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Coronavirus disease (CoVID-19), caused by recently identified severe acute respiratory
distress syndrome coronavirus 2 (SARS-CoV-2), is characterized by inconsistent clinical
presentations. While many infected individuals remain asymptomatic or show mild
respiratory symptoms, others develop severe pneumonia or even respiratory distress
syndrome. SARS-CoV-2 is reported to be able to infect the lungs, the intestines, blood
vessels, the bile ducts, the conjunctiva, macrophages, T lymphocytes, the heart, liver,
kidneys, and brain. More than a third of cases displayed neurological involvement,
and many severely ill patients developed multiple organ infection and injury. However,
less than 1% of patients had a detectable level of SARS-CoV-2 in the blood, raising
a question of how the virus spreads throughout the body. We propose that nerve
terminals in the orofacial mucosa, eyes, and olfactory neuroepithelium act as entry
points for the brain invasion, allowing SARS-CoV-2 to infect the brainstem. By exploiting
the subcellular membrane compartments of infected cells, a feature common to all
coronaviruses, SARS-CoV-2 is capable to disseminate from the brain to periphery via
vesicular axonal transport and passive diffusion through axonal endoplasmic reticula,
causing multiple organ injury independently of an underlying respiratory infection. The
proposed model clarifies a wide range of clinically observed phenomena in CoVID-19
patients, such as neurological symptoms unassociated with lung pathology, protracted
presence of the virus in samples obtained from recovered patients, exaggerated immune
response, and multiple organ failure in severe cases with variable course and dynamics
of the disease. We believe that this model can provide novel insights into CoVID-19 and
its long-term sequelae, and establish a framework for further research.

Keywords: SARS-CoV-2, neurotropic infection, axonal transport, peripheral nerves, neurological symptoms,
multiple organ failure
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INTRODUCTION

The ongoing pandemic of coronavirus disease (CoVID-19) has
profoundly affected many aspects of our lives. The disease is
caused by severe acute respiratory distress syndrome coronavirus
2 (SARS-CoV-2), a positive-sense single-stranded RNA beta-
coronavirus that uses angiotensin converting enzyme 2 (ACE2)
to invade host cells (Hoffmann et al., 2020a). CoVID-19 exhibits
variable clinical presentations, ranging from mild respiratory
and/or gastrointestinal symptoms to acute respiratory distress
syndrome and multiple organ failure (Hani et al., 2020; Jiang
et al., 2020; Lai et al., 2020; Pan et al., 2020). A significant number
of apparently asymptomatic individuals were also reported
(Day, 2020).

So far, SARS-CoV-2 was has been shown to infect bronchial,
alveolar, and conjunctival epithelia, alveolar macrophages (Bao
et al., 2020; Hui et al., 2020), T-lymphocytes (Wang et al., 2020c),
neurons (Moriguchi et al., 2020; Paniz-Mondolfi et al., 2020),
cholangiocytes (Zhao et al., 2020a), vascular endothelium (Varga
et al., 2020), gastrointestinal mucosa (Xiao et al., 2020), the heart,
liver, and kidneys (Puelles et al., 2020). It has been suggested that
brain involvement might contribute to more complicated clinical
presentations (Li et al., 2020; Steardo et al., 2020). According to
initial reports, more than a third of hospitalized patients exhibited
symptoms and signs of neuronal involvement (Mao et al., 2020),
and speculations on neuroinvasive potential of the virus were
promptly made (Toljan, 2020). We would like to propose that
SARS-CoV-2, after infecting the targeted brain nuclei, might
be capable of spreading to multiple organs through peripheral
nerves, precipitating multiple organ failure independently of an
underlying respiratory infection.

INTERNALIZATION OF ACE2 AS A
DOMINANT ENTRY MECHANISM

S-glycoproteins, expressed on the surface of SARS-CoV-2 virions,
engage the ACE2 on host cells, and invade the cells either
by membrane fusion or endocytosis. In order to initiate the
membrane fusion, S-glycoproteins need to undergo cleaving
by endogenous proteases, which enables them to engage the
ACE2 more avidly (Ou et al., 2020). This feature is absent
in other coronaviruses, including SARS-CoV-1 (Jaimes et al.,
2020). Some proteases involved in this process have already
been identified, e.g., furin and TMPRSS2 (Hoffmann et al.,
2020b; Walls et al., 2020), however, other proteases might be
also involved. Additionally, the docking of SRAS-CoV-2 to the
cell membrane is facilitated by heparan sulfate proteoglycans
on the host cell, which interact with S-glycoproteins (Mycroft-
West et al., 2020). In SARS-CoV-2 S-glycoprotein, three novel
glycosaminoglycan-binding motifs have been recently described,
one of which is located at S1/S2 cleavage site (Kim et al., 2020).
This finding further implies involvement of host cell surface
proteoglycans in the process of cell entry.

When the proteases are unavailable, membrane fusion cannot
happen, and binding of SARS-CoV-2 to ACE2 would result
in endocytosis instead. Moreover, even when the proteases are

available, the virions still prefer entry via endocytosis (Ou et al.,
2020). Endocytotic entry in Coronaviridae dependents on the
localization of their receptors in membrane lipid rafts, since
lipid rafts mediate this process. This mechanism shares the
same activating principles with renin-angiotensin-aldosterone
system, suggesting their common phylogenic origin (Chen et al.,
2012). The initiation of ACE2-dependent endocytosis in SARS-
CoV-2 was reported to be dependent on phosphatidylinositole
biphosphate (Ou et al., 2020). The protease-independent and
lipid-raft-mediated entry might mimic physiological activation of
the receptor by angiotensin II, which results in its recruitment
to the intracellular renin-angiotensin system (Escobales et al.,
2019; Abassi et al., 2020). We still do not know much of this
system, nonetheless, its involvement in the various aspects of
metabolic regulation of subcellular compartments is gradually
being elucidated (Villar-Cheda et al., 2017; Shi et al., 2018;
Sotomayor-Flores et al., 2020).

After ACE2 endocytosis, lysosomal cathepsin L proteases are
normally trafficked to the endosome. It has been recently
demonstrated that cathepsin L is capable of cleaving
S-glycoproteins, enabling virions to initiate fusion, escape
endosomes and release their proteins and genetic material into
cytosol (Mao et al., 2020). By preferably relying on endocytosis
instead of membrane fusion, SARS-CoV-2 likely postpones its
detection by the immune system, because in this way fewer
antigenic viral proteins are left on the cell surface (Marsh and
Helenius, 2006). The mechanisms of cell entry are summarized
in the Figure 1A.

EXPLOITATION OF SUBCELLULAR
MEMBRANE COMPARTMENTS AND
INTRACELLULAR TRANSPORT

An important feature of coronaviruses is that their replication-
transcription complexes are associated with double membrane
vesicles built from modified Golgi apparatus and endoplasmic
reticulum (Snijder et al., 2020). The viruses extensively remodel
the membranes of subcellular compartments into organelle-like
and web-like structures, known as reticulovesicular networks
(Knoops et al., 2008). A recent preprint electron microscopy
study confirmed the same for SARS-CoV-2 (Belhaouari et al.,
2020). The viral replication-transcription domains and assembled
virions were also reported in autophagosomes (Prentice et al.,
2004) and secretory vesicles (Krijnse-Locker et al., 1994;
Salanueva et al., 1999; Verheije et al., 2008), implying that
assembly and transport of new virions might take place
during vesicular trafficking. For their replication and neuronal
dissemination, neuroinvasive viruses must express proteins that
control vesicular traffic (Enquist, 2012). Angiotensin II increases
and mediates neuronal vesicular trafficking (Wang et al., 2001;
Aschrafi et al., 2019), and since the receptor binding site
of S-glycoproteins in SARS-CoV-2 is structurally similar to
angiotensin II, the virus might be capable of increasing and
modulating the neuronal vesicular trafficking system in the same
manner (see Figure 1B). Moreover, as coronaviruses modify
and assembly inside of structures derived from endoplasmic
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FIGURE 1 | Molecular mechanisms of cell entry, replication and egression of SARS-CoV-2. (A) The virus invades the cell by docking on the cell-surface
proteoglycans and engaging the ACE2 receptor with “Spike” (S) glycoprotein. If S glycoprotein is cleaved by host proteases (TMPRSS2), entry by membrane fusion
or endocytosis would happen. If the cleavage does not occur, the virus would invade the cell via receptor-mediated endocytosis. Lysosomal proteases (Cathepsin L)
eventually cleave the S glycoproteins. This enables them to induce membrane fusion and release the viral proteins and RNA into the cytoplasm. (B) After the virus
enters the cell (1) it releases its genetic material (2), and replicates in the cell nucleus. Virions that do not get their S glycoproteins primed by lysosomal proteases
would be further trafficked to various subcellular membrane compartments (3), which possibly modulates their metabolism and changes their morphology. This
results in the emergence of a membranous system called reticulovesicular network. Translation of viral messenger RNA, synthesis of viral proteins and assembly of
new virions takes place inside of this network and other intracellular vesicles (4). New virions leave the infected cell by budding through lipid rafts, either by
membrane-fusion-mediated egression or by exosomes (5). Intracellular cleavage of S glycoprotein by furin or TMPRSS2 proteases would enable the virions to induce
membrane fusion. Alternatively, assembly of virions inside of secretory vesicles would allow them to be transported to the apical cell membrane (6) or presynaptic
membrane (in the case of neurons).

reticulum, we further suggest that SARS-CoV-2 could also utilize
continuous longitudinally spanning endoplasmic reticula, which
were described in the myelinated axons, and which are likely
a continuation of the somatic organelles (Gonzalez and Couve,
2014). Since SARS-CoV-2 is a neurotropic virus, we suggest that,
by binding to ACE2, it is able to disseminate via both vesicular
transport and passive diffusion through axonal endoplasmic
reticulum over large distances and at a fast pace.

New virions that are assembled in a reticulovesicular network
are not immediately released out of the infected cell. Instead,
they are accumulating in dedicated areas of its lumen (Knoops
et al., 2008). Their egression is most likely elicited by fusion
of the vesicles derived from the reticulovesicular network and
plasma membrane in a process that seems to be dependent on
interaction with lipid rafts (Chazal and Gerlier, 2003; Baglivo
et al., 2020; Fantini et al., 2020) and autophagosomal proteins
(Tanida et al., 2009). Since the surfaces of lipid rafts are much
smaller than the viral envelopes, egression has to happen on
sites where many lipid rafts cluster into a lipid microdomain
(Lorizate and Kräusslich, 2011). This egression mechanism might
be crucial for the induction of syncytia. S-glycoproteins of SARS-
CoV-2 induce syncytia by transcellular transfections dependent
on TMPRSS2 proteolytic activity (Ou et al., 2020). Apparently,
the virion cannot directly induce a syncytium without proteases,
likely because membrane fusion cannot be initiated. In such cases
the budding would likely result in an endocytic transfection,
enabling the virus to spread in a cell-to-cell fashion. SARS-CoV-2

was reported to show superior in vitro cell-cell fusion capacity
compared to SARS-CoV-1 (Xia et al., 2020). Additionally, in some
coronaviruses, soluble S-glycoproteins are secreted out of the
infected cell, and are shown to induce syncytia independently of
transfection (Masters, 2006).

Axonal dissemination by vesicular transport and passive
diffusion, syncytium induction and cell-to-cell spread could
explain the unexpectedly low viral load in the blood – possibly
less than 1% of PCR blood tests in CoVID-19 patients yield
a positive result (Wang et al., 2020b; Wölfel et al., 2020; Yu
et al., 2020), suggesting that viremia likely does not underlie the
multi-organ dissemination.

BRAIN AS A HUB FOR FURTHER
DISSEMINATION

ACE2 is expressed in neurons of many brain regions (Doobay
et al., 2007). It can bind to integrins and modulate their
signaling (Clarke et al., 2012). Integrins are transmembrane
receptors responsible for signal transduction between a cell
and extracellular matrix, and are abundantly expressed in
synapses and terminals of sensory neurons that mediate pain
(Dina et al., 2004), implying a possible colocalization with
ACE2 at those sites. Furthermore, an integrin-binding motif
in S-glycoprotein of SARS-CoV-2 was recently identified,
suggesting that they might be alternative receptors for the
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virus, and an ACE2-independent infection in integrin-expressing
cells might be possible (Sigrist et al., 2020). The presence of
SARS-CoV-2 in the cerebrospinal fluid was recently reported
in a case of viral encephalitis (Moriguchi et al., 2020), and
the virus was directly observed in the brain cells of deceased
CoVID-19 patients (Paniz-Mondolfi et al., 2020), confirming
its neurotropic nature. Based on these findings and recent
reports (Cheema et al., 2020; Colavita et al., 2020), we
propose that nerve terminals in the oral and nasal mucosa,
conjunctiva and eyes, as well as the olfactory nerves, might
be potential entry sites for SARS-CoV-2 neurotropic infections.
Post-mortem MRI findings revealed asymmetric olfactory bulbs
in four deceased CoVID-19 patients, further implying that
olfactory neuroepithelium might be an entry point for the virus
(Coolen et al., 2020).

CoVID-19 patients frequently present with hyposmia and
dysguesia (Bagheri et al., 2020; Lechien et al., 2020), and
both ACE2 and TMPRSS2 proteases are expressed in olfactory
neuroepithelium (Fodoulian et al., 2020). Moreover, Dubé et al.
(2018) directly observed propagation of a human coronavirus to
the brainstems of mice following the intranasal and intralingual
inoculations, suggesting that SARS-CoV-2 might be able to
spread to the brainstem either directly via olfactory nerves, or
alternatively, through orofacial nerve fibers via cranial ganglia.
A non-peer-reviewed report demonstrated the presence of SARS-
CoV-2 in the trigeminal ganglia, olfactory epithelium, olfactory

bulbs, brainstem, uvula, conjunctiva and cornea in some deceased
patients (Meinhardt et al., 2020). Olfactory inoculation likely
involves propagation to the piriform cortex and amygdala,
and further spreading through the medial forebrain bundle
to the brainstem (see Figure 2A). Lateral fiber stream of
the medial forebrain bundle projects caudally to the solitary
tract and dorsal vagal nuclei (Holstege, 1987). Replication of
the virus in the solitary tract neurons may also explain the
reported dysgeusia. Spreading through the orofacial sensory
fibers would be especially convenient for the virus, since their
pseudounipolar somata, which reside in the cranial ganglia, could
be plausible persistent infection sites or intermediary replication
posts. This could facilitate either further brainstem invasion
by axonal transport or allow for an exocytosis-endocytosis-
mediated transfection of other fibers passing through the ganglia.
Such virion-containing endocytes could establish membrane
contact sites with axonal endoplasmic reticulum (Eden, 2016),
enabling the virion to freely diffuse along the axon using
the organelle lumen. Passive diffusion of coronavirions in
axons was reported both in vitro and in vivo (Dubé et al.,
2018). However, it is possible that vesicular transport might
prevail in vivo. Although hematologic dissemination to the
brain cannot be excluded, the observed discrepancy between
a significant incidence of neurological manifestations (Mao
et al., 2020) and a low yield of positive blood tests (Wang
et al., 2020b; Wölfel et al., 2020; Yu et al., 2020) suggests

FIGURE 2 | Anatomical overview of the proposed olfactory inoculation and axonal dissemination pathways of SARS-CoV-2. (A) Olfactory neurons are only a
synapse away from the central nervous system. SARS-CoV-2 has been reported to infect olfactory neuroepithelium and to invade the olfactory bulbs via cribriform
plate. By exploiting the anterograde axonal transport in the olfactory tract, the virus could infect neurons of the olfactory tubercle and spread to the amygdala and
thalamus, from where it might further invade the cingular and orbitofrontal cortex. By exploiting the axonal transport in fibers projecting into the hypothalamus, the
virus may infect cranial ganglia nuceli via the medial forebrain bundle. (B) SARS-CoV-2 could also disseminate to various organs and tissues by axonal transport in
the vagal nerve (X). Immediately after leaving the skull, the vagus establishes anastomoses (connections) with the glossopharyngeal nerve (IX), allowing the virus to
spread to the oropharyngeal mucosa, or alternatively, to use the same route for neuroinvasion. Glossopharyngeal fibers that cross to the facial nerve (VII) could be an
additional pathway for dissemination or neuroinvasion. The vagal nerve innervates many tissues and organs that can be affected in CoVID-19, including the pharynx,
larynx, lungs, the heart, esophagus, stomach, liver, gallbladder, pancreas, spleen, adrenal medulla, kidneys, muscles, and glands of a part of the intestines, as well
as lymphatic tissue in the correspondent intestinal mucosa. By disrupting the vagal innervation, SARS-CoV-2 could also impair the activity of the cholinergic
inflammatory reflex, and precipitate dysregulated immune responses in many organs.
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that viremia is unlikely to be a major contributor to the
brain infection.

Viral penetration into the central nervous system through
peripheral fibers is a multi-step process. In order to reach
neuronal soma from the periphery, the virus needs to exploit
the retrograde axonal transport machinery. SARS-CoV-2 uses
ACE2-mediated endocytotic pathway for internalization and
intracellular transport, and in the case of SARS-CoV-1 infection,
endosomes containing virion/ACE2 complexes are trafficked to
the perinuclear area (Wang et al., 2008). The virus might use
this intrinsic clathrin-independent intracellular ACE2 endocytic
transport to reach the perikaryon. However, for a successful
further invasion, it would also need to be able to cross synaptic
membranes. Another beta-coronavirus was shown to be capable
of trans-synaptic propagation by presynaptic exocytosis and
postsynaptic endocytosis (Li et al., 2013), which suggests that
SARS-CoV-2 could use the same mechanism. Anterograde
axonal transport is mediated by kinesin molecular motors, and
allows for trafficking of vesicles and organelles from the soma
to the axon and synaptic terminals (Berth et al., 2009). Since the
virus replicates and assembles inside of vesicles derived from the
endoplasmic reticulum and Golgi apparatus, it could also exploit
the already present kinesin-mediated anterograde transport to
propagate further along the axons. Lateral transfections, i.e., cell-
to-cell or axo-axonal spreading via exocytosis, could be also
possible. Exosomal pathways are hypothesized to contribute to
viral dissemination (Khan et al., 2017), and it was demonstrated
that ACE2 trafficking could involve exosome-mediated cell-to-
cell transfer (Wang et al., 2020a). Arguably, this mechanism could
allow the infection to spread from neurons to cerebrovascular
endothelial cells, and vice versa. The ways the virus might exploit
intracellular vesicular trafficking in neurons are summarized
in Figure 3.

Once the virus has reached the brainstem and spinal cord,
it could access practically every organ system in the body. By
infecting the vagal nuclei alone, the virus may be capable of
dissemination to the lungs, heart, liver, intestines and kidneys,
as well as of impairing the vagal activity (see Figure 2B). This
might precipitate multiple organ injury independently of an
underlying respiratory pathology. In a murine model of neuronal
infection with human coronavirus OC43, the viral RNA was
detected in the livers of three out of nine animals in spite
of undetectable viral loads in the blood (Dubé et al., 2018).
This finding supports the possibility of dissemination through
vagal fibers. Additionally, viral shedding at the periphery could
also be associated with activation of the integrin signalization
on peripheral nerve terminals, which could enable the virus to
attenuate local algesic and inflammatory response, hindering the
immune reaction to its shedding (Dina et al., 2004; Moon et al.,
2009; Hu et al., 2016). Alternatively, the virus may establish a
persistent neuronal infection, and stay dormant for a certain
period until eventual reactivation. This is a common strategy in
some neuroinvasive viruses (Koyuncu et al., 2013).

Other manifestations that are considered atypical for
a respiratory infection, such as coagulopathy (Iba et al.,
2020), thrombosis (Helms et al., 2020; Leisman et al., 2020),
vasculitis (Castelnovo et al., 2020; Sachdeva et al., 2020;

FIGURE 3 | Aspects of intracellular vesicular trafficking that may be exploited
by SARS-CoV-2 in infected neurons. Neurons are polarized cells with
abundance of intracellular endocytic pathways. Life cycle of SARS-CoV-2 is
compatible with the possibility of exploiting those pathways. The virus
extensively modifies subcellular organelles into a reticulovesicular network, a
structure where viral membrane-bound replication-transcription complexes
are situated and where new virions are being assembled (1). This elaborate
network is connected to secretory Golgi compartments, allowing the newly
assembled virions to be trafficked to the synapse via kinesin-mediated
anterograde axonal transport (2). The reticulovesicular network is also
continuous with endoplasmic reticulum. In myelinated projection neurons,
endoplasmic reticulum extends along the axon, which might enable the virions
to freely diffuse inside its lumen (3). Newly assembled virions can also directly
leave the infected neurons by membrane-fusion or by exosomes (4), and
infect the nearby cells. Trans-synaptic spreading is confirmed in some
beta-coronaviruses, and could be possible in SARS-CoV-2 as well (5).

Verdoni et al., 2020) and dysregulated inflammatory responses
(Blanco-Melo et al., 2020; Leisman et al., 2020) were also reported
in CoVID-19 patients. Previous studies showed that vagal activity
is an important factor in anti-inflammatory modulation and
inhibition of prothrombotic events in the innervated tissues
(de Jonge et al., 2005; Westerloo et al., 2006; Koopman et al.,
2016; Li et al., 2016; Cacho et al., 2020), and SARS-CoV-2 could
be capable of hijacking axonal transport in the vagal nerves,
impairing their signaling in the cholinergic anti-inflammatory
pathway (Johnston and Webster, 2009; Pavlov and Tracey, 2012).
We propose that vagal dysfunction might significantly contribute
to exaggerated immune responses and thromboembolic incidents
in some CoVID-19 patients. Interestingly, vagal neuropathies
due to upper-respiratory viral infections are already clinically
recognized as contributors to various para-infectious and post-
infectious sequelae (Amin and Koufman, 2001; Rees et al., 2009;
Chung et al., 2013; Niimi and Chung, 2015).

Due to the dynamics of the active transport and passive
diffusion in axons, the brain infection might develop weeks
after the virus exposure or development of primary respiratory
infection, giving rise to the possibility that patients with severe
clinical presentation and multiple organ affection might have
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contracted the virus earlier than assumed. The exact time needed
for the virus to invade the brain in humans is unknown, and it
certainly depends on the entry route and inocculation dose. In
mice, a strain of human coronavirus was detected in the olfactory
bulbs as early as 2 days after intranasal inoculation, in the cortex
and brainstem 3 days after inoculation, and in the spinal cord
5 days after inoculation (Dubé et al., 2018).

IMPLICATIONS AND PERSPECTIVES

Based on the presented concept, we would like to suggest that
respiratory and neuronal types of CoVID-19 may be distinct
clinical entities. These two types might present independently,
as a respiratory infection without brain infection and vice versa,
concomitantly or consecutively. Due to different entry routes,
the two types would likely have different incubation periods
and different occurrence rates of initial symptoms, which could
explain the observed variability in both parameters (Day, 2020;
Jiang et al., 2020; Wan et al., 2020). However, wide dispersion of
reported values could be also due to limited sample sizes in the
initial reports.

Increased susceptibility to a particular type of the disease
might be driven by underlying conditions. ACE2 expression is
increased in patients with morbidities associated with metabolic
syndrome (Pinto et al., 2020), and those patients are also
more likely to develop neurological manifestations (Mao et al.,
2020). Patients with such conditions who develop CoVID-19
respiratory infections might be at risk of more serious CoVID-
19 neuronal infections which could in turn result in the virus
dissemination to multiple organs through peripheral nerves.
Most patients, however, do not develop brain infection. It is
important to note that the nasal mucosa possess mechanisms
that efficiently prevent neuroinvasion via olfactory nerves,
such as nasal secretion, mucus barrier formation, pathogen
recognition receptors (Kalinke et al., 2011) and cyclic shedding
and replacement of olfactory neurons with the new ones (Loseva
et al., 2009). Another host protective response was reported to
be apoptosis of olfactory neurons (Mori et al., 2004). Conditions
that interfere with these mechanisms might compromise their
protective roles against neuroinvasive infectious agents. Aging,
diabetes, and hypertension are associated with less efficient nasal
mucocilliary clearance (Selimoglu et al., 1999; Yue, 2007; Proença
de Oliveira-Maul et al., 2013), and aging might also precipitate
reduced olfactory nerve replenishment (Enwere et al., 2004;
Brann and Firestein, 2014). This would additionally explain
the observed higher incidence of neurological involvement in
patients with these comorbidities. For most otherwise healthy
and younger individuals, respiratory epithelium would be the
primary and likely the only site of infection, whereas the
aforementioned high-risk groups might be more susceptible to
both neuronal and respiratory types of CoVID-19.

Theoretically, a primary lung infection could also progress
to a brain or spinal cord infection via retrograde axonal
transport through peripheral nerves. However, more aggressive
immune responses to viral pathogens in peripheral tissues
compared to the ones in the central nervous system would

likely impede such a scenario. Due to irreplaceability of
neurons, the immune reactions to viral infection in the brain
do not include cytolytic responses, and are therefore less
efficient in containing and clearing intracellular pathogens
(Griffin, 2003). Olfactory neurons, although replaceable, are
in an immediate proximity to the central nervous system,
which makes them an anatomically and immunologically more
plausible route for successful neuroinvasion. Nevertheless, a
primary lung infection in some patients could still progress to
acute respiratory distress syndrome without or independently
of neuronal infection. Such lung injuries might be due to
suboptimal host reaction to the infection, possibly characterized
by a weak antiviral response and elevated expression of
proinflammatory cytokines, as demonstrated by an in vitro
study (Blanco-Melo et al., 2020). Still, many CoVID-19
patients who develop respiratory infection without neural
involvement could have better clinical outcomes, whereas a
combination of direct cytopathic effects, vagal neuropathy and
centrally driven lung injuries could be associated with less
favorable outcomes.

We propose that the original type of cell in which the virion
assembly and budding took place could be identified based on
the lipid profile of the viral particles. The lipid composition
of retroviral envelopes corresponds to the lipid profile of the
membrane lipid rafts at which the budding took place (Ono, 2010;
Waheed and Freed, 2010). Since lipid rafts of the brain have a
distinctive lipid profile rich in specific gangliosides (Vajn et al.,
2013; Schnaar et al., 2014), by comparing it to the lipid profile of
the virions, it could be possible to confirm the neuronal origin of
SARS-CoV-2 in peripheral tissues.

A proportion of purportedly asymptomatic or
oligosymptomatic carriers could suffer a less severe CoVID-19
neuronal infection, with subtle neuropsychiatric manifestations
without respiratory involvement. RNA viruses are known
to be able to persistently infiltrate CNS as well as to cause
subacute psychiatric and neurological symptoms and post-
infectious sequelae, such as cognitive impairment, seizures,
ataxia, psychiatric illnesses, chronic fatigue syndrome, etc. (Klein
et al., 2019; Bo et al., 2020). To the best of our knowledge, so
far reported neurological manifestations in CoVID-19 patients
include hyposmia, dysgeusia (Lechien et al., 2020), convulsions
(Karimi et al., 2020), neurogenic syncope (Canetta et al., 2020),
meningoencephalitis (Moriguchi et al., 2020), Guillain-Barré
syndrome (Zhao et al., 2020b), intracerebral hemorrhage
(Sharifi-Razavi et al., 2020), acute hemorrhagic necrotizing
encephalopathy (Poyiadji et al., 2020), acute post-infectious
myelitis (Zhao et al., 2020c), cerebrovascular diseases (Mao et al.,
2020), vertigo, nausea, headaches (Mao et al., 2020; Nie et al.,
2020), demyelination (Zanin et al., 2020), and cortical blindness
(Kaya et al., 2020), but the causative or coincidental nature of
these findings is yet to be determined. It is important to point out
that some of the reported neurological symptoms could also be
caused by hypoxia as a consequence of lung injury. However, not
all CoVID-19 patients who developed neurological symptoms
suffered pulmonary insufficiency, and the presence of subtle
neuropsychiatric abnormalities in the subclinical cases might be
actually underreported (Zhang et al., 2020b).
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The fetus seems to be protected from the axonal invasion
of SARS-CoV-2 from the infected mother by factors that
inhibit nerve growth on the maternal side of the umbilicus
and placenta (Marzioni et al., 2004). Both amniotic fluid and
umbilical cord blood samples were reported to test negative to
SARS-CoV-2, and no vertical transmission was reported (Chen
et al., 2020a), except for a recent report of three cases of
neonatal CoVID-19, in which vertical transmission could not be
ruled out (Zeng et al., 2020). Since ACE2 is expressed in the
uterus and placenta (Valdes et al., 2013), a possibility of viral
interference with expression of the factors that mediate nerve
growth inhibition must not be dismissed. In addition, CoVID-
19-related thromboembolic placental injuries were recently
described (Baergen and Heller, 2020).

Development of neuronal CoVID-19 infection might explain
a growing number of positive PCR tests in recovered patients
even weeks after hospital discharge (Lan et al., 2020; Xing
et al., 2020; Zhang et al., 2020c). Viral shedding at nerve
terminals of pulmonary epithelium and nasopharyngeal mucosa
could explain the sustained presence of SARS-CoV-2 in throat
and nasal swabs, implying that a carrier state could persist
over a significant timespan. Although prolonged positivity
could theoretically be explained by presence of remnants of
unviable viral RNA, we believe this is an unlikely explanation.
Physiological nasopharyngeal washing and, possibly, activity
of certain canonical ribonucleases in the respiratory mucosa
(Koczera et al., 2016) would not allow for a sustained presence
of the viral RNA weeks after recovery. By analogy, viral shedding
may be also possible on the enteric nerve terminals, maintaining
the detectability of the virus in enterocytes and stool even
after apparent recovery. Hu et al. (2020) have recently reported
that SARS-CoV-2 can persist in stool samples longer than in
the respiratory tract in recovered patients who were previously
without gastrointestinal symptoms.

The damage to multiple organs in some patients may as well
be explained by hypoxia and cytokine storm (Bonow et al., 2020;
Mehta et al., 2020; Pei et al., 2020; Yang et al., 2020). Even
so, hypoxia and cytokine storm do not accompany all cases of
organ damage (Kochi et al., 2020; Zhang et al., 2020a), and the
correlation of incidence of hypercytokinemia and presence of
viral RNA in blood (Chen et al., 2020b), in spite of practically
non-existent viremia, suggests that cytokine storm might be
preceded and driven by organ damage and subsequent release
of viral antigens from necrotic cells. As a matter of fact, the
virus presence was confirmed in vascular endothelial cells (Varga
et al., 2020) and multiple organs in deceased patients (Puelles
et al., 2020), and different mechanisms of organ failure do not
necessarily exclude each other. Detrimental pro-thrombotic and
pro-inflammatory state could also be driven by hypothesized
SARS-CoV-2-induced vagal neuropathy (Li et al., 2011; Huston,
2012), and eventual development of neurogenic pulmonary
edema secondary to an infection-related cerebrovascular event
might contribute to the ultimate cardiopulmonary failure
(Davison et al., 2012).

It was also suggested that possible fecal-oral transmission
may explain the gastrointestinal symptoms in CoVID-19 (Cha
et al., 2020; Steardo et al., 2020; Tian et al., 2020), even though

SARS-CoV-2 is not stable in the media with pH <3 (Chin
et al., 2020). Nonetheless, SARS-CoV-2 was still detected in
stool and gastrointestinal mucosa (Xiao et al., 2020), but stool
tested positive even in patients who did not have gastrointestinal
symptoms (Zhang et al., 2020c). Still, the proposed fecal-oral
route does not exclude the possibility of axonal dissemination
of SARS-CoV-2 to gastrointestinal tract via vagal fibers and
spinal nerves. Another possibility might be an infection of the
gallbladder or biliary ducts (Zhao et al., 2020a), in which case the
virus in stool would be of biliary origin.

Finally, pharmacologic approaches that would hinder the
exploitation of the neuronal endocytic trafficking by SARS-CoV-
2 could be an effective treatment for the infection. Chloroquine
and its derivatives disrupt endocytosis and vesicular trafficking
by endosomal alkalization and inhibition of autophagy, also
interfering with terminal glycosylation in ACE2, which hinders
its interaction with S-glycoproteins (Liu et al., 2020). These
medications are already being clinically used in CoVID-19
patients. Other autophagy inhibitors, such as azithromycin
are also commonly used (Gautret et al., 2020). Therefore,
we suggest that the treatment of CoVID-19, due to its
neuroinvasive properties, should focus on interfering with
viral hijacking of the cellular endocytic trafficking system and
axonal transport. A study of rat primary superior cervical
ganglia culture revealed that emetine (translation elongation
inhibitor) may be used as inhibitory modulator of rabies
virus axonal transport (MacGibeny et al., 2018), implying a
possible therapeutic approach for SARS-CoV-2. In the case
of poliomyelitis virus infection in rats, vinblastine (inhibitor
of tubulin polymerization) was shown to hinder retrograde
axonal transport of the virus when applied topically to infected
peripheral nerves (Ohka et al., 2004). Microtubule-associated
inhibitors, such as vinblastine, vincristine, paclitaxel, colchicine,
nocodazole and other inhibitors of retrograde axonal transport,
such as macrolide drug mycalolide B (Cavolo et al., 2015), could
be used to investigate the mechanisms underlying retrograde
axonal transport of SARS-CoV-2 in vivo. However, these drugs do
not alter the redistribution and abundance of viral proteins, and
do not influence the viral replication (Wu et al., 2019). Moreover,
treatment with these agents was reported to induce reactivation
of varicella-zoster virus infection along with their neurotoxic
effects. HSP90 inhibitor geldanamycin is suggested as a potential
drug in the treatment of CoVID-19 (Sultan et al., 2020), and
SARS-CoV-2 proteases inhibitor quercetine is being studied as
a prophylaxis and treatment option (Onal and Semerci, 2020).
It also affects the cytoskeletal signaling by inhibiting protein
kinase C. Another potential treatment option for CoVID-19 are
rho-kinase inhibitors, such as fasudil, ripasudil, and netarsudil
(Abedi et al., 2020; Calò et al., 2020). Interestingly, all these
compounds share a quinoline backbone moiety. Additionally,
since neurotropic viruses have to propagate across the synapses,
neutralizing antibodies could be used to stop them from
spreading from neuron to neuron, as it was demonstrated in
animal models of West Nile virus neuronal infection (Oliphant
et al., 2005; Samuel et al., 2007). Another group of potential
axonal transport modulators could be bioactive compounds
isolated from marine organisms. Some of them are reported to
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inhibit molecular motors underlying anterograde or retrograde
axonal transport (kinesin and dynein, respectively), and several
compounds are proposed to interfere with autophagosomal
pathways in neurons (White et al., 2016).

The model we put forward clarifies a wide range of
clinically observed phenomena in CoVID-19 patients (see
Supplementary Table S1). Detection of viral particles in
peripheral nerves, together with recent findings of brainstem and
cranial ganglia infection, as well as other findings summarized
in this paper, could confirm the axonal dissemination of
SARS-CoV-2. If correct, this would significantly affect our
understanding of this novel disease and its potential long-term
sequelae. This would warrant modifications in many aspects
of diagnostics, treatment and follow-up of CoVID-19 patients.
The proposed model could also be utilized by many other
viruses – chronic persistence in the host’s nervous system
and eventual reactivations with shedding in the respiratory
or gastrointestinal mucosa could be an effective survival and
spreading strategy for a virus. Finally, the presence of antibodies
to other coronaviruses in the cerebrospinal fluid of patients
with Parkinson’s disease and some psychiatric disorders (Fazzini
et al., 1992; Severance et al., 2009; Okusaga et al., 2011) points
to the possibility that these and similar pathologies might
be triggered by viral infections. Vagal atrophy observed in
patients with Parkinson’s disease (Walter et al., 2018), might
also be secondary to bulbar lesions caused by a coronavirus
infection. The proposed model of axonal dissemination and
vagal dysfunction could give us novel insights not only into
CoVID-19, but also into hypothesized common viral etiology
of certain neurodegenerative and psychiatric disorders and their
systemic manifestations. Therefore, we believe this idea merits
further investigation.

As a closing remark, it is important to add that most
individuals diagnosed with CoVID-19 will likely convalesce
without developing neuronal infection. Moreover, the sole

presence of proviral genomes in the brain does not imply
a definite corresponding clinical correlate. Many viruses have
already left their genetic imprints in our DNA, and thus became
a part of our evolutionary heritage, and a part of us.
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