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Abstract 

The Kirsten rat sarcoma virus transforming protein (KRAS) mutations (predominate in codons 12, 13, and 61) and 
genomically drive nearly one-third of lung carcinomas. These mutations have complex functions in tumorigenesis, 
and influence the tumor response to chemotherapy and tyrosine kinase inhibitors resulting in a poorer patient 
prognosis. Recent attempts using targeted therapies against KRAS alone have met with little success. The existence of 
specific subsets of lung cancer based on KRAS mutations and coexisting mutations are suggested. Their interactions 
need further elaboration before newer promising targeted therapies for KRAS mutant lung cancers can be used as 
earlier lines of therapy. We summarize the existing knowledge of KRAS mutations and their coexisting mutations that 
is relevant to lung cancer treatment, in this review. We elaborate on the prognostic impact of clinical and pathologic 
characteristics of lung cancer patients associated with KRAS mutations. We briefly review the currently available 
techniques for KRAS mutation detection on biopsy and cytology samples. Finally, we discuss the new therapeutic 
strategies for targeting KRAS-mutant non-small cell lung cancer (NSCLC). These may herald a new era in the treatment 
of  KRASG12Cmutated NSCLC as well as be helpful to develop demographic subsets to predict targeted therapies and 
prognosis of lung cancer patients.
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Introduction
Lung cancer is the leading cause of cancer-related deaths 
among males worldwide [1]. It accounts for 1.38 mil-
lion cancer deaths per year. It is the fifth common cause 
of cancer among females [2]. The overall 5-year survival 
rate of lung cancer remains poor in spite of numerous 
recent advances in its detection and treatment [3]. Iden-
tifying the molecular subsets of lung adenocarcinoma 
(LADC) and personalized treatment with targeted ther-
apy, is needed to improve patient prognosis and survival 
[4]. Recent studies have highlighted the need to identify 
sub-sets of co-existing mutations in the EGFR-mutated 
LADC, as these may have a major impact on prognosis 
and newer therapeutic approaches [5].

In lung adenocarcinomas, comprehensive molecular 
profiling has identified significant mutations in eight-
een genes [5], including (Table 1): (i) Oncogenes; EGFR 
(20–50%) [5, 6, 36], KRAS (33%) [7], BRAF (10%) [8], 
PI3K (7%), MET (7%) [13], RIT1 (2%), NRB1 [36],ERBB2 
[16](ii) tumour suppressor genes; TP53 (46%) [19], 
STK11(17%), KEAP1(17%), NF1(11%), SETD2(9%), 
ARID1A(7%),RB1 (4%), CDKN2A (4%), (iii) Gene 
fusions/splice site mutations causing aberrant RNA tran-
scripts: EML4-ALK [32], CD74-ROS1 [31], KIF5B-RET 
[33], NTRK [34] and NRG1fusions [35].

Patients with newly diagnosed lung adenocarcinoma 
commonly undergo sequential molecular testing (for 
EGFR, ALK, ROS1). They then undergo treatment with 
EGFR tyrosine kinase inhibitors- erlotinib, gefitinib, etc) 
and ALK/ROS1 TKIs (crizotinib, ceritinib) [37].KRAS 
mutations variably occur in LADC in western countries 
(20–25%) [38, 39] and in Asia (10–15%) [40, 41]. The 
identification of lung cancer patient subsets based on 
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KRAS mutation analysis before initiation of EGFR tar-
geted therapy needs to be done [42].

KRAS mutations predominantly occur in codon 12, 
13 in lung cancer. Codons 10, 61 and 146 are much less 
frequently mutated. The prevalence of KRAS muta-
tions in early and advanced stage LADCs is similar [7]. 
A heterogeneous spectrum of KRAS mutations; trans-
versions (80%) or transitions (20%) [43] are identified 
in lung cancer patients. Patients with transversions, 
more frequently develop adenocarcinoma while those 
with transitions more frequently have squamous cell 
carcinoma [44]. Most KRAS mutations patients are 
males (60%), current or former smokers (63% and 33%, 
respectively) with adenocarcinoma (80%) [43]. KRAS 
mutations are rarely present in small cell lung cancer 
[45, 46]. The KRAS mutated LADCs grow in a solid 
pattern with TTF1 positivity (thyroid transcription 
factor) while the mucinous adenocarcinoma histology 
lacks TTF-1 [47]. The KRAS mutations are predictive 

of (i) poor prognosis [48] (ii) resistance to EGFR-TKI 
therapy in advanced cases [49] (iii) Exclusion of the 
EGFR and the BRAF mutations [50]. Thus, emphasiz-
ing the need to evaluate for KRAS and other coexisting 
mutations before the initiation of anti-EGFR therapy 
[51] (Table 1).

Molecular heterogeneity is observed in up to one-third 
of KRAS-mutant lung cancers and defines their chemo-
therapy response, tissue spread and prognosis [52]. The 
co-occurrence of two active mutations either drives 
oncogenes to functional redundancy [53] or results in cell 
senescence or death. Smokers with lung adenocarcino-
mas have concurrent KRAS [54], TP53, STK11, KEAP1 
mutations while non-smokers with LADCs commonly 
have EGFR, TP53 mutations and/or MET alterations [5]. 
These subsets are associated with varied immune cell 
restrictions, altered angiogenesis, tumor microenviron-
ment and poor survival [7, 39, 55]: (i) TP53 co-muta-
tions activate the NF-κB pathway [56], increase IFNγ 

Table 1 Significant mutations identified by comprehensive molecular profiling in lung adenocarcinoma

Oncogenes (Chromosome Location) Mutations seen Reference

Oncogenes
EGFR (7) Common in exons 18–21, Amplifications, deletions, point mutations at T790M, 

G719X, L858 etc., Rare in exons 6, 7, 8, 12, 15, and 17
[5, 6]

KRAS (12p12.1) exon 2 and exon 3
codons 12, 13, and 61

[7]

BRAF (7q34) exon 15; glutamate substitution for valine at codon 600 (V600E) and non-
V600Emutations(activating-G469A/V, K601E, L597R) or
(inactivating- D594G, G466V)

[8–10]

PIK3CA (3q26.32) 20 hotspot regions in exon 9 and exon 20 [11, 12]

MET (7q31.2) exon 14 skipping mutations, Splice [13]

RIT1 (1q22) Exons 1–6 substitutions [14]

NRB1 (7q21.3) Neurabin 1 [15]

ERBB2/ HER2 (17q12) Amplifications, intragenic insertions [16]

HRAS (11p15.5) codons 12 and 13 [17]

NRAS (1p13.1) Mutations which change amino acid residues 12, 13 or 61 [18]

Tumour Suppressor Genes
TP53 (17p13.1) C > A transversions in the TP53 gene [19–21]

STK11 (19p13.3) high expression in the testis and fetal liver [22, 23]

KEAP-1 (19p13.2) key sensor of oxidative and electrophilic stress [24, 25]

NF1 (17) Truncation [26]

RB-1 (13q14.2) responsible for a major G1 checkpoint [27]

CDKN2A (9p21.3) Exons-1β, 1α, 2, and 3 that synthesize the proteins- p16 and p14ARF. [28]

ARID1A (1p36.11) key member of SWI/SNF chromatin-remodeling complex [29]

SETD2 (3p21.31) Loss of striatal neurons (Huntington’s disease) [30]

PTEN (10q23.31) Cowden Syndrome [31]

Fusion Oncogenes
EML4-ALK (2p23.2) Responsible for 3–5% of NSCLC [32]

CD74-ROS1 (6q22.1) Rearrangement, Fusion [31]

KIF5B-RET (10q11. 2) Fusion [33]

NTRK1/2/3-NRG1 (1q23.1) Fusion [34, 35]
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and PD-L1 expression [22] and promote an inflamed 
tumor immune microenvironment. (ii) LKB1/STK11co-
mutations result in infiltration of neutrophils, leading to 
a pro-inflammatory cytokine milieu [22, 23]. (iii) KEAP1 
mutations reduce T and B-lymphocytes infiltration [24] 
and NRF2 stabilization [24, 25]. (iv) Oncogenic MYC 
helps in immune evasion by KRAS-driven lung adeno-
carcinomas. By facilitating (a) IL-23-mediated expul-
sion of innate immune cells (T, B lymphocytes and NK 
cells), (b) CCL9-mediated macrophage recruitment and 
(c) VEGF mediated immunosuppressive microenviron-
ment [57]. (v) PI3KCA co-mutations benefit activation of 
the BRAF pathway without risk of inducing senescence 
[58–60]. These studies have suggested that targeting the 
co-mutations and their pathways could be an effective 

treatment strategy in NSCLC patients [11, 12] (Table 2, 
Fig. 1).

Previous studies using RNASeq data from The Can-
cer Genome Atlas have identified three subsets of KRAS 
mutated lung adenocarcinomas based on their dominant 
co-existing mutations. The three major subsets identi-
fied include; KL, KP and KC. These show co-occurring 
mutations in LKB1/ STK11 (KL), TP53 alterations (KP), 
CDKN2A/CDKN2B (KC). These biologically distinct 
subsets have unique intracellular signaling patterns and 
are susceptible to different therapeutic strategies [7]. 
KRAS alleles showed enrichment for KRASG12D in the 
KC subgroup. KL subsets showed enhanced sensitiv-
ity to several Hsp90 inhibitor drugs such as ganetespib 
appeared particularly effective [7] (Table 3).

Table 2 Molecular tests for KRAS detection

Method/Sensitivity (%) Genes Detected References

Sanger Sequencing (Gold Standard) (10–30%) It detects variations in Codons, including base substitutions, insertions and deletions. [61]

Whole Exome Sequencing It can identify 18 statistically significant mutated genes [36, 62]

Pyrosequencing (≤5%) It is a sensitive method to detect the mutant KRAS alleles from paraffin-embedded tissue [63]

PCR amplification with HRM analysis (10–20%) It is used as a prescreening diagnostic method to detect mutations in KRAS, BRAF, 
PIK3CA, and AKT1

[64]

Allele-specific PCR (1–5%) It uses ARMS and Scorpion probe technology to detect point mutations [65]

SNaP Shot assay It is a sensitive assay to detect mutant alleles in tumour cells (1%- 10% of total nucleated 
cells).

[66]

Fig. 1 Mechanism of targeted action of therapeutic agents against KRAS driven carcinomas (i) Direct KRAS inhibitors- targets the RAS proteins 
activation and prevents the conversion of inactive KRAS to active KRAS (ii) KRAS membrane association - impairs KRAS post-translational 
modification, lipidation and localization (iii) KRAS downstream signaling pathways- inhibit downstream effector pathways- RAF, MEK, PI3K, mTOR 
(iv) KRAS synthetic lethality- selective killing of KRAS-mutant cells through inhibition of a second protein (v) Immunotherapy- immune checkpoint 
inhibitor therapy-inhibit PD-L1 (vi) Inhibition of RAS-regulated metabolic processes- targets mutant KRAS-driven metabolic rewiring
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RAS family and downstream signaling
The RAS family of protooncogenes includes three iso-
forms; Kirsten rat sarcoma virus oncogene (KRAS) (chro-
mosome 12p12.1), Harvey rat sarcoma virus (HRAS) 
(11p15.5), Neuroblastoma Ras sarcoma virus (NRAS) 
(1p13.1) [84]. KRAS (85%) is the predominant iso-
form followed by NRAS (11%) and HRAS (4%). These 
RAS genes encode a small membrane-localized guano-
sine triphosphate (GTP)-binding protein with intrinsic 
GTPase activity. Wild-type RAS proteins exist in an inac-
tive state (GDP-bound) on the plasma membrane. They 
regulate the protein conformational change between 
active (GTP bound) and inactive states [85]. This pro-
cess is regulated by; (i) Guanine Exchange Factors (that 
promote GDP dissociation and GTP binding), (ii) GAPs-
GTPase activating proteins (that stimulate RAS GTPase 
activity). On mitogenic stimulation, the GEFs recruited 
to RAS, release GDP and form a transient nucleotide free 
state (Fig. 1). This nucleotide exchange causes conforma-
tional changes in RAS proteins (Switch 1 and Switch 2), 
which then bind to GTP, engage RAS effector proteins 
and activate RAS targets (Fig. 1).

KRAS mutations are heterogeneous in their frequency 
and spectrum in lung cancer and mainly show muta-
tions in codons-12 (89%), 13 (9%), and 61 (1%) [86]
(Fig.  2).KRAS mutations are categorized into; transi-
tions (a purine-purine, or a pyrimidine-pyrimidine sub-
stitution) and transversions (a pyrimidine-purine, or 
a purine-pyrimidine substitution) [43]. The dominant 
KRAS mutation patterns are: (i) G → T transversion, in 
the first base of codon 12(KRASG12C, 40–60%) [87]. In 
this mutation, glycine is replaced by cysteine and is asso-
ciated with tobacco smoking [37]. (ii) G → T transversion 
at the second base of codon 12 replaces glycine by valine 
 (KRASG12V, 20–22%) [87, 88]. (iii) G → A transitions 

at the second base of codons 12 and 13  (KRASG12D or 
 KRASG13D) are characterized by substitution of glycine 
with aspartate [89](16–20%) [39]. (iv) G → C transver-
sions at codon 12 with replacement of glycine to alanine, 
 (KRASG12A,7%) or glycine-arginine  (KRASG12R,2%) are 
least frequent.

Regardless of the site of mutation, RAS point muta-
tions lock the mutant RAS into the GTP-bound onco-
genic state, encoding oncoproteins, KRAS4A and 
KRAS4B [90]. Resulting in the accumulation of constitu-
tively GTP-bound RAS proteins inside the cells. KRAS4A 
expression is specifically expressed in lung epithelial cells 
while KRAS4B is ubiquitously expressed. Animals lack-
ing KRAS4A have been found to be highly resistant to 
the development of lung tumor [91]. Thereby, suggest-
ing the essential role of KRAS4A in KRAS-driven lung 
tumors and its importance in the design and develop-
ment of KRAS-targeted therapeutics [92]. These mutated 
RAS proteins bind to RAS effector proteins based on 
their unique C-terminal hypervariable region and exhibit 
specific functions [93–95]. The downstream effectors 
that have been identified include; RAF, MEK, ERK [96], 
PI3K, AKT, mTOR,Rac1small GTPase and RALGDS/
RAL signaling pathways [97, 98](Fig. 1).

Thus RAS oncogenic mutations not only contribute 
to cancer phenotype, progression and prognosis but 
are also indicative of their specific downstream sign-
aling pathways (Table  2). For eg. KRAS–G12D prefer-
entially activates AKT signaling whereas KRAS–G12C 
and G12V preferably activate RAL-A/B signaling [99]. 
RAF hyperactivation [100] causes MEK1/2 and ERK1/2 
phosphorylation and increases their expression in lung 
cancers [72]. The activated RAS-PI3K-AKT-mTOR 
pathway promotes cell survival [101] while the acti-
vated RAS-RAF-MEK-ERK promotes cell proliferation, 

Table 3 KRAS mutation directed lung cancer therapies

Mechanism of Action Examples Reference

KRAS membrane associations Farnesyltransferase inhibitors (FTIs; tipifarnib, lonafarnib, salirasib)
PDEδ inhibitors (Deltarasin)

[67–71]

Downstream effector signaling pathways Single agent therapies;
BRAF inhibitor (Sorafenib),
MEK inhibitors (Selumetinib),
mTOR inhibitor (ridafarolimus),
focal adhesion kinase inhibitor (defactinib)
Hsp90 inhibitor, ganetespib
Combination therapies;
PI3K inhibitor with MEK1/2 inhibitor (MEK162)

[7, 11, 72–76]

KRAS synthetic lethality GATA2 inhibitor, (bortezomib)
CDK-4 ablation
TBK1, STK33 and PLK1 inhibition

[77–81]

Direct targeting of KRAS Direct  KRASG12C inhibitors, (Sotorasib and adagrasib) [82]

Immunotherapywith Check point inhibitors PD-L1 inhibitor- Pembrolizumab [83]
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survival, and differentiation [102]. These pathways may 
serve as promising targets to inhibit cancer progression 
in KRAS mutant lung cancers [96].

Current molecular methods for KRAS mutation 
detection
The molecular methods of detecting oncogenic KRAS 
on clinical samples include: nucleic acid sequencing 
(Sanger/di-deoxy) [61], pyrosequencing [63], real-time 
PCR with HRManalysis (high-resolution melting) [103] 
and allele-specific PCR [104], single nucleotide probe 
extension assays (SNaPshots) [105], or shifted termi-
nation assays (STAs) [106] (Table  2). Useful screening 
methods include conformation-based separation using 
single-strand conformation polymorphism (SSCP) and 
denaturing gradient gel electrophoresis (DGGE). The 
biggest limiting factors in analysis are; small biopsy 
size, limited amount of DNA and intrinsic KRAS het-
erozygous status of tumors, (comprising of mutant and 
wild-type KRAS).

Sanger sequencing
Sanger/dideoxy DNA sequencing method is the gold 
standard to detect KRAS mutations [61] and their 

potential variations (substitutions, insertions and dele-
tions). It has a high accuracy of ~ 90% but low analyti-
cal sensitivity of ~ 85% as compared to higher sensitivity 
of other methods such as allele-specific PCR, pyrose-
quencing, and chip array hybridization (90%, 93%, and 
92%, respectively) [107]. The Sanger sequencing method 
requires at least 30%–40% of neoplastic/ non-neoplastic 
cells to detect mutations [63]. The detection of gain-of-
function mutations in KRAS oncogene is a particular 
challenge, since thetumor cells can carry one copy of 
wild-type allele and the non-neoplastic cells in tumor tis-
sue can contribute two wild type alleles.

Whole exome sequencing
Whole exome sequencing (WES) identifies the disease 
causing variations in protein coding regions of mutated 
exons in tumor DNA as compared to normal DNA [36, 
62, 108]. This method is however limited, if DNA vari-
ations are present outside the exon. In this method, 
whole exome captures and sequencing is performed by 
using 200 ng of genomic DNA for library preparation. 
The library is amplified and hybridized to biotinylated 
oligos specific for exons (baits). The captured librar-
ies are purified using streptavidin magnetic beads and 

Fig. 2 a Frequency of occurrence of KRAS mutations in exon 2- codons 12, 13, 61 b The spectrum of KRAS mutations in NSCLC, under Codon12, 
mainly occur as transversions (~ 80%) - G12C, G12V, G12A; G12R. While, transitions occur in ~ 20% cases - G12D, others
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again amplified by PCR. Normalized libraries are pooled 
and DNA sequenced using paired-end reads and multi-
plexed. The raw sequence reads are then mapped to the 
human reference genome. Previous studies have shown 
NGS sequencing to outperform allele-specific PCR, 
Sanger sequencing, and pyrosequencing [107]. WES is a 
cost-effective way of NGS. Using this method, approxi-
mately75% of patients received a therapeutic proposal 
and nearly 23.1% of patients were treated with NGS 
directed therapy. These included; PI3K/AKT/mTOR 
inhibitor therapy (27.8%), PARP inhibitors (24.1%), 
antiangiogenic therapy (21.5%), MEK inhibitor therapy 
(8.9%) and immunotherapy (6.3%) [108]. However, no dif-
ferences of progression free survival ratios were observed 
between patients treated with matched versus standard 
therapy [108]. Thus, suggesting, the need for multi-omics 
strategies comprising of circulating cell-free DNA detec-
tion, RNA and whole genome sequencing for improving 
patient outcome.

Pyrosequencing
This sensitive DNA extension sequencing assay can 
detect < 5% mutant KRAS alleles among wild-type alleles. 
It measures the release of pyrophosphate moieties dur-
ing the incorporation of a specific nucleotide into the 
synthesized DNA. By using the resulting program, the 
specific nucleic acid sequence for the target region can 
be detected [109]. Pyrosequencing provides a sensitive 
method to detect the mutant KRAS alleles from paraffin-
embedded tissue [63]. However this method is not eco-
nomical owing to expensive equipment.

PCR and HRM analysis
PCR methods and high resolution melting curve assays 
provide a cost-effective, sensitive and reliable mutation 
analysis using low amounts of DNA [110]. They can dis-
criminate between wild-type and mutant gene in DNA 
isolated from FFPE tissues. Also they can detect muta-
tions in the commonly mutated genes (KRAS, BRAF, 
PIK3CA, and AKT1) [64]. Therefore, they are highly 
applicable to large-scale genotyping. HRM utilizes fluo-
rescent probes complementary to the target amplicon. 
It is faster in contrast to Sanger sequencing [111, 112]. 
It distinguishes genetic variants by their differences in 
melting temperature needed to dissociate probe from 
target leading to the loss of fluorescence [109]. The dis-
advantages for HRM include: (i) the need for expen-
sive fluorescently labeled probes. (ii) Additional Sanger 
sequencing to identify the exact mutational status. 
(iii) Some rare homozygous mutations might not be 
detected.

Allele-specific PCR
This common laboratory method characterizes simple 
genetic variants such as point mutations. It utilizes allele-
specific PCR-based K-RAS kits, to detect mutations in 
KRAS codons 12,13 etc., (G12D, G12V, G12C, G12S, 
G12A, G12R, G13D). In this method, the targeted alleles 
are amplified by amplification refractory mutation system 
(ARMS) and amplification products are detected with 
Scorpion probes [65]. A fluorescent signal is generated 
when these probes bind to the PCR amplicon resulting in 
the separation of the quencher from the fluorophor.

SNaP shot assay
This multiplexed single nucleotide probe extension assay 
detects point mutations from very small quantity of DNA 
[113]. These include; (i) EGFR mutations- c.2573 T > G 
(L858R), c.2369C > T (T790M); (ii) KRAS mutations- 
c.34G > T (p.Gly12Cys), c.35G > T (p.Gly12Val); (iii) 
PIK3CA mutations- c.1624G > A (E542K), c.1633G > A 
(E545K); (iv) BRAF mutation- c.1799 T > A (V600E). 
The SNaPshot assay is performed using PCR primers, 
dNTPs labeled with a differential fluorescence and exten-
sion primers and products are resolved on a capillary 
sequencer. The SNaP Shot assay differs from the shifted 
termination assays (STA) that are based on primer-exten-
sion methods to detect a specific mutation. STA incorpo-
rates multiple labeled nucleotides to the detection primer 
as compared to singly labeled nucleotides incorporation 
in SNaP Shot assay [114].

Screening tests
Single‑strand conformation polymorphism (SSCP)
SSCP is a simple and sensitive assay for detection of SNP, 
based on the conformation of the single-stranded DNA 
(ssDNA). Any change in base pairs causes conformational 
change of the ssDNA and shifts DNA migration under 
non-denaturing electrophoresis conditions. The sepa-
rated-out DNA bands are then visualized by incorporat-
ing radio-isotopes/ fluorescent dyes/ capillary-based or 
silver staining [115]. SSCP analysis is used as a screening 
method to detect point mutations, small deletions and 
insertions. However, it cannot detect the precise nucleo-
tide change. For this DNA sequencing additionally needs 
to be performed [116].
Denaturing gradient gel electrophoresis (DGGE)
DGGE is another screening method. It separates the PCR 
products based on sequence differences and the DNA 
differential denaturing characteristics. In this denatur-
ing gradient gel electrophoresis, PCR products migrate 
through increasingly higher concentrations of chemi-
cal denaturant in the polyacrylamide gel. This results 
in denaturation of the weaker melting domains of the 
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double-stranded PCR product first and their separation 
[117].

KRAS mutation directed lung cancer therapy
The KRAS mutated lung cancers are driven by sustained 
KRAS expression and signaling. These cancers are com-
monly associated with resistance to therapy and poor 
prognosis [118]. They are treated with conventional 
chemotherapy unlike KRAS-wild type lung cancers, 
where molecular targeted therapy is available [86]. Pres-
ently, there is renewed interest in therapeutic strategies 
inhibiting the functional output of mutated KRAS [89, 
119] (Table  3, Fig.  1). The current approaches include, 
inhibitors of the: (i) KRAS membrane associations, 
(ii) KRAS downstream signaling pathways, (iii) KRAS 
synthetic lethality, (iv) direct targeting of KRAS, (v) 
immunotherapy and (vi) RAS-regulated metabolic pro-
cesses [119]. Of these approaches, immunotherapy with 
immune checkpoint inhibitors in KRAS-mutant NSCLC 
[83] has been considered as one of the most promising 
treatment approaches (Table 3).

KRAS membrane associations
KRAS protein requires membrane localization to become 
biologically active. Therefore, impairment of KRAS 
localization can serve as potential target for KRAS-
mutant cancers [120]. For membrane localization, the 
RAS proteins undergo post-translational modificatio-
nand lipidation by enzymatic reactions (prenylation 
by farnesyltransferase [96] or geranylgeranylation via 
GGTase-I [118]. Initial studies focused on single-
stranded DNA (ssDNA); tipifarnib, lonafarnib, salirasib 
[67, 68, 121] (Table 3). However, alternative lipidation of 
RAS proteins by GGTases [122] resulted in failure of FTI 
therapy of KRAS mutated cancers in clinical trials [123]. 
Recently, modified FTIswhich specifically react with 
the CAAX motif of KRAS, and block both its farnesyla-
tion and geranylgeranylation are being studied [124]. 
Another approach to prevent the membrane localization 
of KRAS protein is by inhibiting the phosphodiesterase 6 
delta subunit (PDEδ). Since, PDEδ acts by binding to the 
farnesylated tail of KRAS and chaperoning its membrane 
localization [125, 126]. The PDEδ inhibitors can be used 
to disrupt KRAS:PDEδ binding and disrupting the locali-
zation of KRAS in cancer cells [69–71].

KRAS downstream signaling pathways
RAF, MEK, PI3K, mTOR are some of the downstream 
effectors of KRAS signaling. Their inhibitors are used as 
single agents or as combination therapy for treatment 
of lung cancer. The single agent therapies available for 
KRAS mutated LADCs are; BRAF inhibitor (Sorafenib) 
[73], MEK inhibitors (Selumetinib) [74], mTOR inhibitor 

(ridafarolimus) [75], focal adhesion kinase inhibitor 
(defactinib) [76]. However, these have shown disappoint-
ing clinical efficacy, so far. Recently, a RAF/MEK inhibi-
tor (RO5126766) has shown to effectively reduce tumours 
in 60% of patients with a low frequency of higher grade 
adverse events [127]. The combination therapies inhibit 
two or more downstream effectors in the RAS pathway. 
They have been observed to fully block KRAS signaling 
in several phase I trials of lung cancer [11, 12, 128, 129]. 
However, their phase III validation studies are awaited or 
have shown failure. For eg. the Selumetinib and docetaxel 
combination therapy for KRAS-G12C and KRAS-G12V 
tumours [98, 130] have failed validation in phase III 
(SELECT-1) [131]. Similarly phase II trials using combi-
nation of a PI3K inhibitor (BKM120) with MEK1/2 inhib-
itor (MEK162) in patients with NSCLC, has shown little 
success [11, 72].

KRAS synthetic lethality
The KRAS synthetic lethality approach involves the 
selective killing of KRAS mutated cancer cells by inhibi-
tion of a second protein. In every case, the interactions 
between mutated KRAS and other proteins on which 
KRAS mutated cancer cells have become dependent need 
to be identified first [132]. Then these second hits can 
be therapeutically targeted resulting in selective death 
of KRAS-mutant, but not KRAS-wild-type, cells [84]. 
These include; (i) GATA2 transcription factor (protea-
some upregulator) and its inhibitor, bortezomib, which 
has shown response in KRAS-G12D lung cancers [77]. 
(ii) Cyclin-dependent kinase 4 (Cdk4) (G1 transition/
cell cycle progressor) and its inhibitor proteins,  p16INK4A, 
 p15INK4B,  p18INK4C and  p19INK4D, cause KRAS mutated 
lung cells to undergo senescence and prevent tumor 
 growth128 (iii) TANK-binding kinase 1 (TBK1), serine-
threonine kinase STK33 and polo-like kinase 1(PLK1) are 
other potential synthetic lethal therapeutic targets that 
have been identified in cell lines [79–81]. Some of these 
encode protein kinases and may be inhibited by selective 
TKIs.

KRAS direct targeting
RAS has been perceived to be “undruggable” due to its 
lack of deep pockets for binding of small molecule inhibi-
tors. However, recent studies have shown some success 
in the direct inhibition of RAS [120, 133]. This strategy 
targets the RAS proteins activation and prevents the con-
version of inactive KRAS to active KRAS. These include 
molecules that can, (i) allosterically bind to the Switch-
II pocket in GDP-RAS, adjacent to the cyteine residue 
of KRAS-G12C [134, 135]. (ii) directly bind and impair 
wild-type KRAS activation by the SOS1-GEF [136]. (ii) 
selectively recognize and inactivate specific KRAS G12C 
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amino acid substitution [137]. Their results are a major-
step forward in the development of direct  KRASG12C 
inhibitor therapy for lung cancer [133].

The Ras GTPase family inhibitor, sotorasib has 
recently been approved by US-FDA for treatment of 
KRAS mutated locally advanced or metastatic solid 
tumours (NSCLC and colorectal cancer) [138]. Simul-
taneous approval has been given to the QIAGEN 
therascreen® KRAS RGQ PCR kit (tissue) and the 
Guardant360® CDx (plasma) as companion diagnostics. 
They have recommended that the tumor tissue should 
be tested if no mutation is detected in plasma specimen. 
Previously in the clinical trial of sotorasib conducted 
by Hong et al., 2020 a confirmed objective response in 
32.2% patients and disease control (stable disease) in 
88.1% NSCLC patients [139] was observed. Adagrasib 
(MRTX849) is another novel small molecule target-
ing the  KRASG12C mutation that has shown promising 
activity [140].

However, the mechanisms of acquired resistance to 
these therapies are currently unknown. Using in  vitro 
deep mutational screening methods diverse genomic 
and histologic mechanisms imparting resistance to 
 KRASG12C inhibitors have been identified [140]. These 
acquired KRAS alterations include G12D/R/V/W, G13D, 
Q61H, R68S, H95D/Q/R, Y96C, and high-level ampli-
fication of the KRASG12C allele. Additionally, there 
exist acquired bypass mechanisms of resistance; (i) MET 
amplification, (ii) activating mutations in NRAS, BRAF, 
MAP  2 K1, and RET; (ii) oncogenic fusions involving 
ALK, RET, BRAF, RAF1, and FGFR3; (iii) and loss-of-
function mutations in NF1 and PTEN. These second-
ary KRAS mutations can cause resistance to sotorasib, 
adagrasib, or both, in  vitro and are suggestive of their 
sequential use [141]

Immunotherapy
KRAS mutant lung cancers have an immune resistant 
microenvironment. The immune resistance is caused by 
smoking that induces T-cell influx and PD-L1 expres-
sion by cancer cells and tumor infiltrating lymphocytes 
(TILs) [119]. PD-L1 positivity is seen in approximately 
60–70%TILsand in 20–55%KRAS-mutant tumor cells 
[142–144]. Therefore immune checkpoint inhibitor ther-
apy is being investigated to improve the patient outcome 
in KRAS mutant cancers [83]. Previously, Falk et  al., 
2016, have observed hypoxia to significantly increase the 
PD-L1 expression in  KRASG12C and  KRASG12D codon 
subtypes [145]. Identification of the coexisting KRAS 
mutations subtype may serve as biomarkers of resistance 
and need to be performed prior to initiation of PD-1/
PD-L1 inhibitor therapy [83].

Inhibition of RAS-regulated metabolic processes
Cancer cells harboring KRAS mutation show up-regula-
tion of rate-limiting enzymes, shift of cancer cell metab-
olism toward anabolic pathways resulting in increased 
cancer cell growth. Therefore, recent studies are focusing 
on mutant KRAS-driven metabolic rewiring, including; 
(i) upregulation of enzymes involved in amino acid, fatty 
acid or nucleotide biosynthesis. Glucose and glutamine 
metabolism,(ii) deregulation of scavenging cellular path-
ways (e.g., autophagy) [146], (iii) PPARγ and WNT/β-
catenin, pathways involved in metabolic enzymes 
changes in cancers [147, 148]. Currently, the metabolic 
dependencies of oncogenic KRAS driven lung and pan-
creatic cancers are still in their infancy and hold promise 
as therapeutic targets [149].

Conclusion
The KRAS driven lung cancers can be categorized into 
different subsets (such as KL, KP, KC, etc). This cat-
egorization is based on tumour histology, type of KRAS 
mutation (transversions/transitions) and presence of co-
existing significant mutations in nearly eighteen genes 
identified so far. KRAS mutations have heterogeneous 
spectrum in lung cancer- transversions (80%)/ transitions 
(20%). KRAS mutations correlate with histology: trans-
versions, more frequently develop adenocarcinoma while 
transitions more frequently have squamous cell carci-
noma. These biologically distinct subsets have unique 
intracellular signaling patterns and are susceptible to dif-
ferent therapeutic strategies. Thus these subsets can be 
used to predict new targeted therapeutic strategies and 
improve the prognosis of lung cancer patients.

A variety of molecular methods are now available for 
detecting oncogenic KRAS in clinical samples. These 
entail complete molecular profiling of each patient and 
identification of KRAS mutations and coexisting muta-
tions. The biggest limiting factors in analysis are; small 
biopsy size, limited amount of DNA and intrinsic KRAS 
heterozygous status of tumors.

The G → T transversion, in the first base of codon 12 
 (KRASG12C) mutation is the commonest in lung adeno-
carcinomas. Presently, there is renewed interest in ther-
apeutic strategies inhibiting the functional output of 
mutated KRAS. Direct  KRASG12C inhibitor therapy and 
immunotherapy with immune checkpoint inhibitors are 
being considered as one of the most promising treatment 
approaches. These may prove to be a step forward in per-
sonalized therapy and in improving prognosis of lung 
cancer patients.
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