
COMPUTATIONAL NEUROSCIENCE
REVIEW ARTICLE

published: 22 August 2013
doi: 10.3389/fncom.2013.00097

Neuromotor recovery from stroke: computational models
at central, functional, and muscle synergy level
Maura Casadio, Irene Tamagnone, Susanna Summa and Vittorio Sanguineti*

Department of Informatics, Bioengineering, Robotics and Systems Engineering, Neuroengineering and Neurorobotics Lab (NeuroLAB), University of Genoa, Genoa,
Italy

Edited by:

Andrea D’Avella, IRCCS Fondazione
Santa Lucia, Italy

Reviewed by:

Gianluigi Mongillo, Paris Descartes
University, France
David Reinkensmeyer, University
of California at Irvine, USA

*Correspondence:

Vittorio Sanguineti, Department of
Informatics, Bioengineering, Robotics
and Systems Engineering, University
of Genoa, Via all’Opera Pia 13, 16145
Genoa, Italy
e-mail: vittorio.sanguineti@unige.it

Computational models of neuromotor recovery after a stroke might help to unveil the
underlying physiological mechanisms and might suggest how to make recovery faster
and more effective. At least in principle, these models could serve: (i) To provide testable
hypotheses on the nature of recovery; (ii) To predict the recovery of individual patients;
(iii) To design patient-specific “optimal” therapy, by setting the treatment variables for
maximizing the amount of recovery or for achieving a better generalization of the learned
abilities across different tasks. Here we review the state of the art of computational
models for neuromotor recovery through exercise, and their implications for treatment.
We show that to properly account for the computational mechanisms of neuromotor
recovery, multiple levels of description need to be taken into account. The review
specifically covers models of recovery at central, functional and muscle synergy level.
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INTRODUCTION
In the nervous system, a cerebro-vascular accident (stroke) elicits
a complex series of reorganization processes at molecular, cellu-
lar, neural population, behavioral (sensorimotor and cognitive)
and social interaction levels, with temporal scales that range
from hours, to months, to years (Schaechter, 2004; Barbay et al.,
2006; Nudo, 2006, 2007). Alterations occurs well beyond the
actual lesion, including a low-activity “penumbra” region in the
surrounding areas and inter-hemispheric unbalance due to a
decreased activity in the ipsilesional side (Hummel and Cohen,
2006).

Animal models and human studies suggest that functional
recovery is mediated by use-dependent reorganization of the
preserved neural circuitry. A key to neuromotor recovery, and
the basis of neuro-rehabilitation interventions, is movement
associated with a task (Nudo, 2006, 2007) and with volitional
effort (Blennerhassett and Dite, 2004; Higgins et al., 2006;
Timmermans et al., 2010). This process produces alterations in
neuronal excitability (Ward and Cohen, 2004), leading to changes
in neural circuitry, with a process resembling that occurring
in the developing brain. Redundancy in the musculoskeletal
system plays a key role in neuromotor recovery. It has long
been suggested (Bernstein, 1967) that the nervous system has a
modular control structure to deal with redundancy. According to
this view, the nervous system adaptively controls combinations
of motor primitives that are the “building blocks” of movement
organization. The pressure toward re-gaining functional indepen-
dence may lead to the development of compensatory strategies
that, even when adequate for carrying out activities of daily life
(ADLs), may be stereotypical or energetically inefficient so that

they may ultimately prevent true recovery (Levin, 1996b; Cirstea
and Levin, 2000). For instance, an excess use of the non-paretic
limb can have a negative influence on the process of cortical
reorganization (Avanzino et al., 2011) by further reinforcing the
imbalance between the two hemispheres. Models of neuromotor
recovery that explicitly take modularity into account might be
the most appropriate level of description for these phenomena.

In summary, neuromotor recovery through exercise is the end
result of a complex interplay between activity-dependent reorga-
nization of the brain areas close to the lesion, the recruitment
of new neural pathways and the development of novel motor
strategies.

A deeper understanding of the functional and physiological
mechanisms underlying recovery would have strong impact on
approaches to neuromotor rehabilitation. Computational motor
control and, more in general, computational models may greatly
contribute to this understanding (Huang and Krakauer, 2009).
Even more importantly, models may be directly incorporated into
technological solutions, and can constitute the basis for personal-
ized therapy. In fact, Marchal-Crespo and Reinkensmeyer (2009)
pointed out that there is a specific need for “improved models
of human motor recovery to provide a more rational framework
for designing robotic therapy control strategies.” However, while
musculoskeletal models have a long history in the personalization
of treatment of movement disorders (Fregly et al., 2012), compu-
tational models of neuromotor recovery through exercise are still
in their infancy.

Here, we review the state of the art of computational models
for neuromotor recovery and their implications for treatment. We
then suggest directions for future research.
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MODELS OF NEUROMOTOR RECOVERY
There have been several attempts to model the time course of
recovery, either when it is spontaneous, or when is facilitated by
some form of treatment, e.g., electrical stimulation or assistance
by a robot. Here we specifically focus on models of activity-
dependent recovery. Models of recovery may focus on different
levels of description, ranging from cortical or subcortical lesions,
to muscle control, to functional behavior in the context of a
specific task.

Models of neuromotor recovery at the level of cortical circuitry
(Goodall et al., 1997; Reinkensmeyer et al., 2003; Butz et al., 2009)
address how focal cortical lesions elicit neural reorganization
phenomena, and the way these lesions affect motor behavior.

Other models address the “functional” level of description,
related to the ability to complete a specific task and to how it
changes over time. For instance, Colombo et al. (2008, 2010)
describe the temporal evolution of performance over training
time. Only few models focus on how physical interaction affects
voluntary control (Emken et al., 2007), and how such voluntary
control changes with exercise (Casadio and Sanguineti, 2012).

Models of muscle control focus on characterizing the impair-
ment in individual subjects in terms of altered muscle synergies
(Cheung et al., 2012).

Only few models encompass multiple levels of description.
Han et al. (2008), Reinkensmeyer et al. (2012a) and Takiyama and
Okada (2012) address the mechanisms of cortical reorganization
in the context of voluntary motor activity, in a skill learning
scenario. The emphasis here is on how voluntary movements pro-
mote recovery through cortical and subcortical reorganization.

In the following sections we will review a number of compu-
tational models of neuromotor recovery—respectively, at central,
functional and muscle level—that have recently appeared in the
literature. For each model we provide a general description; we
then discuss their main findings or predictions, their limitations
and the implications for rehabilitation.

MODELS OF FOCAL CORTICAL LESIONS AND ACTIVITY-DEPENDENT
REORGANIZATION
Several models of neuromotor recovery explicitly focus on the
mechanisms of cortical reorganization following a focal lesion
(models at central level).

In the work of Goodall et al. (1997), an existing computational
model of the sensorimotor control of arm movements (Chen and
Reggia, 1996), incorporating a model of both the somatosen-
sory and the motor cortex, was used to investigate the reorga-
nization processes that occur immediately after a focal cortical
lesion; see Figure 1. The model assumes “mexican-hat” lateral
cortical connections, a competitive activation dynamics and a
Hebbian plasticity mechanism for incoming cortical connections.
Lesions were modeled by setting the activation levels of selected
units to zero, and by eliminating connections to and from those
units.

The main prediction of this model is a two-phases reorga-
nization process. Immediately after the lesion, lower activity is
observed in the areas surrounding the lesion. A second phase is
characterized by a gradual increase of the size of this area and by
a general reorganization of the intact cortical regions. Both effects

are mediated by activity-dependent synaptic changes. The low-
activity peri-lesional area and its expansion over time are due to
lack of activation. The model also predicts that a small uniform
excitatory peri-lesional input may favor the participation of this
area in the reorganization process.

The same group also studied the short- and long-term changes
in lateralization that occur after a focal lesion, and investigated
the possible contribution to recovery of the intact hemisphere and
of inter-hemispheric communication (Reggia et al., 2000; Shkuro
et al., 2000).

Here cortical reorganization is modeled in terms of synap-
tic changes (self-organization) of a topological map. In con-
trast, Butz et al. (2009) specifically addressed the mechanisms
of activity-dependent synaptic rewiring that occur immediately
after a focal cortical lesion. Synapse formation is accounted for
by models of axonal and dendritic elements. On the pre-synaptic
side, activity is assumed to promote axonal outgrowth. On the
post-synaptic side, each neuron is assumed to change its input
connectivity in an homeostatic manner, with the goal of keeping
the firing probability within a specified range. In this frame-
work, rewiring after a lesion can be seen as a form of com-
pensation, driven by the need to regain a stable (homeostatic)
regime.

The main prediction of this model is that neural populations
that are already in homeostatic conditions (e.g., in adult individ-
uals) are much less likely to compensate for lesions than networks
that are still under development.

An additional prediction is that external stimulation may
promote axonal outgrowth, thus accelerating rewiring. However,
prolonged stimulation may induce a saturation effect, hence it can
be detrimental to recovery or, anyway, less effective than paused
stimulation. In terms of rehabilitation, these findings suggest
that training with pauses in between may be more effective than
continuous intensive training without pauses.

Varier et al. (2011) used the model proposed by Reggia and
colleagues (Chen and Reggia, 1996) to examine the effects of focal
and distributed lesions at various stages of development. In partial
contrast with Butz et al. (2009), this model predicts that mature
systems are relatively more robust to lesions than systems that are
still under development. This apparent discrepancy may be a con-
sequence of the different assumptions on structural plasticity—
highly modifiable (Butz et al., 2009) vs hardwired (Chen and
Reggia, 1996).

Reinkensmeyer et al. (2003) developed a model of cortical
damage and its consequences on arm reaching movements. Dif-
ferent from the previous approaches, this model does not address
intracortical connectivity and its reorganization. Based on exper-
iments on non-human primates (Georgopoulos et al., 1982),
neurons in the motor cortex are assumed to collectively encode
the initial direction of the movement (population vector coding).
Specifically, each neuron’s firing rate is assumed to be a function
(truncated cosine) of the difference between the actual direction
and the “preferred direction” for that neuron plus a noise term,
whose standard deviation is proportional to the deterministic part
of the cell response (signal-dependent noise). The overall encoded
direction is the sum of the preferred directions of each individual
neuron, weighted by their activity levels.
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FIGURE 1 | Top: Sensorimotor control model, involving the primary

motor cortex (MI) and the proprioceptive cortex (PI). Middle: Intact PI
(left) and MI (right) maps. Letters indicate, for each neuron, the muscle
groups of which that neuron encodes the activity (or stretch level).

Bottom: PI (left) and MI (right) maps immediately after the lesion and after
reorganization. Each map displays labels on all neurons (left) or only the
neurons that are maximally activated by that muscle. From Goodall et al.
(1997), reprinted with permission.

Cortical lesions were simulated by eliminating part of the
neurons (cell death)—hence resulting in under-represented or
non-represented preferred directions. Movement performance
was measured in terms of the discrepancy between intended and
encoded movement direction. They specifically looked at the
variability of directional error within the same intended direction
and across directions, and how these quantities are affected by cell
death. They found that both types of error are inversely correlated
with the fraction of surviving cells. In a number of experimental
studies with stroke survivors, they found that the same indicators
exhibit similar relationships with the subjects’ clinical impairment
score (Kamper et al., 2002; Reinkensmeyer et al., 2002; Takahashi
and Reinkensmeyer, 2003).

This study addresses the problem of how cortical damage
results in impaired movements. As such, it is a model of
impairment, which does not explicitly address the mechanisms of
recovery.

MODELS OF USE-DEPENDENT RECOVERY
Other models focus on cortical reorganization in the context of
a specific motor task. Han et al. (2008) look at how lesions in
cortical motor areas affect the mechanisms of arm selection to
achieve a goal (reaching a target), and how impairment evolves
through spontaneous arm use. The model accounts for motor
cortical dynamics (both hemispheres) and action selection; see
Figure 2. The cortex is modeled as in Reinkensmeyer et al. (2003),
with the addition of a Hebbian learning mechanism to account for
cortical reorganization. In addition, the process of deciding which
arm to use is modeled as a form of reinforcement learning.

More specifically, the preferred directions for each neuron are
assumed to adapt as a function of activity. Adaptation has two
aims: (i) shifting the actual encoded direction closer to the desired
direction (supervised component) and (ii) shifting the preferred
directions of the individual neurons toward the desired direction
(self-organizing component).

Frontiers in Computational Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 97 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Casadio et al. Models of recovery from stroke

FIGURE 2 | Model of spontaneous recovery after stroke. The model focuses on reaching movements (A), for which subjects spontaneously select what arm
to use. The model (B) consists of a model of the motor cortex (both hemispheres) and an action selection module. From Han et al. (2008), reprinted with
permission.

The action selection module accounts for the process of select-
ing the hand that will actually make the movement. A model
of the action-value mapping, based on radial basis functions,
generates the expected reward as a function of the direction of the
actual movement. The hand whose expected reward is maximal
is selected to execute the movement. This module is driven by
a reinforcement learning mechanism. After every movement a
reward signal is provided, defined as the sum of two terms,
respectively reflecting (i) how close the cortex’s encoded direction
is to the desired movement direction, and (ii) the fact that the left
hand is more likely chosen for leftward movements whereas the
right hand is more likely selected for rightward movements. The
action-value model is updated to minimize the difference between
actual and expected reward.

As in Reinkensmeyer et al. (2003), the effect of a stroke was
modeled by eliminating part of the neurons within one hemi-
sphere’s motor cortex. As a result, the impaired side is initially
unlikely to be selected for movements on that side, and lack of
use makes its selection even less likely. In contrast, its forced
use induces reorganization, so that the intact portion of that
hemisphere gradually shifts its preferred directions toward those
that were once covered by the impaired portion of the cortex.
In summary, the model addresses the mechanisms of interaction
between activity-driven cortical reorganization and functional
compensation, i.e., the change in the motor strategy (in this case,
from the impaired to intact arm) that is driven by the need to
preserve functional performance (e.g., a high reward).

Takiyama and Okada (2012) used a similar model, with em-
phasis on bimanual training. Their main prediction is that biman-
ual training facilitates the adaptation of the preferred directions of
the unimpaired neurons in the ipsilesional cortical hemisiphere.

Han et al.’s (2008) model predicts that recovery will self-sustain
if the amount of spontaneous use of the impaired arm reaches a
certain threshold. If this is not the case, the impaired arm will be
less likely to be selected, and recovery (if any) will gradually wash
out. The model makes an important qualitative prediction—an
activity threshold is a necessary condition for recovery to self-

sustain. This can help explaining the mechanisms of action of
rehabilitation strategies that rely on forced use of the impaired
arm. As a matter of fact, observations from a rehabilitation trial
based on constraint-induced movement therapy (CIMT) were
found to be consistent with the “threshold” notion (Schweighofer
et al., 2009). Aiming to achieve an “activity threshold” rather
than providing a fixed amount of training, can be seen as a form
of personalization of the therapy. Studies in this direction are
currently under way, one first step being to quantify the amount
of arm non-use in activities of daily living (Han et al., 2013).

More in general, the model is important because it is a first
attempt to address the interplay between cortical reorganization
and the development of compensatory strategies.

Although with different emphasis, all the above approaches
focus on neural mechanisms of use-dependent reorganization.
Impairment is only modeled qualitatively, and as such these
models cannot immediately be related to the behavior of a specific
subject, if not in qualitative terms.

Two related studies (Reinkensmeyer et al., 2009b, 2012a) focus
on how reorganization of the preserved cortico-spinal (CS) path-
ways and the recruitment of new ones underlie the recovery of
the ability to generate force. The proposed model—inspired by
single-cell recordings of the neural correlates of wrist force gen-
eration in primates—specifically addresses the “residual capacity”
phenomenon, i.e., the empirical evidence that additional motor
training may still improve the movement capacities even years
after a stroke.

Specifically, the model is based on the notion that experience
of movement “practice” induces a re-optimization in the recruit-
ment of the intact CS connections to motor-neurons (MNs). A
pool of CS cells (see Figure 3) is assumed to receive a movement
command as input. The activity of CS cells summates at the
level of the MN pools in the spinal cord. Wrist force (aimed
toward either flexion or extension) is determined by the differ-
ence between the activities of the “flexor” and “extensor” MN
pools. This can be considered as the simplest muscle synergy.
The synaptic weights of the CS-MN connections are assumed to
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FIGURE 3 | Model of cortico-spinal reorganization after stroke. From Reinkensmeyer et al. (2012a), reprinted with permission.

be fixed, whereas the weights of the input connections to the CS
cells are learned through a reinforcement mechanism, in which
the experienced attempt to move the limb represents the reward
signal that guides the refinement of activation.

Furthermore, the model assumes that if CS connections orig-
inating from the primary motor cortex (M1) are lacking, CS
connections from the supplementary motor area (SMA) may be
recruited as well.

Model simulations predict that the size of the residual CS
population determines the maximum strength an individual
stroke patient can achieve. This is consistent with observations
based on Transcranial Magnetic Stimulation (TMS) and Magnetic
Resonance-Diffusion Tensor Imaging (MR-DTI) (Stinear et al.,
2007) suggesting a strong correlation between white matter
integrity and maximum grip force. In addition, the model
predicts that the same dose of exercise is more effective when
administered to sub-acute subjects (as compared to chronic),
and to less impaired subjects (as compared to more severe).
Furthermore, severe M1 lesions are predicted to induce an
increase in SMA activity. These predictions have been confirmed
experimentally (Feydy et al., 2002; Ward et al., 2007).

This model has not been directly used in rehabilitation, but
provides some hints on how to make rehabilitation more effective.
The simulations show that recovery would be facilitated if noise
level were decreased, or if noise were signal-dependent. Another
prediction is that inhibition of the stronger connections, e.g.,
the residual connections originating from M1, would facilitate
the recruitment of alternative pathways. The latter prediction
is somehow consistent with, and actually provides a possible

interpretation for, the empirical observation (Bolognini et al.,
2009) that repetitive TMS of the intact cortical hemisphere facili-
tates recovery.

Like Han et al. (2008), this model only makes qualitative pre-
dictions and cannot describe the behavior of one specific subject.
Further, apart from the M1-SMA shift of activity, the model does
not directly address the compensation issue and does not provide
new insight about the interplay between neural reorganization
and task re-learning.

TEMPORAL EVOLUTION OF PERFORMANCE OVER TRAINING TIME
Variants of the power law of practice have often been used to
describe the trial-by-trial evolution of motor performance during
exercise, both within and between training sessions (the “func-
tional” level of description).

In a widely used approach to robot-assisted rehabilitation
(Krebs et al., 1998; Colombo et al., 2007), subjects are allowed
a specific time interval to complete the task without assistance.
After that, the robot completes the task through a high-stiffness
position controller. In this way, the amount of robot intervention
(fraction of the movement operated by the robot) automatically
adjusts to subject’s performance (more active performance, less
robot intervention). However, to prevent movements from being
totally passive, at least initially, this technique requires at least a
minimum residual amount of voluntary control. In a systematic
analysis of various performance indicators during robot-assisted
rehabilitation based on this protocol, Colombo et al. (2008,
2010) used an exponential model to account for their temporal
evolution.
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The main finding of these studies was that some movement
features, namely force control and movement smoothness,
improved more quickly than parameters that relate to the
fine-tuning of the movement, like speed. Specifically, speed
improvement exhibited a much longer (2–3 times) time constant
than force control and smoothness. Furthermore, in several sub-
jects the path curvature exhibited a non-monotonic time course,
with an initial increase until a peak, followed by a steady decrease.

These findings shed some light on the process of functional
recovery. Subjects first explore the action space with the primary
objective of exploiting their residual abilities to achieve the goal;
then they undergo effort optimization to make the movement
more efficient. The distinctive behavior of path curvature is a
consequence of this two-phase process: the increase relates to the
exploration phase, whereas the decay denotes the beginning of
the effort optimization phase. The final step is the fine tuning
of movement performance, denoted by the increase in movement
speed (Colombo et al., 2012). These processes likely start at the
same time and run in parallel, but have different time constants
(faster the former, slower the latter).

A different, but related view of recovery is based on the
notion that each movement is built by combining multiple sub-
movements, and the empirical observation (Dipietro et al., 2009)
that neuromotor recovery is characterized by a gradual decrease
in the number of sub-movements—which results in an improved
smoothness.

These mechanisms suggest that training-mediated recovery
shares common features with motor skill learning.

In a subsequent study, Colombo et al. (2012) developed a
control algorithm Progressive Task Regulation (PTR) that auto-
matically adjusts various aspects of the task (amplitude of the
movement, number of subtasks, assistance modality) according
to the evolution of the different performance indicators. After
each training epoch, performance is measured (moving average
over the last three epochs), and the difficulty level of the task is
modified according to a set of rules. Depending on the fraction
of movement completed without assistance of the robot, exercise
difficulty can switch to more challenging assistance modalities.
The observed evolution of the different performance indicators
was incorporated into the threshold values used to determine
when the switch occurs. The decisions of switching task difficulty
based on the PTR algorithm were found to be highly consistent
with those based on subjective therapists’ assessment.

This model only focuses on performance time series and only
provides information on the temporal evolution of the recovery
process. However, it does not attempt to describe the mechanisms
underlying recovery. Specifically, the model describes the evolu-
tion of performance in non-assisted trials. The same modeling
framework can address situations in which the degree of assis-
tance is constant or changes slowly and monotonically, but can-
not distinguish between the “robot” and the actual “voluntary”
contributions in situations when they act together.

Recently, the same group proposed a dynamical model of
recovery (Panarese et al., 2012), attempting to reproduce the
mechanisms underlying the trial-by-trial evolution of perfor-
mance. The model derives from a computational framework that
was originally developed by Smith et al. (2004) in the context

of associative learning in animal studies. In this model, an
internal state variable denoting “motor improvement” is modeled
as a random walk. This reflects the assumption that motor
improvement builds up as the effect of many different factors. As
an addition to the original model, at a given trial the logarithms
of a number of observable performance indicators are assumed
to be proportional to the amount of motor improvement. The
model was found to reproduce the variety of time constants of the
recovery observed in the different performance indicators. While
interesting, this model is nothing more than a noisy version of the
exponential model. In particular, the random walk assumption
says little on what determines recovery.

THE ROLE OF ASSISTANCE
A few modeling studies have addressed the issue of how robot
assistance affects recovery. Reinkensmeyer (2003) and Emken
et al. (2007) focuses on adaptive changes in gait movements in
presence of assistive forces. The study specifically addresses the
trial-by-trial evolution of performance during adaptation to an
assistive force field, and suggests that adaptation can be explained
as an optimization process, which accounts for a combination of
motor error and effort.

The resulting computational model is summarized in Figure 4.
Similar to force field adaptation experiments (Thoroughman and
Shadmehr, 2000; Scheidt et al., 2001; Donchin et al., 2003; Cheng
and Sabes, 2006), the adaptation process is modeled as a linear
autoregressive model. A controller receives as inputs the desired
trajectory, the performance error and the motor command (mus-
cle force) on the previous trial. The motor command on the next
trial is the controller output. The controller includes two modules:
(i) an inverse model of limb dynamics, which transforms a desired
trajectory into an appropriate motor command; (ii) a “learning
rule”, which adapts the motor command to changes in the dynam-
ics of the limb and/or of the environment. The output muscle
force is applied to the body, whose movements are disturbed by
an external perturbation.

The “learning rule” module (Figure 4, inset) relies on the
notion that while dealing with assistive forces the motor system

FIGURE 4 | Greedy optimizer model. The controller includes an inverse
model of the limb and a “learning rule”. The latter is based on a force
estimator and an optimal controller. From Emken et al. (2007), reprinted
with permission.
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behaves as a “greedy” optimizer, so that these forces are quickly
incorporated into the motor plan in order to minimize the effort
while maintaining the required performance level (e.g., a small
error). The force estimator predicts the disturbance on the next
trial, and an optimizing controller generates the next motor
command by minimizing a cost function on a trial-by-trial basis.
In the model derived from this optimization framework, the
“slacking” mechanism is captured by a decay term in the dynamics
equation (the “f” term in the Learning Rule block, see Figure 4).

Emken et al. (2007) also suggested that slacking may have
adverse effects on recovery. As a consequence, in robot-assisted
rehabilitation, assistance should be kept to a minimum. Further-
more, it has to be decreased—manually or automatically—as
performance improves. A variety of techniques have been
proposed to adaptively regulate the magnitude of assistive force as
a function of the observed outcome. In Casadio et al. (2009) the
therapist manually selected the assistance level in order to keep it
to the minimum level that evoked a functional response needed
for accomplishing the task. In Vergaro et al. (2010) a linear
controller continuously and automatically regulated the assistive
force provided by the robot, depending on on-line performance
measures. Similar mechanisms have been proposed in the context
of upper limb—the Performance-based progressive robot-assisted
therapy used by the MIT-Manus robot (Krebs et al., 2003)—and
the lower limb—the patient-cooperative training modality used
by the Lokomat system (Riener et al., 2005; Mihelj et al., 2007).
Using a computational model of human-robot load sharing,
Reinkensmeyer et al. (2007) suggested that to achieve assistance as
needed, the robot controller should possess a slacking mechanism
that resembles that observed in humans. Wolbrecht et al. (2008)
designed a more complex adaptive control scheme, based on task
performance, that automatically negotiates an error-reducing and
an effort-enhancing component. The controller needs an explicit
model of the subject’s arm and its neural control. In this specific
study, this model took the form of a radial basis function neural
network, which was built by experience.

The “greedy optimizer” model has been highly influential to
rehabilitation, but does not really address the recovery mech-
anisms. In fact, it has been derived from studies on healthy
subjects and its implications for recovery are largely speculative.
The slacking hypothesis has never been directly tested in clinical
rehabilitation trials.

In a recent study, Casadio and Sanguineti (2012) developed
a linear dynamical model to describe the trial-by-trial evolu-
tion of the motor performance of chronic stroke survivors who
underwent a rehabilitation protocol based on a robot-assisted arm
extension task.

The model is based on the notion that in robot-assisted exer-
cise the robot device and the subject cooperate toward a common
goal—a form of shared control. Specifically, the model assumes
that task performance is a function of a voluntary, human-
generated command (taken as the model’s state variable) and
of a robot-generated assistive force (taken as one of the model’s
inputs); see Figure 5, top right.

As regards the dynamics of the actual recovery process, the
model assumes that the amount of voluntary control on the
next trial is the sum of three components: (i) a “memory” or

“retention” term—a fraction of the current amount of voluntary
control; (ii) a “learning” component, proportional to a “driving”
signal—a function of movement performance that can be inter-
preted as a reward—and (iii) an assistance-related component—
proportional to the magnitude of the assistive force.

A distinctive feature of this model is that it posits separate
mechanisms for “retention” and for the effect of assistance, i.e.,
the actual “slacking”. These terms have often been used inter-
changeably; see Reinkensmeyer et al. (2009a) for a review that
specifically covers slacking models.

The model was used to analyze the trial-by-trial time series of
performance in nine chronic stroke survivors, who underwent
a 10-sessions training protocol; see Figure 5, left. The estimates
of the model parameters for each subject suggested that recovery
is determined by a complex interplay of memory (retention),
performance and slacking. One specific finding was that in
severely impaired subjects recovery is greater when the driving
(reward) signal is greater; hence, recovery improves when the
performance—not the motor error—is greater. Another finding,
which somewhat confirmed the observation of Emken et al.
(2007), was that a greater assistive force has a negative impact
on recovery (slacking). However, only a few subjects—the least
impaired—exhibited a significant “slacking” effect. The single
most important finding was that the retention rate (memory
decay) parameter accurately predicts the long-term outcome
of the rehabilitation trial (see Figure 5, bottom right). This
finding is consistent with Han et al. (2008): the hypothesis that
recovery must reach a threshold in order to self-sustain implies a
buildup mechanism that integrates the effect of repeated motor
activities. High retention is an essential prerequisite of this
mechanism.

This model suggests that mechanisms of recovery may differ
in different subjects. Again, this calls for an adaptive regulation of
assistance, in which peculiarities of the individual subjects are to
be taken into account.

Squeri et al. (2011) designed an adaptive Bayesian regulator
that adjusts the magnitude of assistive force (or other task param-
eter) to keep the average performance around a target magnitude
(performance clamp). In this way, as performance improved, the
controller automatically reduced the amount of assistance. Squeri
et al. (2012) used this model to analyze the temporal evolution
of the subjects’ voluntary control in a task that involved sub-
movements in different directions. One single controller was
used to adaptively regulate the degree of assistance in all sub-
movements. The model suggested that the dynamics of recovery
is direction-dependent, mostly due to the different sensitivity to
assistance exhibited by the arm moving in different directions.
These results suggest that modulation of assistance would better
be made separately for each direction. More in general, they point
at the need for therapy personalization.

While this model attempts to distinguish between recovery and
slacking (i.e., adaptation to assistance), it remains purely descrip-
tive and does not explicitly address the underlying mechanisms.

SYNERGY-BASED MODELS OF IMPAIRMENT
The characterization of compensatory strategies in stroke sur-
vivors is receiving an increasing attention. A number of studies
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FIGURE 5 | State-space model of stroke recovery. Left: fitting
performance. Right: model schematic (top) and the main result, that the
model’s rate of retention parameter predicts the long-term outcome—

change in the Fugl-Meyer score (FMA) in the three months following
the end of the treatment (bottom). Modified from Casadio and Sanguineti
(2012).

look at movements in terms of their basic building blocks, or syn-
ergies (Ting and Macpherson, 2005; Tresch et al., 2006; Raghavan
et al., 2010; Cheung et al., 2012). The notion of muscle synergy
relies on the assumption that the nervous system recruits spinal
inter-neural modules that activate groups of muscles as individual
units.

Cortical lesions affect the organization of these modules,
thus resulting in abnormal muscle activations (Twitchell, 1951;
Brunnstrom, 1970), incorrect regulation of interaction torques,
incorrect timing of action sequences (Archambault et al., 1999),
decreased joint range of motion (Levin and Dimov, 1997), loss of
inter-joint coordination (Levin, 1996a) and ultimately abnormal
movements

To extract muscle synergies, Cheung et al. (2012) collected
myoelectric signals (EMGs) from different muscles and applied
a factorization algorithm—Non-negative Matrix Factorization
(NMF)—to the rectified, integrated, and variance-normalized
EMGs. Based on this factorization, the temporal pattern of activa-
tion of each muscle is expressed as the sum of a small number of
(time-varying, task-dependent) signals. The relative contribution
of each of these signals to each muscle is time-invariant and task-
independent, and denotes groups of muscles that are recruited
together.

These authors systematically analyzed the muscle synergies
exhibited by stroke survivors with different levels of impairment
(mild to severe) and different disease durations (post-acute to
super-chronic). Subjects performed different tasks with each of
their arms to allow a comparison of their muscle synergies in
both the impaired and the unimpaired sides. A portion of the
synergies observed in the impaired arm was found to be similar
to those found in the intact arm of the same subjects (“preserved”
synergies). The remaining synergies were altered. Specifically,
the authors identified two distinct types of alterations, which
they named “merging” and “fractionation”. “Merging” refers to a
situation in which in the impaired arm multiple synergies merge
together. The amount of merging was found to correlate with the
severity of the impairment. “Fractionation” refers to a situation
in which the normal synergies split into multiple, novel patterns.
The amount of fractionation was found to correlate with the
disease duration (time since stroke onset), with suggest that it can
be seen as a form of spontaneous reorganization.

Synergy models do not explicitly address the recovery process,
but can be used to characterize impairment and the effects of
treatment in individual subjects, in term of their repertoire of
movement strategies at the articular and/or muscular level. In
other words, muscle synergies are physiological markers of both
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the degree of impairment and of the degree of recovery. Dipietro
et al. (2007) observed that in chronic stroke survivors, robot-
assisted exercise results in a more efficient control of shoulder
and elbow joints. They suggested that these changes are due
to a “tuning” of the existing abnormal synergies, not to their
modification.

Latash and Anson (1996) suggested that in impaired indi-
viduals, the modified motor strategies should not be necessarily
considered as pathological but, rather, they should be seen as
forms of adaptation to the primary disorder. Therefore, their
correction should not be the primary concern of the rehabilitative
treatment. However, this view may be in contrast with the long-
term goal of recovering motor functions (Levin, 1996b; Cirstea
and Levin, 2000). Failure to modify the abnormal synergies may
lead to incorrect postures, weakening of underutilized muscles.
With time, it may worsen the chances of recovering other abilities
(Levin, 1996b).

It is conceivable to design technological aids that drive the
recovery toward preserving and/or facilitating the “normal” artic-
ular and muscle synergies while, conversely, reducing or prevent-
ing the “abnormal” ones. Recently, Crocher et al. (2012) demon-
strated that in healthy subjects, training with an exoskeleton may
induce changes in the arm-related synergies. In severe stroke
survivors Ellis et al. (2005) demonstrated that training reduces
abnormal isometric elbow and shoulder joint torque coupling.

Rehabilitation treatments built upon synergy models should
be designed to emphasize the synergies that are silent or under-
activated, while discouraging compensatory strategies in favor of
new and more independent coordination patterns.

Synergy-based models are descriptors of impairment; they do
not provide an explicit model of the recovery process, although
they can be used for describing this process as a change at the level
of muscle activity.

DISCUSSION
Computational models are widely used to investigate motor skill
learning and sensorimotor adaptation. Similar models might
potentially contribute to our understanding of the mechanisms
of recovery after a stroke at “functional” level, and to the design
of optimal, individualized rehabilitation strategies.

Neuromotor recovery is facilitated by exercise and is mediated
by neural reorganization at cortical and sub-cortical levels, whose
physiological substrate is synaptic plasticity and rewiring through
axonal outgrowth.

On one hand, neural plasticity mechanisms constrain the way
recovery proceeds. On the other hand, sensorimotor behaviors
determine the patterns of neural activity, thus inducing specific,
activity-dependent synaptic changes. Therefore, behavioral mech-
anisms and neural reorganization cannot be simply treated as
different levels of description. Rather, both aspects need to be
accounted for when modeling the neuromotor recovery process.

DO COMPUTATIONAL MODELS PROVIDE TESTABLE HYPOTHESES ON
THE MECHANISMS OF RECOVERY?
It has been suggested (Krakauer, 2006; Dipietro et al., 2012) that
neuromotor recovery shares at least some features with motor

learning. The class of models focusing on the recovery of func-
tions highlights this “motor learning” component.

To acquire (or re-acquire) a motor skill an individual must
understand how to achieve the movement goal and, more in
general, learn how to get high rewards, while minimizing the
necessary muscle effort. Some of the models discussed in the
previous sections unveil specific aspects of this process. The
observation (Colombo et al., 2010) that different aspects of motor
performance exhibit a different temporal evolution, which may
not be monotonic, reflects the notion that recovery is a complex
multifactorial process, in which maximization of performance
is only one of the components. Another aspect is generaliza-
tion, from simpler to more complex movements (Dipietro et al.,
2009).

Other models (Han et al., 2008; Reinkensmeyer et al., 2012a)
describe neuromotor recovery within a reinforcement learning
paradigm. Casadio and Sanguineti (2012) suggest that in severe
chronic stroke survivors, improvements in voluntary control are
determined by performance, not error—another indication that
recovery has much in common with motor skill learning.

Other models focus on the “central” level, and describe corti-
cal reorganization in terms of Hebbian and/or self-organization
principles. These models highlight a number of physiological
mechanisms of recovery. The model of Goodall et al. (1997)
predicts an initial increase of the size of peri-lesional “silent”
areas immediately after the lesion, followed by overall reorgani-
zation. Another specific prediction is that tonic stimulation of
the lesioned side would limit the size of peri-lesional “silent”
areas. A similar effect is obtained by limiting the activity of the
contralateral hemisphere. Butz et al. (2009) focuses on axonal
outgrowth driven by the push toward restoring the homeostatic
inter-hemispheric balance. Its main prediction is that stimula-
tion may facilitate axonal outgrowth but, because of a satura-
tion effect, paused stimulation is more effective than sustained
stimulation.

Still other models address reorganization mechanisms either
at the level of the musculoskeletal system or at the level of CS
circuitry. Reinkensmeyer et al.’s (2012a) model includes a basic
form of reorganization, based on the recruitment of corticospinal
pathways that originate from cortical areas (e.g., the SMA) that
in the intact brain are normally not used because they are less
efficient, and therefore more “costly”, in contributing to force
generation.

In Han et al.’s (2008) model, the activity of the impaired
limb induces a reorganization of the ipsilesional cortical areas,
which in turn makes this same hand more likely to be selected
for movement. Its main prediction is that for recovery to self-
sustain, activity of the impaired hand must reach a threshold.
The hand selection (Han et al., 2008) model suggests that if
there is too much emphasis on performing the task but there
is too little pressure toward reorganization—for instance, if the
affected arm is not likely to be selected and hence the impaired
hemisphere is not active enough to undergo reorganization—
recovery of the paretic side functions will not self-sustain and will
possibly wash-out. One testable prediction is that techniques that
facilitate reorganization independent of motor learning—e.g.,
by increasing cortical excitability, as with trans-cranial direct
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current stimulation (tDCS) (Reis et al., 2009) might lower the
“threshol” activity level that allows recovery to self-sustain. The
model of Takiyama and Okada (2012) is very similar. It predicts
that the inter-hemispheric activation induced by bimanual
exercise facilitates cortical reorganization on the ipsilesional
side.

A complementary view of the recovery process is provided by
the attempts to characterize muscle synergies in a quantitative
way (Ting and Macpherson, 2005; Tresch et al., 2006; Raghavan
et al., 2010; Cheung et al., 2012). These models do not directly
address the recovery mechanisms, but provide a window into the
way muscle groups are recruited in different phases of the recovery
process, and allow to distinguish whether recovery occurs through
structural changes in muscle synergies, or as a tuning of existing
synergies.

Only few models address the facilitatory role of assistive forces.
In principle, assistive forces enable achieving the same motor
performance with less voluntary contribution (Emken et al.,
2007), but how this mechanism plays a role in the recovery process
has not been extensively investigated. The “slacking” hypothesis
predicts that reduced voluntary commands have a detrimental
effect on recovery. A recent study confirmed this prediction, by
demonstrating that subjects undergoing passive training exhibit
less recovery than subjects that are actively involved in the exercise
through an electromyography-driven robot. Hu et al. (2009) and
Casadio and Sanguineti (2012) found that this effect may not be
equally important in all subjects.

CAN COMPUTATIONAL MODELS PREDICT THE RECOVERY
ON A PATIENT-BY-PATIENT BASIS?
By “predicting the recovery” we mean estimating the future
evolution—either spontaneous or induced by treatment—of
the impairment and/or the functional performance of a specific
subject, measured in terms of clinical scales and task-specific
performance indicators. A number of mathematical models,
e.g., Chaudhuri et al. (1988), Saeki et al. (1994), Oczkowski
and Barreca (1997), Stineman et al. (1997), Lofgren et al.
(2000) and Mirbagheri et al. (2012), have been proposed to
predict the recovery outcome within different time scales. These
models use different types of information, such as the initial
degree of impairment and the nature, size or location of the
lesion. In contrast, computational models explicitly account
for the mechanisms by which recovery takes place, namely
use-dependent neural reorganization and motor learning.

Some computational models focus on general principles, but
do not address the dynamics of the recovery process of a specific
individual. All models of the central level account for brain areas,
CS circuitry and neural plasticity mechanisms in a way that
cannot be immediately associated to empirical observations on
individual subjects.

However, some comparison of these models with empirical
data is still possible. For instance, in Reinkensmeyer et al. (2003)
the lesion is modeled as a reduction in the number of available
direction-tuned cells in the motor map. The size of the lesion
can be related to the degree of impairment, a correlation that has
been observed empirically. In principle it would be possible to
personalize the model in terms of location and size of the lesion,
or fraction of intact CS pathways (e.g., from imaging data), but

the general focus is on quantities (e.g., the activity and the changes
of the spatial tuning individual cortical columns) that are hard to
associate to empirical measures.

Other models allow inferring how recovery would take place
in a specific individual. These include all functional models and
synergy-based models.

Specifically, Colombo et al. (2010) predict the time constant of
the recovery process by fitting the time course of the performance
data during the rehabilitation treatment. Casadio and Sanguineti
(2012) predict the long-term retention of the recovery by using
a state space model and by looking at the memory decay of the
learning process. These models directly refer to observable quan-
tities, so that it is relatively easy to identify subject-specific model
parameters. Model parameters capture the modality with which
one subject undergoes recovery. For instance, a model may allow
estimating the subject’s rate of spontaneous recovery, or may
provide information on his/her peculiar response to mechanical
perturbations (mechanical impedance).

All the above models enable significant, but limited predic-
tions. All focus on limited aspects of the recovery process (cor-
tical, muscular, functional) and only provide a limited account
of their complex interplay. The importance of such interplay is
exemplified by the prediction that the possibility that recovery
will self-sustain can be inferred by evaluating if the amount of
spontaneous use of the impaired arm reaches a certain threshold
(Han et al., 2008).

In conclusion, multiple levels of description would be neces-
sary. One important issue is whether these models can incorpo-
rate the specific features of one patient (nature, size and location
of the lesion; type and degree of impairment). This is particularly
important for the cortical level, for which there is a need for
descriptions that are based on observable quantities.

DO MODELS ALLOW DESIGNING PATIENT-SPECIFIC “OPTIMAL”
THERAPY?
Computational models may enable designing patient-specific
therapy, aimed at maximizing speed and amount of recovery of
that patient.

Patient-specific models provide a description of his/her status
and characteristics, e.g., impairment, articular and muscular syn-
ergies, residual movements and force generation abilities etc. They
also provide a better understanding of what determines the recov-
ery of that patient. This information can be used to define specific
goals for treatment, and to assess its efficacy in terms of progress
of the subject’s status (motor strategies and functional behavior)
toward the treatment goals.

Colombo et al. (2012) designed and tested a controller PTR
that automatically selects exercise parameters (amplitude of the
movement, number of sub-movements, assistance modality)
based on their previous work on modeling the evolution of dif-
ferent performance indicators (Colombo et al., 2010).

Reinkensmeyer et al. (2007) proposed a robot controller based
on the assist-as-needed principle, with a slacking mechanism sim-
ilar to the one observed in humans. In several other applications,
the magnitude of assistive force is adaptively regulated as a func-
tion of the observed outcome, in both the upper limb (Krebs et al.,
2003; Vergaro et al., 2010) and the lower limb (Riener et al., 2005;
Mihelj et al., 2007).
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Bayesian regulation of robot-generated assistance (Squeri
et al., 2011) is a direct derivation of the model of recovery
proposed by Casadio and Sanguineti (2012).

The success of the above mentioned approaches suggests that
an even greater advantage would come from the much more
ambitious goal of designing treatment modalities that directly
rely on patient-specific recovery models. In principle, if a model
allows predicting evolution and final outcome of a specific
rehabilitation intervention, it should be possible to use this same
model as a basis for an optimal planning of the intervention. This
may include the timing of the individual exercise sessions, the
specific exercises to be administered, the trial-by-trial regulation
of the degree of assistance, and the online planning of assistive
or resistive forces (or other forms of stimulation, like Functional
Electrical Stimulation (FES)).

Only few examples of model-based robot controllers for treat-
ment have been proposed so far (Wolbrecht et al., 2008; Reinkens-
meyer et al., 2012b). One major difficulty is that to incorporate
recovery models in the robot controller requires to achieve a dual
goal: the controller should select the goal and the difficulty level of
the exercise based on the subject’s state as predicted by the model
and, at the same time, the model should be continuously adjusted,
on the basis of the observed subject and robot performance while
the treatment proceeds. Therefore, the resulting treatment proto-
col has to be a trade-off between exploitation (of the model) and
exploration (of the treatment control space to keep the model up
to date).

DIRECTIONS FOR FUTURE RESEARCH
Computational approaches to the study of neuromotor recovery
after stroke are innovative and promising, but still in their infancy.
The models described in this review open a new view of the recov-
ery process, and along these lines there is still a lot to understand,
to discover, and to integrate in the clinical practice.

We can identify the following directions for future research:
(i) multi-level models; (ii) the role of modularity in neuromotor
recovery, and (iii) new modeling approaches.

The models reviewed in this paper capture important and
complementary aspects of the recovery process at central, mus-
cular, functional level. With few exceptions, the focus is on one
single level of description. Convergence toward multiple lev-
els of description may provide a more comprehensive represen-
tation of the different aspects of the recovery process and of
their interconnections. Multi-level models are being successfully
used in other related fields such as musculo-skeletal disorders—
see Fregly et al. (2012) for review—and are of great impor-
tance both for a more comprehensive understanding of the

mechanisms related to the observed phenomenon—in our case,
neuromotor recovery—and for planning the most appropriate
intervention.

The well-established notion of modularity in the motor sys-
tem has been getting a renewed attention in computational motor
control. In the context of neuromotor recovery, the view of motor
strategies as the combination of a repertoire of muscle synergies
may be the key to unveil the role of mechanical redundancy in
counteracting the effects of a central focal lesion, either toward
compensation or true recovery. A recent study (Overduin et al.,
2012) highlighted the neural correlates of muscle synergies in
two rhesus macaque monkeys. However, more work is needed to
understand how a focal lesion affects muscle synergies and how
they evolve over time as a consequence of spontaneous recovery
and/or exercise-based therapy.

One main difficulty in this application domain is our lim-
ited understanding of the physiological mechanisms underlying
synaptic plasticity and neural reorganization. Moreover, these
phenomena are hard to monitor and quantify experimentally, so
that models at central level are difficult to identify from empiri-
cal observations and have poor predictive power. Novel modeling
approaches, relying on quantities that can be observed with sim-
ple and non-invasive procedures, like fMRI and EEG would facil-
itate progress in this respect. Novel modeling approaches can also
be beneficial to the study of the functional level of description.
Novel computational approaches used for describing the neural
control of movements and motor learning might find insight-
ful application in the study of the recovery process. Optimiza-
tion is a particularly viable concept to describe neuromotor recov-
ery. Given the available sensory information and the constraints
that derive from the actual impairment (sensory, motor), it may
suggest how the next voluntary command is selected. Bayesian
inference, optimal control and reinforcement learning may play
a role here.

Computational models have been successfully applied to the
study of motor learning and adaptation, providing important
insights with respect how brain controls movement and react to
the environment or task variables changes. Their application to
the rehabilitation field is fairly new and the first approaches sug-
gest that they will lead to a deeper understanding of the mecha-
nisms underlying neuromotor recovery.
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