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Abstract

prognosis of lung cancer patients.

The Kirsten rat sarcoma virus transforming protein (KRAS) mutations (predominate in codons 12,13, and 61) and
genomically drive nearly one-third of lung carcinomas. These mutations have complex functions in tumorigenesis,
and influence the tumor response to chemotherapy and tyrosine kinase inhibitors resulting in a poorer patient
prognosis. Recent attempts using targeted therapies against KRAS alone have met with little success. The existence of
specific subsets of lung cancer based on KRAS mutations and coexisting mutations are suggested. Their interactions
need further elaboration before newer promising targeted therapies for KRAS mutant lung cancers can be used as
earlier lines of therapy. We summarize the existing knowledge of KRAS mutations and their coexisting mutations that
is relevant to lung cancer treatment, in this review. We elaborate on the prognostic impact of clinical and pathologic
characteristics of lung cancer patients associated with KRAS mutations. We briefly review the currently available
techniques for KRAS mutation detection on biopsy and cytology samples. Finally, we discuss the new therapeutic
strategies for targeting KRAS-mutant non-small cell lung cancer (NSCLC). These may herald a new era in the treatment
of KRAS®'*“mutated NSCLC as well as be helpful to develop demographic subsets to predict targeted therapies and
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Introduction

Lung cancer is the leading cause of cancer-related deaths
among males worldwide [1]. It accounts for 1.38 mil-
lion cancer deaths per year. It is the fifth common cause
of cancer among females [2]. The overall 5-year survival
rate of lung cancer remains poor in spite of numerous
recent advances in its detection and treatment [3]. Iden-
tifying the molecular subsets of lung adenocarcinoma
(LADC) and personalized treatment with targeted ther-
apy, is needed to improve patient prognosis and survival
[4]. Recent studies have highlighted the need to identify
sub-sets of co-existing mutations in the EGFR-mutated
LADC, as these may have a major impact on prognosis
and newer therapeutic approaches [5].
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In lung adenocarcinomas, comprehensive molecular
profiling has identified significant mutations in eight-
een genes [5], including (Table 1): (i) Oncogenes; EGFR
(20-50%) [5, 6, 36], KRAS (33%) [7], BRAF (10%) [8],
PI3K (7%), MET (7%) [13], RIT1 (2%), NRB1 [36],ERBB2
[16](ii) tumour suppressor genes; TP53 (46%) [19],
STK11(17%), KEAP1(17%), NF1(11%), SETD2(9%),
ARID1A(7%),RB1 (4%), CDKN2A (4%), (iii) Gene
fusions/splice site mutations causing aberrant RNA tran-
scripts: EML4-ALK [32], CD74-ROS1 [31], KIF5B-RET
[33], NTRK [34] and NRG1fusions [35].

Patients with newly diagnosed lung adenocarcinoma
commonly undergo sequential molecular testing (for
EGFR, ALK, ROS1). They then undergo treatment with
EGER tyrosine kinase inhibitors- erlotinib, gefitinib, etc)
and ALK/ROS1 TKIs (crizotinib, ceritinib) [37]. KRAS
mutations variably occur in LADC in western countries
(20-25%) [38, 39] and in Asia (10-15%) [40, 41]. The
identification of lung cancer patient subsets based on

©The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43556-021-00061-0&domain=pdf

Ritu et al. Molecular Biomedicine Page 2 of 13
Table 1 Significant mutations identified by comprehensive molecular profiling in lung adenocarcinoma
Oncogenes (Chromosome Location) Mutations seen Reference
Oncogenes
EGFR (7) Common in exons 18-21, Amplifications, deletions, point mutations at T790M, [5, 6]
G719X, L858 etc,, Rare in exons 6, 7,8, 12, 15,and 17
KRAS (12p12.1) exon 2 and exon 3 7]
codons 12,13, and 61
BRAF (7q34) exon 15; glutamate substitution for valine at codon 600 (V60OE) and non- [8-10]
V600Emutations(activating-G469A/V, K6O1E, L597R) or
(inactivating- D594G, G466V)
PIK3CA (3926.32) 20 hotspot regions in exon 9 and exon 20 11,12
MET (7931.2) exon 14 skipping mutations, Splice [13]
RITT (1922) Exons 1-6 substitutions [14]
NRB1 (7g21.3) Neurabin 1 [15]
ERBB2/HER2 (17q12) Amplifications, intragenic insertions [16]
HRAS (11p15.5) codons 12 and 13 7
NRAS (1p13.1) Mutations which change amino acid residues 12, 13 or 61 (18]
Tumour Suppressor Genes
TP53 (17p13.1) C> A transversions in the TP53 gene [19-21]
STK11 (19p13.3) high expression in the testis and fetal liver [22,23]
KEAP-1 (19p13.2) key sensor of oxidative and electrophilic stress [24, 25]
NF1(17) Truncation [26]
RB-1(13914.2) responsible for a major G1 checkpoint [27]
CDKN2A (9p21.3) Exons-1B, 1q, 2, and 3 that synthesize the proteins- p16 and p14ARF. 28]
ARIDTA (1p36.11) key member of SWI/SNF chromatin-remodeling complex [29]
SETD2 (3p21.31) Loss of striatal neurons (Huntington'’s disease) [30]
PTEN (10923.31) Cowden Syndrome [31]
Fusion Oncogenes
EML4-ALK (2p23.2) Responsible for 3-5% of NSCLC [32]
CD74-ROST (6Gg22.1) Rearrangement, Fusion [31]
KIF5B-RET (10g11.2) Fusion (33]
NTRK1/2/3-NRG1 (1923.1) Fusion (34, 35]

KRAS mutation analysis before initiation of EGFR tar-
geted therapy needs to be done [42].

KRAS mutations predominantly occur in codon 12,
13 in lung cancer. Codons 10, 61 and 146 are much less
frequently mutated. The prevalence of KRAS muta-
tions in early and advanced stage LADCs is similar [7].
A heterogeneous spectrum of KRAS mutations; trans-
versions (80%) or transitions (20%) [43] are identified
in lung cancer patients. Patients with transversions,
more frequently develop adenocarcinoma while those
with transitions more frequently have squamous cell
carcinoma [44]. Most KRAS mutations patients are
males (60%), current or former smokers (63% and 33%,
respectively) with adenocarcinoma (80%) [43]. KRAS
mutations are rarely present in small cell lung cancer
[45, 46]. The KRAS mutated LADCs grow in a solid
pattern with TTF1 positivity (thyroid transcription
factor) while the mucinous adenocarcinoma histology
lacks TTF-1 [47]. The KRAS mutations are predictive

of (i) poor prognosis [48] (ii) resistance to EGFR-TKI
therapy in advanced cases [49] (iii) Exclusion of the
EGFR and the BRAF mutations [50]. Thus, emphasiz-
ing the need to evaluate for KRAS and other coexisting
mutations before the initiation of anti-EGFR therapy
[51] (Table 1).

Molecular heterogeneity is observed in up to one-third
of KRAS-mutant lung cancers and defines their chemo-
therapy response, tissue spread and prognosis [52]. The
co-occurrence of two active mutations either drives
oncogenes to functional redundancy [53] or results in cell
senescence or death. Smokers with lung adenocarcino-
mas have concurrent KRAS [54], TP53, STK11, KEAP1
mutations while non-smokers with LADCs commonly
have EGFR, TP53 mutations and/or MET alterations [5].
These subsets are associated with varied immune cell
restrictions, altered angiogenesis, tumor microenviron-
ment and poor survival [7, 39, 55]: (i) TP53 co-muta-
tions activate the NF-kB pathway [56], increase IFNy
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and PD-L1 expression [22] and promote an inflamed
tumor immune microenvironment. (ii) LKB1/STK11co-
mutations result in infiltration of neutrophils, leading to
a pro-inflammatory cytokine milieu [22, 23]. (iii) KEAP1
mutations reduce T and B-lymphocytes infiltration [24]
and NRF2 stabilization [24, 25]. (iv) Oncogenic MYC
helps in immune evasion by KRAS-driven lung adeno-
carcinomas. By facilitating (a) IL-23-mediated expul-
sion of innate immune cells (T, B lymphocytes and NK
cells), (b) CCL9-mediated macrophage recruitment and
(c) VEGF mediated immunosuppressive microenviron-
ment [57]. (v) PI3BKCA co-mutations benefit activation of
the BRAF pathway without risk of inducing senescence
[58-60]. These studies have suggested that targeting the
co-mutations and their pathways could be an effective

Table 2 Molecular tests for KRAS detection
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treatment strategy in NSCLC patients [11, 12] (Table 2,
Fig. 1).

Previous studies using RNASeq data from The Can-
cer Genome Atlas have identified three subsets of KRAS
mutated lung adenocarcinomas based on their dominant
co-existing mutations. The three major subsets identi-
fied include; KL, KP and KC. These show co-occurring
mutations in LKB1/ STK11 (KL), TP53 alterations (KP),
CDKN2A/CDKN2B (KC). These biologically distinct
subsets have unique intracellular signaling patterns and
are susceptible to different therapeutic strategies [7].
KRAS alleles showed enrichment for KRASG12D in the
KC subgroup. KL subsets showed enhanced sensitiv-
ity to several Hsp90 inhibitor drugs such as ganetespib
appeared particularly effective [7] (Table 3).

Method/Sensitivity (%) Genes Detected References
Sanger Sequencing (Gold Standard) (10-30%) It detects variations in Codons, including base substitutions, insertions and deletions. [61]
Whole Exome Sequencing It can identify 18 statistically significant mutated genes [36,62]
Pyrosequencing (<5%) Itis a sensitive method to detect the mutant KRAS alleles from paraffin-embedded tissue  [63]
PCR amplification with HRM analysis (10-20%) It is used as a prescreening diagnostic method to detect mutations in KRAS, BRAF, [64]
PIK3CA, and AKT1
Allele-specific PCR (1-5%) [t uses ARMS and Scorpion probe technology to detect point mutations [65]
SNaP Shot assay Itis a sensitive assay to detect mutant alleles in tumour cells (1%- 10% of total nucleated  [66]
cells).
(iv) Synthetic Cancer Cell
lethality : i
— KRAS GTP
GATA-2 .
Guanine Nucleatlde o
HSP-90 nucleotide free [ .(I) Direct KRA
inhibitors
exchange .
factors (GEFs (ii) Membrane
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OFF GDP on inhibitors
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Fig. 1 Mechanism of targeted action of therapeutic agents against KRAS driven carcinomas (i) Direct KRAS inhibitors- targets the RAS proteins
activation and prevents the conversion of inactive KRAS to active KRAS (i) KRAS membrane association - impairs KRAS post-translational
modification, lipidation and localization (iii) KRAS downstream signaling pathways- inhibit downstream effector pathways- RAF, MEK, PI3K, mTOR
(iv) KRAS synthetic lethality- selective killing of KRAS-mutant cells through inhibition of a second protein (v) Immunotherapy- immune checkpoint
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RAS family and downstream signaling

The RAS family of protooncogenes includes three iso-
forms; Kirsten rat sarcoma virus oncogene (KRAS) (chro-
mosome 12p12.1), Harvey rat sarcoma virus (HRAS)
(11p15.5), Neuroblastoma Ras sarcoma virus (NRAS)
(1p13.1) [84]. KRAS (85%) is the predominant iso-
form followed by NRAS (11%) and HRAS (4%). These
RAS genes encode a small membrane-localized guano-
sine triphosphate (GTP)-binding protein with intrinsic
GTPase activity. Wild-type RAS proteins exist in an inac-
tive state (GDP-bound) on the plasma membrane. They
regulate the protein conformational change between
active (GTP bound) and inactive states [85]. This pro-
cess is regulated by; (i) Guanine Exchange Factors (that
promote GDP dissociation and GTP binding), (ii) GAPs-
GTPase activating proteins (that stimulate RAS GTPase
activity). On mitogenic stimulation, the GEFs recruited
to RAS, release GDP and form a transient nucleotide free
state (Fig. 1). This nucleotide exchange causes conforma-
tional changes in RAS proteins (Switch 1 and Switch 2),
which then bind to GTP, engage RAS effector proteins
and activate RAS targets (Fig. 1).

KRAS mutations are heterogeneous in their frequency
and spectrum in lung cancer and mainly show muta-
tions in codons-12 (89%), 13 (9%), and 61 (1%) [86]
(Fig. 2).KRAS mutations are categorized into; transi-
tions (a purine-purine, or a pyrimidine-pyrimidine sub-
stitution) and transversions (a pyrimidine-purine, or
a purine-pyrimidine substitution) [43]. The dominant
KRAS mutation patterns are: (i) G— T transversion, in
the first base of codon 12(KRAS®'?C, 40-60%) [87]. In
this mutation, glycine is replaced by cysteine and is asso-
ciated with tobacco smoking [37]. (ii) G — T transversion
at the second base of codon 12 replaces glycine by valine
(KRASS'?Y, 20-22%) [87, 88]. (il)) G— A transitions

Table 3 KRAS mutation directed lung cancer therapies
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at the second base of codons 12 and 13 (KRASS'?P or
KRASSP) are characterized by substitution of glycine
with aspartate [89](16-20%) [39]. (iv) G— C transver-
sions at codon 12 with replacement of glycine to alanine,
(KRASC?A7%) or glycine-arginine (KRASCR 29%) are
least frequent.

Regardless of the site of mutation, RAS point muta-
tions lock the mutant RAS into the GTP-bound onco-
genic state, encoding oncoproteins, KRAS4A and
KRAS4B [90]. Resulting in the accumulation of constitu-
tively GTP-bound RAS proteins inside the cells. KRAS4A
expression is specifically expressed in lung epithelial cells
while KRAS4B is ubiquitously expressed. Animals lack-
ing KRAS4A have been found to be highly resistant to
the development of lung tumor [91]. Thereby, suggest-
ing the essential role of KRAS4A in KRAS-driven lung
tumors and its importance in the design and develop-
ment of KRAS-targeted therapeutics [92]. These mutated
RAS proteins bind to RAS effector proteins based on
their unique C-terminal hypervariable region and exhibit
specific functions [93-95]. The downstream effectors
that have been identified include; RAF, MEK, ERK [96],
PI3K, AKT, mTOR,Raclsmall GTPase and RALGDS/
RAL signaling pathways [97, 98](Fig. 1).

Thus RAS oncogenic mutations not only contribute
to cancer phenotype, progression and prognosis but
are also indicative of their specific downstream sign-
aling pathways (Table 2). For eg. KRAS-G12D prefer-
entially activates AKT signaling whereas KRAS-G12C
and G12V preferably activate RAL-A/B signaling [99].
RAF hyperactivation [100] causes MEK1/2 and ERK1/2
phosphorylation and increases their expression in lung
cancers [72]. The activated RAS-PI3K-AKT-mTOR
pathway promotes cell survival [101] while the acti-
vated RAS-RAF-MEK-ERK promotes cell proliferation,

Mechanism of Action Examples

Reference

KRAS membrane associations

Farnesyltransferase inhibitors (FTls; tipifarnib, lonafarnib, salirasib)

[67-71]

PDES inhibitors (Deltarasin)

Downstream effector signaling pathways

Single agent therapies;

[7,11,72-76]

BRAF inhibitor (Sorafenib),

MEK inhibitors (Selumetinib),

mTOR inhibitor (ridafarolimus),

focal adhesion kinase inhibitor (defactinib)
Hsp90 inhibitor, ganetespib

Combination therapies;

PI3K inhibitor with MEK1/2 inhibitor (MEK162)

KRAS synthetic lethality

GATA2 inhibitor, (bortezomib)

CDK-4 ablation
TBK1, STK33 and PLK1 inhibition

Direct targeting of KRAS
Immunotherapywith Check point inhibitors

Direct KRAS®'?C inhibitors, (Sotorasib and adagrasib)
PD-L1 inhibitor- Pembrolizumab
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Fig. 2 a Frequency of occurrence of KRAS mutations in exon 2- codons 12, 13,61 b The spectrum of KRAS mutations in NSCLC, under Codon12,
mainly occur as transversions (~80%) - G12C, G12V, G12A; G12R. While, transitions occur in ~20% cases - G12D, others
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survival, and differentiation [102]. These pathways may
serve as promising targets to inhibit cancer progression
in KRAS mutant lung cancers [96].

Current molecular methods for KRAS mutation
detection

The molecular methods of detecting oncogenic KRAS
on clinical samples include: nucleic acid sequencing
(Sanger/di-deoxy) [61], pyrosequencing [63], real-time
PCR with HRManalysis (high-resolution melting) [103]
and allele-specific PCR [104], single nucleotide probe
extension assays (SNaPshots) [105], or shifted termi-
nation assays (STAs) [106] (Table 2). Useful screening
methods include conformation-based separation using
single-strand conformation polymorphism (SSCP) and
denaturing gradient gel electrophoresis (DGGE). The
biggest limiting factors in analysis are; small biopsy
size, limited amount of DNA and intrinsic KRAS het-
erozygous status of tumors, (comprising of mutant and
wild-type KRAS).

Sanger sequencing
Sanger/dideoxy DNA sequencing method is the gold
standard to detect KRAS mutations [61] and their

potential variations (substitutions, insertions and dele-
tions). It has a high accuracy of ~90% but low analyti-
cal sensitivity of ~85% as compared to higher sensitivity
of other methods such as allele-specific PCR, pyrose-
quencing, and chip array hybridization (90%, 93%, and
92%, respectively) [107]. The Sanger sequencing method
requires at least 30%—40% of neoplastic/ non-neoplastic
cells to detect mutations [63]. The detection of gain-of-
function mutations in KRAS oncogene is a particular
challenge, since thetumor cells can carry one copy of
wild-type allele and the non-neoplastic cells in tumor tis-
sue can contribute two wild type alleles.

Whole exome sequencing

Whole exome sequencing (WES) identifies the disease
causing variations in protein coding regions of mutated
exons in tumor DNA as compared to normal DNA [36,
62, 108]. This method is however limited, if DNA vari-
ations are present outside the exon. In this method,
whole exome captures and sequencing is performed by
using 200ng of genomic DNA for library preparation.
The library is amplified and hybridized to biotinylated
oligos specific for exons (baits). The captured librar-
ies are purified using streptavidin magnetic beads and
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again amplified by PCR. Normalized libraries are pooled
and DNA sequenced using paired-end reads and multi-
plexed. The raw sequence reads are then mapped to the
human reference genome. Previous studies have shown
NGS sequencing to outperform allele-specific PCR,
Sanger sequencing, and pyrosequencing [107]. WES is a
cost-effective way of NGS. Using this method, approxi-
mately75% of patients received a therapeutic proposal
and nearly 23.1% of patients were treated with NGS
directed therapy. These included; PI3K/AKT/mTOR
inhibitor therapy (27.8%), PARP inhibitors (24.1%),
antiangiogenic therapy (21.5%), MEK inhibitor therapy
(8.9%) and immunotherapy (6.3%) [108]. However, no dif-
ferences of progression free survival ratios were observed
between patients treated with matched versus standard
therapy [108]. Thus, suggesting, the need for multi-omics
strategies comprising of circulating cell-free DNA detec-
tion, RNA and whole genome sequencing for improving
patient outcome.

Pyrosequencing

This sensitive DNA extension sequencing assay can
detect <5% mutant KRAS alleles among wild-type alleles.
It measures the release of pyrophosphate moieties dur-
ing the incorporation of a specific nucleotide into the
synthesized DNA. By using the resulting program, the
specific nucleic acid sequence for the target region can
be detected [109]. Pyrosequencing provides a sensitive
method to detect the mutant KRAS alleles from paraffin-
embedded tissue [63]. However this method is not eco-
nomical owing to expensive equipment.

PCR and HRM analysis

PCR methods and high resolution melting curve assays
provide a cost-effective, sensitive and reliable mutation
analysis using low amounts of DNA [110]. They can dis-
criminate between wild-type and mutant gene in DNA
isolated from FFPE tissues. Also they can detect muta-
tions in the commonly mutated genes (KRAS, BRAF,
PIK3CA, and AKT1) [64]. Therefore, they are highly
applicable to large-scale genotyping. HRM utilizes fluo-
rescent probes complementary to the target amplicon.
It is faster in contrast to Sanger sequencing [111, 112].
It distinguishes genetic variants by their differences in
melting temperature needed to dissociate probe from
target leading to the loss of fluorescence [109]. The dis-
advantages for HRM include: (i) the need for expen-
sive fluorescently labeled probes. (ii) Additional Sanger
sequencing to identify the exact mutational status.
(iii) Some rare homozygous mutations might not be
detected.
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Allele-specific PCR

This common laboratory method characterizes simple
genetic variants such as point mutations. It utilizes allele-
specific PCR-based K-RAS kits, to detect mutations in
KRAS codons 12,13 etc., (G12D, G12V, G12C, G12S,
G12A, G12R, G13D). In this method, the targeted alleles
are amplified by amplification refractory mutation system
(ARMS) and amplification products are detected with
Scorpion probes [65]. A fluorescent signal is generated
when these probes bind to the PCR amplicon resulting in
the separation of the quencher from the fluorophor.

SNaP shot assay

This multiplexed single nucleotide probe extension assay
detects point mutations from very small quantity of DNA
[113]. These include; (i) EGFR mutations- ¢.2573T>G
(L858R), ¢.2369C>T (T790M); (ii) KRAS mutations-
¢.34G>T (p.Glyl2Cys), ¢.35G>T (p.Glyl2Val); (iii)
PIK3CA mutations- ¢.1624G>A (E542K), c.1633G>A
(E545K); (iv) BRAF mutation- ¢.1799T>A (V600E).
The SNaPshot assay is performed using PCR primers,
dNTPs labeled with a differential fluorescence and exten-
sion primers and products are resolved on a capillary
sequencer. The SNaP Shot assay differs from the shifted
termination assays (STA) that are based on primer-exten-
sion methods to detect a specific mutation. STA incorpo-
rates multiple labeled nucleotides to the detection primer
as compared to singly labeled nucleotides incorporation
in SNaP Shot assay [114].

Screening tests

Single-strand conformation polymorphism (SSCP)

SSCP is a simple and sensitive assay for detection of SNP,
based on the conformation of the single-stranded DNA
(ssDNA). Any change in base pairs causes conformational
change of the ssDNA and shifts DNA migration under
non-denaturing electrophoresis conditions. The sepa-
rated-out DNA bands are then visualized by incorporat-
ing radio-isotopes/ fluorescent dyes/ capillary-based or
silver staining [115]. SSCP analysis is used as a screening
method to detect point mutations, small deletions and
insertions. However, it cannot detect the precise nucleo-
tide change. For this DNA sequencing additionally needs
to be performed [116].

Denaturing gradient gel electrophoresis (DGGE)

DGGE is another screening method. It separates the PCR
products based on sequence differences and the DNA
differential denaturing characteristics. In this denatur-
ing gradient gel electrophoresis, PCR products migrate
through increasingly higher concentrations of chemi-
cal denaturant in the polyacrylamide gel. This results
in denaturation of the weaker melting domains of the
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double-stranded PCR product first and their separation
[117].

KRAS mutation directed lung cancer therapy

The KRAS mutated lung cancers are driven by sustained
KRAS expression and signaling. These cancers are com-
monly associated with resistance to therapy and poor
prognosis [118]. They are treated with conventional
chemotherapy unlike KRAS-wild type lung cancers,
where molecular targeted therapy is available [86]. Pres-
ently, there is renewed interest in therapeutic strategies
inhibiting the functional output of mutated KRAS [89,
119] (Table 3, Fig. 1). The current approaches include,
inhibitors of the: (i) KRAS membrane associations,
(i) KRAS downstream signaling pathways, (iii) KRAS
synthetic lethality, (iv) direct targeting of KRAS, (v)
immunotherapy and (vi) RAS-regulated metabolic pro-
cesses [119]. Of these approaches, immunotherapy with
immune checkpoint inhibitors in KRAS-mutant NSCLC
[83] has been considered as one of the most promising
treatment approaches (Table 3).

KRAS membrane associations

KRAS protein requires membrane localization to become
biologically active. Therefore, impairment of KRAS
localization can serve as potential target for KRAS-
mutant cancers [120]. For membrane localization, the
RAS proteins undergo post-translational modificatio-
nand lipidation by enzymatic reactions (prenylation
by farnesyltransferase [96] or geranylgeranylation via
GGTase-I [118]. Initial studies focused on single-
stranded DNA (ssDNA); tipifarnib, lonafarnib, salirasib
[67, 68, 121] (Table 3). However, alternative lipidation of
RAS proteins by GGTases [122] resulted in failure of FTI
therapy of KRAS mutated cancers in clinical trials [123].
Recently, modified FTIswhich specifically react with
the CAAX motif of KRAS, and block both its farnesyla-
tion and geranylgeranylation are being studied [124].
Another approach to prevent the membrane localization
of KRAS protein is by inhibiting the phosphodiesterase 6
delta subunit (PDES). Since, PDES acts by binding to the
farnesylated tail of KRAS and chaperoning its membrane
localization [125, 126]. The PDES inhibitors can be used
to disrupt KRAS:PDES binding and disrupting the locali-
zation of KRAS in cancer cells [69-71].

KRAS downstream signaling pathways

RAF, MEK, PI3K, mTOR are some of the downstream
effectors of KRAS signaling. Their inhibitors are used as
single agents or as combination therapy for treatment
of lung cancer. The single agent therapies available for
KRAS mutated LADCs are; BRAF inhibitor (Sorafenib)
[73], MEK inhibitors (Selumetinib) [74], mTOR inhibitor
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(ridafarolimus) [75], focal adhesion kinase inhibitor
(defactinib) [76]. However, these have shown disappoint-
ing clinical efficacy, so far. Recently, a RAF/MEK inhibi-
tor (RO5126766) has shown to effectively reduce tumours
in 60% of patients with a low frequency of higher grade
adverse events [127]. The combination therapies inhibit
two or more downstream effectors in the RAS pathway.
They have been observed to fully block KRAS signaling
in several phase I trials of lung cancer [11, 12, 128, 129].
However, their phase III validation studies are awaited or
have shown failure. For eg. the Selumetinib and docetaxel
combination therapy for KRAS-G12C and KRAS-G12V
tumours [98, 130] have failed validation in phase III
(SELECT-1) [131]. Similarly phase II trials using combi-
nation of a PI3K inhibitor (BKM120) with MEK1/2 inhib-
itor (MEK162) in patients with NSCLC, has shown little
success [11, 72].

KRAS synthetic lethality

The KRAS synthetic lethality approach involves the
selective killing of KRAS mutated cancer cells by inhibi-
tion of a second protein. In every case, the interactions
between mutated KRAS and other proteins on which
KRAS mutated cancer cells have become dependent need
to be identified first [132]. Then these second hits can
be therapeutically targeted resulting in selective death
of KRAS-mutant, but not KRAS-wild-type, cells [84].
These include; (i) GATA2 transcription factor (protea-
some upregulator) and its inhibitor, bortezomib, which
has shown response in KRAS-G12D lung cancers [77].
(ii) Cyclin-dependent kinase 4 (Cdk4) (G1 transition/
cell cycle progressor) and its inhibitor proteins, p16™ 44,
p15™NKIB | 518INKIC and p19™NK4D| cause KRAS mutated
lung cells to undergo senescence and prevent tumor
growth'?® (iiij) TANK-binding kinase 1 (TBK1), serine-
threonine kinase STK33 and polo-like kinase 1(PLK1) are
other potential synthetic lethal therapeutic targets that
have been identified in cell lines [79-81]. Some of these
encode protein kinases and may be inhibited by selective
TKIs.

KRAS direct targeting

RAS has been perceived to be “undruggable” due to its
lack of deep pockets for binding of small molecule inhibi-
tors. However, recent studies have shown some success
in the direct inhibition of RAS [120, 133]. This strategy
targets the RAS proteins activation and prevents the con-
version of inactive KRAS to active KRAS. These include
molecules that can, (i) allosterically bind to the Switch-
II pocket in GDP-RAS, adjacent to the cyteine residue
of KRAS-G12C [134, 135]. (ii) directly bind and impair
wild-type KRAS activation by the SOS1-GEF [136]. (ii)
selectively recognize and inactivate specific KRAS G12C
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amino acid substitution [137]. Their results are a major-
step forward in the development of direct KRASS!2C
inhibitor therapy for lung cancer [133].

The Ras GTPase family inhibitor, sotorasib has
recently been approved by US-FDA for treatment of
KRAS mutated locally advanced or metastatic solid
tumours (NSCLC and colorectal cancer) [138]. Simul-
taneous approval has been given to the QIAGEN
therascreen® KRAS RGQ PCR kit (tissue) and the
Guardant360® CDx (plasma) as companion diagnostics.
They have recommended that the tumor tissue should
be tested if no mutation is detected in plasma specimen.
Previously in the clinical trial of sotorasib conducted
by Hong et al.,, 2020 a confirmed objective response in
32.2% patients and disease control (stable disease) in
88.1% NSCLC patients [139] was observed. Adagrasib
(MRTX849) is another novel small molecule target-
ing the KRASS!2C mutation that has shown promising
activity [140].

However, the mechanisms of acquired resistance to
these therapies are currently unknown. Using in vitro
deep mutational screening methods diverse genomic
and histologic mechanisms imparting resistance to
KRASCC inhibitors have been identified [140]. These
acquired KRAS alterations include G12D/R/V/W, G13D,
Q61H, R68S, HI5D/Q/R, Y96C, and high-level ampli-
fication of the KRASG12C allele. Additionally, there
exist acquired bypass mechanisms of resistance; (i) MET
amplification, (ii) activating mutations in NRAS, BRAF,
MAP 2K1, and RET; (ii) oncogenic fusions involving
ALK, RET, BRAF, RAF1, and FGFR3; (iii) and loss-of-
function mutations in NF1 and PTEN. These second-
ary KRAS mutations can cause resistance to sotorasib,
adagrasib, or both, in vitro and are suggestive of their
sequential use [141]

Immunotherapy

KRAS mutant lung cancers have an immune resistant
microenvironment. The immune resistance is caused by
smoking that induces T-cell influx and PD-L1 expres-
sion by cancer cells and tumor infiltrating lymphocytes
(TILs) [119]. PD-L1 positivity is seen in approximately
60-70%TILsand in 20-55%KRAS-mutant tumor cells
[142-144]. Therefore immune checkpoint inhibitor ther-
apy is being investigated to improve the patient outcome
in KRAS mutant cancers [83]. Previously, Falk et al.,
2016, have observed hypoxia to significantly increase the
PD-L1 expression in KRASS?C and KRASS!?P codon
subtypes [145]. Identification of the coexisting KRAS
mutations subtype may serve as biomarkers of resistance
and need to be performed prior to initiation of PD-1/
PD-L1 inhibitor therapy [83].
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Inhibition of RAS-regulated metabolic processes

Cancer cells harboring KRAS mutation show up-regula-
tion of rate-limiting enzymes, shift of cancer cell metab-
olism toward anabolic pathways resulting in increased
cancer cell growth. Therefore, recent studies are focusing
on mutant KRAS-driven metabolic rewiring, including;
(i) upregulation of enzymes involved in amino acid, fatty
acid or nucleotide biosynthesis. Glucose and glutamine
metabolism,(ii) deregulation of scavenging cellular path-
ways (e.g., autophagy) [146], (iii) PPARy and WNT/B-
catenin, pathways involved in metabolic enzymes
changes in cancers [147, 148]. Currently, the metabolic
dependencies of oncogenic KRAS driven lung and pan-
creatic cancers are still in their infancy and hold promise
as therapeutic targets [149].

Conclusion

The KRAS driven lung cancers can be categorized into
different subsets (such as KL, KP, KC, etc). This cat-
egorization is based on tumour histology, type of KRAS
mutation (transversions/transitions) and presence of co-
existing significant mutations in nearly eighteen genes
identified so far. KRAS mutations have heterogeneous
spectrum in lung cancer- transversions (80%)/ transitions
(20%). KRAS mutations correlate with histology: trans-
versions, more frequently develop adenocarcinoma while
transitions more frequently have squamous cell carci-
noma. These biologically distinct subsets have unique
intracellular signaling patterns and are susceptible to dif-
ferent therapeutic strategies. Thus these subsets can be
used to predict new targeted therapeutic strategies and
improve the prognosis of lung cancer patients.

A variety of molecular methods are now available for
detecting oncogenic KRAS in clinical samples. These
entail complete molecular profiling of each patient and
identification of KRAS mutations and coexisting muta-
tions. The biggest limiting factors in analysis are; small
biopsy size, limited amount of DNA and intrinsic KRAS
heterozygous status of tumors.

The G— T transversion, in the first base of codon 12
(KRASS2C) mutation is the commonest in lung adeno-
carcinomas. Presently, there is renewed interest in ther-
apeutic strategies inhibiting the functional output of
mutated KRAS. Direct KRASS?C inhibitor therapy and
immunotherapy with immune checkpoint inhibitors are
being considered as one of the most promising treatment
approaches. These may prove to be a step forward in per-
sonalized therapy and in improving prognosis of lung
cancer patients.
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