (single node, multiple cores), as well as an LSF
batch processing system (multiple nodes). The distribution
mechanism can be plugged-in to enable running different
parts of any single analysis task even using different dis-
tribution mechanisms. The results presented here were
computed on a HP CP4000 BL ProLiant cluster system
(http://www.csc.fi/english/research/Computing_services/
computing/servers/murska), using at maximum 512
computing cores via the LSF batch processing system.

When the analysis task is initialized, the peakROTS
package generates a workflow graph, which describes the
dependencies between the individual analysis steps
(Supplementary Figure S3). In the actual computation,

A

B

Figure 2. Accuracy of the binding site detections when using the ROTS
or default parameter settings in MACS (A) and PeakSeq (B). The de-
tection accuracy was evaluated using the scaled F-score (see ‘Materials
and Methods’ section), which shows the practical difference between
the two parameter combinations with respect to the highest and lowest
possible accuracies that can be obtained, given the independent qPCR
validations and the pre-defined parameter space. The scaled F-score
was used here to compare the relative performance across the different
data sets (FoxA2 data set is from a mouse system, while the others are
human data sets); all the original F-scores (Default, ROTS, Min and
Max) are available in Supplementary Figure S2. To summarize the
detection accuracies across all the six data sets in one histogram, the
stable F-scores are shown, which correspond to the top-k levels at
which the increase in the accuracy stabilized (indicated by arrows in
Figure 1 and Supplementary Figure S1). The overall difference between
the ROTS and default parameters was statistically significant across the
data sets (paired t-test, P< 0.05).

Figure 1. Accuracy of the binding site detections in the STAT1_1 data
set as a function of top peaks identified by the MACS algorithm. The
accuracy of the peak calling parameter combinations was evaluated
with respect to independent qPCR validations using the F-score
(see ‘Materials and Methods’ section). The grey traces show the variability
in the accuracy when different parameter combinations were used. The
red and blue traces, respectively, indicate the accuracy of the parameter
values learned by the reproducibility optimization procedure (ROTS),
compared to the default settings of the software package. The insert
shows the F-levels at the cut-off point in which the increase in the
accuracy stabilizes (the arrow). The green and black bars, respectively,
indicate the highest and lowest F-scores among all the parameter com-
binations tested at the given cut-off point (the green and black points,
respectively). The trace graphs were smoothed for displaying purposes.
MACS detections in STAT1 were used here as an example; all the
MACS and PeakSeq results are provided as Supplementary Figure S1.
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the process reads in the workflow graph and becomes a
master node for the current analysis task. New worker
nodes are then spawned using the plugged-in distribution
mechanism. Worker nodes report back to the master node,
which takes care of the dependency tracking between the
analysis steps. In the current implementation, the distribu-
tion mechanisms either start a new process or submit a
new job to any LSF batch processing system. Plugging in
new batch processing systems requires only providing
the command that submits a job to the system. Only the
submit command is specific to the batch processing system
in question.

Some of the use cases reported here involve rather
heavy computation. To perform such cases effectively, a
key goal in the design of the distributed implemen-
tation has been error tolerance. The state of the
distributed work is kept at disk all the time, meaning
that the master node can crash or be shut down without
losing any of the intermediate results. The master node
synchronizes its state and continues to work once it has
restarted. All the individual analysis jobs undergo three
phases: pending, running and finished. The whole state
of the system is represented in three text files, one for
each of the phases. Each job corresponds to a single line
in the text file and these are moved through the three files
by the master node. When the master node is not running,
the files can be edited manually, allowing, for instance,
manual controlling of jobs for debugging and failure
resolution.

In more general terms, the generic peakROTS imple-
mentation can be used not only for finding the optimal
peak detection package and its parameter settings for each
ChIP-seq data individually, but also for assessing the
quality of each of the steps in the ChIP-seq data analysis
pipeline. When optimizing such pipeline, it is essential not
to be biased towards a specific data type or peak detection
algorithm. Besides enabling the users to extract full infor-
mation from their ChIP-seq data sets, the ROTS proced-
ure can also be used by developers of new and improved
peak detection algorithms as a benchmarking tool. The
modular architecture of the peakROTS will accommodate
additional new features, such as improved peak calling
algorithms and large-scale cloud computing solutions, as
dictated by future experimental and computational needs
(Supplementary Documentation).

RESULTS

We first used data from the STAT1 study as an example to
demonstrate the performance of ROTS with the two soft-
ware packages in more detail (Figure 1). The peak calling
parameters learned by the ROTS procedure provided
systematic improvements in the precision and sensitivity
of the default parameter settings, with an accuracy
approaching the ideal case, corresponding to the situation
where the qPCR validation information were already
available in the peak calling phase. This information is
typically not available in practice and it was not utilized
by the ROTS procedure. The performance of the different
parameter combinations presented with a considerably

large range of variation in terms of their qPCR-based de-
tection accuracy, demonstrating that such a purely ChIP-
seq data-driven adjustment of the parameter settings for
the software packages is a highly non-trivial task. In par-
ticular, several profound differences in the peak detections
between the ROTS and default parameter settings were
observed (Supplementary Figure S4). It should be noted
that the same STAT1 study was used also in the original
PeakSeq work (14), further highlighting the relative
improvements gained by ROTS over the default settings
(Figure 1, insert).
To evaluate whether the benefits of the ROTS proced-

ure generalize also to other studies, we repeated the same
analyses in four human and in one mouse ChIP-seq data
sets. The detection accuracies across all the six data sets,
with notably different characteristics (Table 1), supported
the idea that the ROTS procedure enables the user to
adjust the peak calling parameters of the software pack-
ages for each data set individually, leading to significantly
improved detection of binding sites, when compared to the
default settings (Figure 2, paired t-test, P< 0.05). For
comparison across diverse data sets, the scaled F-score
was used, which quantifies the relative differences between
the given parameter combinations (see ‘Materials and
Methods’ section). As noted before (8), the software pack-
ages have been tested and trained on some of the older
data sets, such as STAT1 and NRSF, which may explain
why already the default parameters corresponded to the
ideal performance in some cases (scaled F=1). However,
even if the NRSF and FoxA1 data sets were used in the
original MACS work as testdata (13), the ROTS param-
eters could improve the binding site detection accuracies
beyond its default settings (Figure 2A).
We further investigated whether the extent of sequenc-

ing attributed to the observed differences between the
ROTS and default parameters by analyzing the accuracy
of the binding site detections as a function of the number
of sequenced tags in each data set (Supplementary
Figure S5), as well as in subsamples of the STAT1 data
set generated by randomly sampling 40–100% of the
tags from the original data without replacement
(Supplementary Figure S6). These results suggested that,
in general, the number of tags cannot explain the differ-
ences in the detection accuracies between the ChIP-seq
data sets. Intriguingly, however, the ROTS reproducibility
levels can inform the user whether the peak calling was
successful or not in a given data set. For instance, the
relatively low detection accuracies in the mouse FoxA2
data set, especially with the PeakSeq algorithm, could be
predicted from the poor reproducibility levels, as reported
by the ROTS procedure (Supplementary Table S1).
Further investigation of the replicates of the FoxA2 data
set demonstrated how the reproducibility levels can indi-
cate whether the peak calling results allow accurate detec-
tion of true binding sites (Supplementary Figure S7).
Moreover, in case the user is willing to experiment with
several peak detection software packages, the reproduci-
bility levels may also be used to provide guidance on
choosing the software solution for a given data set
(Supplementary Figure S8).
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DISCUSSION

Taken together, these proof-of-concept results demon-
strate that the ROTS procedure provides the user with
several advantages over the current practice when analyz-
ing the massive data sets from the increasing number of
ChIP-seq experiments. Not only does it make possible to
avoid poor parameter settings for a given data set, but it
can systematically improve the binding site detections,
compared to those originating from the default settings.
Beyond providing guidance on how to select the peak
calling parameters, the procedure can also be used to
inform whether the data quality and/or the software par-
ameters were sufficient for reliable binding site detections
with a selected software package, or even to choose the
package which is optimal for a given data set. Therefore,
the procedure should prove useful for optimizing a wide
variety of existing and emerging ChIP-seq studies (a walk-
through example use case is provided in Supplementary
Tutorial).
While the potential of the ROTS procedure was demon-

strated here using a relatively limited range of possible
parameter combinations (36 in MACS and 24 in
PeakSeq, Supplementary Table S1), it is likely that even
higher improvements will be obtained after a more system-
atic and fine-scaled searching of those parts of the param-
eter space that are most potential for each data set and
software separately. To enable its tailored application to
future ChIP-seq experiments, we have made available an
open-source and easily extendable implementation of the
ROTS procedure, which can take advantage of local clus-
ter or public cloud computing resources (Supplementary
Documentation).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table S1, Supplementary Figures S1–S8,
Supplementary Tutorial, Supplementary Documentation.
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