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Abstract: Tracer development for positron emission tomography (PET) requires thorough evaluation
of pharmacokinetics, metabolism, and dosimetry of candidate radioligands in preclinical animal stud-
ies. Since variations in pharmacokinetics and metabolism of a compound occur in different species,
careful selection of a suitable model species is mandatory to obtain valid data. This study focuses on
species differences in the in vitro metabolism of three xanthine-derived ligands for the A1 adenosine
receptor (A1AR), which, in their 18F-labeled form, can be used to image A1AR via PET. In vitro
intrinsic clearance and metabolite profiles of 8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine
(CPFPX), an established A1AR-ligand, and two novel analogs, 8-cyclobutyl-3-(3-fluoropropyl)-1-
propylxanthine (CBX) and 3-(3-fluoropropyl)-8-(1-methylcyclobutyl)-1-propylxanthine (MCBX), were
determined in liver microsomes from humans and preclinical animal species. Molecular mechanisms
leading to significant differences between human and animal metabolite profiles were also examined.
The results revealed significant species differences regarding qualitative and quantitative aspects
of microsomal metabolism. None of the tested animal species fully matched human microsomal
metabolism of the three A1AR ligands. In conclusion, preclinical evaluation of xanthine-derived
A1AR ligands should employ at least two animal species, preferably rodent and dog, to predict
in vivo behavior in humans. Surprisingly, rhesus macaques appear unsuitable due to large differences
in metabolic activity towards the test compounds.

Keywords: A1 adenosine receptor; liver microsomes; metabolism; radioligand; species differences;
preclinical evaluation

1. Introduction

The development of novel radioligands for imaging molecular targets via positron
emission tomography (PET) is a time-consuming and costly endeavor. In particular, assess-
ment of imaging characteristics and safety of a candidate compound requires extensive
preclinical investigations prior to initial clinical trials. Pharmacokinetics and metabolism
are important determinants of the in vivo properties of a novel imaging agent [1]. Radioli-
gand metabolism can lead to radioactive metabolites that impede reliable quantification of
the molecular target. Rapid blood clearance of the radioligand may limit target exposure,
but on the other hand can enhance the signal-to-background ratio by reducing the amount
of radioactivity present in the vascular system [2]. Metabolism also plays a critical role
with regard to the safety of radiopharmaceuticals, as it strongly influences the radiation
doses received by individual organs and tissues of the test subjects or patients [3]. Since
most PET radioligands are small lipophilic molecules, metabolism is crucial for the excre-
tion of these compounds from the body and largely determines their biological half-lives.
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On these grounds, metabolism studies are indispensable prerequisites for the selection
and optimization of radioligand candidates. As with conventional drugs, radioligand
metabolism is typically evaluated using in vitro systems and preclinical animal models.
Since inter-species differences in the metabolism of a compound can be significant, careful
selection of the appropriate species for preclinical studies is essential to obtain data that
can be extrapolated to human metabolism.

The xanthine-derived radioligand 3-(3-[18F]fluoropropyl)-1-propylxanthine ([18F]CPF
PX, structural formula given in Table 1) is an established radiotracer for PET imaging of
A1 adenosine receptors (A1AR) [4,5]. [18F]CPFPX is rapidly metabolized in humans and
rodents, as reflected in a fast decline of plasma concentrations and formation of numerous
radiometabolites [6]. One of these metabolites, a difunctionalized oxo-desaturation product
(“enone metabolite”; structural formula given in Table 1), has been identified as problematic
for PET imaging due to its slow excretion from the body. Although this metabolite does not
penetrate the blood–brain barrier, its accumulation in the vascular compartment leads to
increased background noise and radiation exposure. For these reasons, continuous efforts
have been made to develop [18F]CPFPX analogs with higher metabolic stability producing
no radiometabolites with long biological half-lives [7].

Table 1. Structural formulae of the ligands and metabolites used in this study. All compounds were synthesized and
characterized in-house.

Numbering Structural Formula Name, Molecular Weight (MW)

1
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Table 1. Cont.

Numbering Structural Formula Name, Molecular Weight (MW)
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Early [18F]CPFPX in vitro studies using human and rodent hepatic microsomes re-
vealed that human biotransformation of the radioligand differs from rodent biotransfor-
mation with regard to the aforementioned enone radiometabolite [6]. More specifically,
there was extensive formation of the metabolite in human microsomes, whereas almost
no significant amounts could be detected in microsomes from rats and mice. However,
plasma analyses of rats and mice that received [18F]CPFPX injections clearly showed that
the enone metabolite is generated in vivo, raising questions regarding the validity of the
in vitro model and its suitability for evaluation of this compound class.

The objectives of the present study were two-fold: first, to elucidate the mechanisms
underlying the distinct in vitro and in vivo metabolite profiles of CPFPX observed in
rodents but not humans; second, to investigate species differences in the metabolism
of CPFPX and two novel cyclobutyl analogs, namely 8-cyclobutyl-3-(3-fluoropropyl)-1-
propylxanthine (CBX, see Table 1) and 3-(3-fluoropropyl)-8-(1-methylcyclobutyl)-1-propylx
anthine (MCBX, see Table 1), in hepatic microsomes from humans and commonly used
preclinical animal species with the aim to identify suitable animal models for evaluation of
xanthine-derived A1AR radioligands.

2. Results
2.1. In Vitro Intrinsic Clearance

In vitro intrinsic clearance (CLint) of CBX, MCBX, and CPFPX was determined using
human, rat, mouse, dog, mini pig, and rhesus monkey liver microsomes (Figure 1). Mean
CLint values for the compounds varied widely across species. Highest metabolic activity
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was observed in rhesus microsomes, with up to 134-fold higher CLint values (CPFPX)
than in human microscomes. The metabolic activities of mini pig and dog microsomes
were roughly comparable to each other, as were those of rat and mouse microsomes. The
rank order of CLint was CPFPX > MCBX > CBX in microsomes from rat, mouse, mini pig,
and rhesus; CPFPX > MCBX ≈ CBX in dog microsomes; and CBX > CPFPX > MCBX in
human microsomes.
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Figure 1. Comparison of CBX, MCBX, and CPFPX intrinsic clearance in liver microsomes from various species. Data
represent the mean ± SD of four independent experiments.

2.2. Metabolite Profiles

The metabolite profiles of CBX, MCBX, and CPFPX generated by human, rat, mouse,
dog, mini pig, and rhesus monkey liver microsomes are compared in Figures 2–4. Metabo-
lites were distinguished from matrix components by comparison with blank samples
and by mass spectrometric analysis. Whenever possible, peak identities (type and site of
functionalization) were derived from the mass spectra. For interpretation of the in-source
fragmentation patterns observed at a cone voltage of 185 V, experiences gained during
previous LCMS studies were taken into account [6,8]. Plausible fragmentation routes are
shown in Figure 5. The assigned metabolites are listed in Tables 2–4, together with their
functionalization. Monohydroxylation represented the main route of biotransformation for
all three compounds. Functionalization predominantly occurred at the cyclic C8-moiety, as
revealed by the in-source fragmentation patterns.
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Figure 2. Metabolite profiles of CBX generated in liver microsomes from humans and different animal species. Detection
wavelength was 275 nm. In the chromatograms, only metabolite peaks accounting for at least 10% of the total metabolite
peak area are labeled. A comprehensive list of the detected metabolites can be found in Table 2.
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Figure 3. Metabolite profiles of MCBX generated in liver microsomes from humans and different animal species. Detection
wavelength was 275 nm. In the chromatograms, only metabolite peaks accounting for at least 10% of the total metabolite
peak area are labeled. A comprehensive list of the detected metabolites can be found in Table 3.
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Figure 4. Metabolite profiles of CPFPX generated in liver microsomes from humans and different animal species. Detection
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peak area are labeled. A comprehensive list of the detected metabolites can be found in Table 4.
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thine compounds.

Table 2. Metabolites of CBX generated in liver microsomes from various species.

Peak Retention Time
(min) Retention Factor Functionalization Site of Function-

alization
Interpretation of

Fragments 1 Species

A1 4.8 0.9 “–OH” R b, c, e, f: + OH − H h, r, m, d, mp, rh
A2 5.3 1.1 n.s. n.s. n.s. (h), r, (m), mp, rh

A3 2 5.6 1.2

“=”: “–OH” 3

human 1: 0.5
mini pig 0.05: 1

mouse 0.7: 1
rhesus 0: 1
rat 0.4: 1

dog 0.4: 1

“=” @ R
“–OH” @ F(Pr)

“=” d, e: − 2H
e,f h, r, m, d, mp, rh

A4 6.0 1.4 n.s. n.s. n.s. (r), (m), mp, (rh)
A5 9.6 2.9 “–OH” R c, e, f: + OH − H h, r, m, d, mp, rh
A6 10.4 3.2 n.s. n.s. n.s. (h), (r), d, (mp)
A7 12.1 3.9 n.s n.s. n.s. (h), r, m, d, (mp), (rh)

CBX 16.6 5.7 n.a. n.a n.a. (h), r, m, d, (mp), rh

h, human; r, rat; m, mouse; d, dog; mp, mini pig; rh, rhesus; n.s., not specifiable; n.a., not applicable. Brackets indicate minor peaks. 1 ac-
cording to Figure 5. 2 coelution of two metabolites. 3 ratio of [M + H]+ intensities (m/z 307 & 325), determined from unfragmented spectra.
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Table 3. Metabolites of MCBX generated in liver microsomes from various species.

Peak Retention Time
(min) Retention Factor Functionalization Site of Function-

alization
Interpretation of

Fragments 1 Species

B1 5.3 1.1 n.s. n.s. n.s. r, mp

B2 5.7 1.3 n.s. n.s. n.s. (r), m, (d), (mp),
(rh)

B3 6.3 1.5 “–OH” R d: + OH − 2 H h, r, m, d, mp, rh
B4 7.1 1.8 n.s. n.s. n.s. (h), m, d, (rh)
B5 8.0 2.2 “–OH” R b, d: + OH − 2 H h, r, m, d, mp, rh
B6 8.6 2.4 “–OH” F(Pr) d, e h, r, m, d, mp, rh
B7 8.9 2.6 “–OH” R c, d: + OH − 2H h, r, m, d, mp, rh
B8 12.9 4.2 n.s. n.s. n.s. (h), m, d, mp, (rh)

B9 21.7 7.7 n.s n.s. n.s. h, r, m, d, (mp),
(rh)

B10 31.6 11.7 n.s n.s. n.s. h, r, m, d, (mp),
(rh)

MCBX 33.1 12.3 n.a. n.a. n.a. h, r, m, d, mp, rh

h, human; r, rat; m, mouse; d, dog; mp, mini pig; rh, rhesus; n.s., not specifiable; n.a., not applicable. Brackets indicate minor peaks.
1 according to Figure 5.

Table 4. Metabolites of CPFPX generated in liver microsomes from various species.

Peak Retention Time
(min) Retention Factor Functionalization Site of Function-

alization
Interpretation of

Fragments 1 Species

C1 5.5 1.2 “–OH” R b, e, f: + OH − H h, r, m, d, mp, rh
C2 5.9 1.4 “–OH” R f: + OH − H h, r, m, d, mp, rh
C3 6.3 1.5 “=O” R b, e, f: + O − H h, r, m, d, (mp), (rh)
C4 7.4 2.0 n.s. n.s. n.s. (h), r, m, d, mp, rh
C5 7.9 2.2 “=” (F)Pr d, e, f h, r, m, d, mp, rh
C6 8.3 2.3 “=” (F)Pr e, f h, r, m, d, mp, rh
C7 8.7 2.5 n.s. n.s. n.s. (h), r, (m), (d), (rh)
C8 9.0 2.6 n.s. n.s. n.s. (r), m, (d), (rh)
C9 9.8 2.9 “=O”/“=” R b, e, f: + OH − 4H h, d

C10 12.2 3.9 n.s n.s. n.s. h, r, m, d, mp, rh
C11 21.4 7.6 n.s. n.s. n.s. (h), r, m, (mp), rh
C12 34.0 12.6 n.s n.s. n.s. r, (m), (d)

CPFPX 29.4 10.8 n.a. n.a. n.a. h, r, m, d, mp, rh

h, human; r, rat; m, mouse; d, dog; mp, mini pig; rh, rhesus; n.s., not specifiable; n.a., not applicable. Brackets indicate minor peaks. 1

according to Figure 5.

Metabolism of CBX produced up to nine metabolites in the microsomes of the test
species, of which the hydroxylated compounds A1 and A5 were dominant in all species.
Two metabolites which coeluted at Rt = 5.6 min could be distinguished via mass spectrom-
etry. Metabolite profiles of rhesus monkey and mini pig exhibited the highest degree of
similarity to the human metabolite profile. Microsomal metabolism of MCBX generated up
to 10 metabolites. Metabolite B3, a compound resulting from monohydroxylation of the
cyclobutyl ring, represented the main metabolite in all species. Metabolites B5–B7, which
were also identified as hydroxylated metabolites, occurred in the profiles of all species
but in differing proportions. Rodent metabolite profiles of MCBX most closely resembled
their human counterpart. In vitro metabolism of CPFPX in microsomes of humans and
rodents has already been studied by Bier et al. [6]. To complement this previous work,
CPFPX metabolism in microsomes of three non-rodent species was investigated in the
current study in order to identify the most suitable animal model for human metabolism
of xanthine-derived A1AR ligands. Species-specific microsomal metabolism of CPFPX re-
sulted in up to 12 metabolites. Metabolite C9, which was identified as the enone metabolite
4 ([M+H]+ = 335), was generated exclusively in human and dog microsomes.

As part of a previous study aimed at comparing the PET imaging characteristics of
[18F]CBX, [18F]MCBX and [18F]CPFPX, in vivo metabolite profiles were generated from
rat plasma [7]. Representative radio-thin layer chromatograms (radio-TLCs) are shown in
Figure 6. Although metabolite identification was beyond the scope of the cited study, visual
comparison of the radio-TLCs and the HPLC-UV chromatograms shown in Figures 2–4



Pharmaceuticals 2021, 14, 277 10 of 19

reveals a high degree of similarity with regard to peak number (peaks of considerable size),
peak areas, and elution order.
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2.3. Enone Metabolite Formation in Liver Microsomes

In vitro formation of enone metabolite 4 was investigated by incubation of human
and rat liver microsomes with four primary metabolites (5–8, see Table 1) present in the
human microsomal metabolite profile, which could potentially serve as precursors for
enone formation.

Incubation of 5–8 with human liver microsomes (HLM) revealed exclusive formation
of 4 from precursor 6. During this biotransformation process, a stable intermediate was
generated, which could be separated by HPLC (Figure 7). Mass spectrometry showed that
this molecule contains a cyclopentenol ring instead of the cyclopentenone ring of 4, thus
being 3-(3-fluoropropyl)-8-(3-hydroxycyclopent-1-en-1-yl)-1-propylxanthine (9).
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Figure 7. Metabolism of 6 in human (black) and rat (red) liver microsomes. Formation of 4 occurs exclusively in human liver
microsomes. Chromatograms were generated at 275 nm and smoothed using a moving average algorithm (filter width 2).

The time course of formation of 4 and 9 in HLM is shown in Figure 8a. It is evident
from the curves that the formation of 4 still proceeded after complete depletion of 6,
whereas the concentration of 9 started to decline after a certain incubation time. These
observations indicate that the biotransformation proceeds from 6 via 9 to 4 (Figure 9).
For comparison, the time course of metabolism of 6 in rat liver microsomes (RLM) is
given in Figure 8b. As with HLM, 6 was oxidized to produce 9, however, the subsequent
oxidation step resulting in ketone formation obviously did not occur. Consequently, the
concentration of 9 increased during incubation until 6 was completely depleted but then
remained constant.
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Figure 8. Time course of metabolism of 6 in microsomes from humans (a) and rats (b). In both species, metabolism of
6 (black curve) generates an intermediate alkenol 9 (red curve). In human but not in rat liver microsomes, 9 is further
metabolized to 4 (blue curve). Data points represent the mean ± SD of three independent experiments.
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Figure 9. Proposed biotransformation pathway of CPFPX (1) in human liver microsomes. A three-step oxidation sequence
transforms the parent compound into the enone metabolite (4). In rat liver microsomes, only reaction steps 1 and 2 take
place, but not the final oxidation step 3, which converts the hydroxy intermediate (9) into the enone.

3. Discussion

Generally speaking, species differences in microsomal metabolism can be related
to several factors, which comprise variations in the levels of total microsomal P450 or
individual P450 isoforms as well as differences in the mechanistic aspects of catalytic
enzyme function (substrate specificity, catalytic activity, main reaction pathways).

Species differences in the rate of substrate metabolism resulting from varying levels of
total or individual P450 enzymes in microsomal preparations can frequently be compen-
sated by adjustment of the protein concentration used in the assay or by introduction of
scaling factors. Variations in the functional characteristics of enzymes may, however, lead
to fundamental differences in metabolism, rendering a particular animal species unsuitable
for prediction of human xenobiotic metabolism in preclinical studies.

In this study, hepatic microsomes were chosen as analytical model for comparison of
species-specific enzyme function. Although microsomes are considered a less physiologi-
cally relevant model than hepatocytes due to the lack of cellular organization, they are still
a valuable tool for clearance determination of compounds that are metabolized primarily
by phase I enzymes and that do not act as transporter substrates. Results from previous
studies showed that xanthine-derived A1AR ligands are metabolized primarily by hepatic
P450 enzymes [9] and that scaled microsomal clearance data are in good agreement with
measured in vivo clearance [10]. Against this background, hepatic microsomes were pre-
ferred over hepatocytes for investigating species differences in A1AR ligand metabolism. In
addition, for rapidly metabolized substrates such as CPFPX, measurements conducted with
hepatocytes could potentially provide biased results due to the capacity/rate limitation of
the hepatocyte system [11,12].

Regarding the total P450 content of the microsomes used in the present study, manufac-
turer specifications were only available for human preparations. For the non-human animal
species, literature data on total microsomal P450 concentrations were used as reference
values for the further discussion of the results (see Table 5).
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Table 5. Total microsomal P450 content reported for various species.

Species
Total Microsomal P450 Content (nmol/mg Microsomal Protein)

[13] [14] [15] [16] [17]

Human 0.307 ± 0.160 0.231 ± 0.013 0.31 ± 0.09 n.d. 0.29 ± 0.06
Rat 0.673 ± 0.050 0.444 ± 0.016 0.58 ± 0.02 n.d. n.d.

Mouse n.d. 0.719 ± 0.041 0.48 ± 0.04 n.d. n.d.
Mini pig n.d. n.d. n.d. 0.798 ± 0.145 n.d.

Dog 0.385 ± 0.036 0.685 ± 0.031 n.d. n.d. n.d.
Monkey 1.030 ± 0.106 1 1.195 ± 0.089 2 0.74 ± 0.02 1 n.d. 0.95 ± 0.08 2

n.d., not determined; 1 cynomolgus monkey; 2 rhesus monkey.

Phase I metabolism of the xanthine-based compound CPFPX has been shown to
be mainly governed by P450 1A2 [9], so the following discussion will focus on species
differences in expression levels and functional characteristics of this specific P450 isoform.
While data on hepatic P450 1A2 levels are currently not available for all species used in
the present study, it has been shown that P450 1A2 accounts for about 13% of the total
P450 content in humans [18], for about 2% in rats [19], and for about 4% in dogs [20].
Basal hepatic levels of P450 1A2 in macaques are generally reported to be low or even
undetectable [21–25], except for the data published by Shimada et al. which showed
similar P450 1A2 levels in hepatic microsomes of cynomolgus macaques and humans [13].
Evidently, the pronounced interspecies differences in microsomal metabolism of the tested
A1AR ligands cannot be readily explained by varying levels of total and isoform-specific
P450. Microsomal P450 levels reported in Table 5 are about 2–3 times higher in rodents
and about 3 times higher in rhesus and cynomolgus monkeys than in humans. By contrast,
CLint of CPFPX in rodent and rhesus monkey microsomes exceeded human values by a
factor of about 10 and 134, respectively. This is all the more remarkable in view of the
questionable constitutive expression of P450 1A2 in rhesus monkey liver. It is conceivable
that P450 isoforms other than 1A2 are mainly responsible for biotransformation of CPFPX
and its analogs in rhesus microsomes, casting doubt on the usefulness of macaques as
preclinical species for pharmacokinetic evaluation of xanthine-derived A1AR ligands.

Published data on species differences in the microsomal metabolism of various P450
1A2 marker substrates reveal large differences in enzymatic activity and substrate specificity
of the homologous 1A2 enzymes [13,26–32]. Interestingly, the rate of caffeine metabolism,
which was studied by Berthou et al., was considerably higher in hepatic microsomes from
humans than in those from rats or monkeys [26], which is in contrast to the results obtained
in the present study. However, these discrepancies might be a result of the different
qualities of human microsomal preparations used for determination of metabolic stability.
In this study, microsomal assays were conducted with pooled microsomes (50 donors) to
minimize individual variations in enzyme levels and activities. By contrast, the microsomal
material used by Berthou et al. was obtained from liver tissue of a single donor and showed
a particularly high P450 level [33], which might have introduced bias into the assessment
of microsomal enzyme activity.

In summary, rates of CBX, MCBX, and CPFPX metabolism in hepatic microsomes are
highly species-dependent. Simple scaling approaches are not sufficient to overcome these
issues. The rank order of metabolic stability in human microsomes did not correspond
to any of the animal species, which raises considerable doubts regarding the relevance
of animal microsomes as a model for human pharmacokinetics of the test compounds.
However, it should be noted that the specific conditions encountered during sampling
and preparation of human liver tissue could potentially result in biased metabolism data.
First, biopsy specimens might be altered pathologically. Second, prolonged post-mortem
times (resulting from, e.g., regulatory requirements) encountered during preparation of
human tissue can lead to rapid loss of enzyme activity because of autolysis [34–38]. To
date, there still is little profound knowledge regarding the implications of post-mortem
enzyme degradation on microsomal stability data.
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Metabolite profiles of the test compounds varied considerably among species. Bio-
transformation of both CBX and MCBX resulted in similar metabolites in microsomes of
all test species, but in highly variable ratios. Regarding CPFPX metabolism, metabolite
4 (enone) was generated exclusively in human and dog microsomes. Enone formation
is a dominant pathway in human CPFPX metabolism [6,9]; therefore, prevention of this
reaction sequence might be a promising strategy to develop CPFPX analogs with higher
metabolic stability. In rodents, 4 is only generated in vivo, but not in microsomes [6]. It
could be demonstrated that in liver microsomes of rats, as opposed to human microsomes,
the final oxidation step of the biotransformation pathway does not take place (at least
not to a significant extent). It is likely that the presence or absence of distinct metabolic
pathways results from species differences in the functional properties of P450 1A2, which
can probably be attributed to variations in active site structure. In vivo formation of 4 in
living rats may reflect the catalytic action of other hepatic or extrahepatic enzyme systems
(e.g., extrahepatic P450 isoenzymes or alcohol oxidoreductases) to which intermediate
metabolites are subjected via systemic circulation. To elucidate the exact mechanism of
in vivo formation of 4 in rodents as well as the particular enzyme systems involved in this
pathway, further studies including the investigation of CPFPX metabolism by hepatocytes,
intestinal microsomes, and individual isoenzymes are planned.

4. Materials and Methods
4.1. Compounds

All compounds listed in Table 1 were synthesized and characterized in our laboratories
according to the procedures described in [4,10,39–41].

4.2. Reagents and Solvents

Reduced β-nicotinamide adenine dinucleotide 2′-phosphate (NADPH) was sup-
plied by Roche Diagnostics (Mannheim, Germany). Dimethyl sulfoxide (DMSO), 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), magnesium chloride (MgCl2),
sodium hydroxide (NaOH), and acetic acid (AcOH) were obtained from Sigma-Aldrich
(Steinheim, Germany). Reagent-grade acetonitrile (MeCN) and methanol (MeOH) were
purchased from Merck (Darmstadt, Germany). Aqua ad iniectabilia (water for injection)
from B. Braun Melsungen (Melsungen, Germany) was used for preparation of buffers
and eluents.

4.3. In Vitro Studies
4.3.1. Determination of In Vitro Intrinsic Clearance

Liver microsomes from Sprague Dawley rats (RLM), CD-1 mice (MLM), beagle dogs
(DLM), Göttinger mini pigs (MPLM), rhesus monkeys (RMLM), and humans (HLM, spec-
ified total P450 content: 0.286 nmol/mg protein) were obtained from Thermo Fisher
Scientific/Life Technologies (Darmstadt, Germany). Optimization of incubation conditions
(microsomal protein concentration, substrate solvent, incubation buffer) has been carried
out in a previous study [41]. For assessment of intrinsic clearance (CLint), substrate (8 µM
CBX, MCBX or CPFPX, stock solutions in DMSO) and microsomes (0.4 mg/mL RLM,
MLM, DLM and MPLM, 2.0 mg/mL HLM and 0.04 mg/mL RMLM) were preincubated for
5 min at 37 ◦C in HEPES buffer (100 mM, pH 7.4) containing MgCl2 (3.3 mM). Enzymatic
reactions were initiated by addition of preheated NADPH (1.3 mM) and were allowed to
proceed for 30 min. Aliquots (100 µL) were sampled from the incubation mixture (500 µL
total volume) at 0 and 30 min. An equal volume of a mixture of MeOH/MeCN (50:50, v/v,
cooled to −20 ◦C) was added to terminate the reaction. After subsequent homogenization
on a vortex mixer (1 min, 21 ◦C) and centrifugation (10 min, 20,000× g rcf, 21 ◦C), the
supernatants (50 µL aliquots) were analyzed via HPLC-UV/VIS (Knauer smartline system
equipped with a Rheodyne type 7125 sample injector and a 500 µL sample loop). Chro-
matographic conditions were as follows. Column: 4.6 mm × 250 mm Kromasil 100-5-C18
(AkzoNobel, Bohus, Sweden); eluent composition: MeCN/H2O/AcOH 48:52:0.2 (v/v/v);
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flow rate: 1 mL/min; detection wavelength: 275 nm. Microsomal assays were performed
in quadruplicate.

4.3.2. Metabolite Analysis

Microsomal assays aimed at metabolite profiling were conducted according to the
protocol described in Section 4.3.1, but with 10 µL substrate (CBX, MCBX, CPFPX) in
a total incubation volume of 1 mL. In Table 6, microsomal protein concentrations and
incubation times used in the individual assays are listed. Blank samples containing all
matrix components but no substrate were included. Incubations were terminated by
adding two volumens of a mixture of MeOH/MeCN (50:50, v/v, cooled to −20 ◦C).
Samples were then vortexed (1 min, 21 ◦C), centrifuged (10 min, 20,000× g rcf, 21 ◦C),
and evaporated to dryness using a centrifugal vacuum concentrator (Concentrator 5301,
Eppendorf, Wesseling-Berzdorf, Germany) set to a temperature of 45 ◦C. Dried samples
were reconstituted with 160 µL HPLC eluent (MeCN/H2O/AcOH 35:65:0.1 (v/v/v)) and
centrifuged (3 min, 20,000× g rcf, 21 ◦C). Aliquots of the clear supernatant (25 µL) were
subsequently injected into the HPLC system. Chromatographic parameters were the same
as described in Section 4.3.1, except for the addition of a 3 mm NH2 guard column (OPTI-
GUARD, Optimize Technologies Inc., Oregon City, OR, USA). For LCMS analyses, the
UV-detector outlet was coupled to a mass spectrometer (MSQ PlusTM, Thermo Electron
Corporation, San Jose, CA, USA) via an electrospray interface. LCMS parameters were as
follows. Nebulizer M gas pressure: 6 bar; desolvation temperature: 500 ◦C; positive ion
mode (ESI+); sprayer voltage: 3000 V; cone voltages: 50 V (unfragmented spectra) or 185 V
(fragmented spectra), m/z range 1–800; scan time: 1 s. Mass spectra were analyzed using
Xcalibur software (version 3.0).

Table 6. Incubation conditions for generation of in vitro metabolite profiles.

Microsomes Substrate Microsomal Protein
Concentration (mg/mL) Incubation Time (min)

HLM CBX, MCBX, CPFPX 0.8 180
RLM CBX, MCBX, CPFPX 0.4 30
MLM CBX, MCBX, CPFPX 0.4 30
DLM CBX, MCBX, CPFPX 0.8 45

MPLM
CBX 0.8 45

MCBX, CPFPX 0.8 30

RMLM
CBX 0.04 45

MCBX, CPFPX 0.04 30

4.3.3. Enone Metabolite Formation

In preliminary experiments, the potential enone precursors 5–8 (8 µM) were incubated
with either RLM (0.4 mg/mL) or HLM (0.8 mg/mL) for up to 4 h according to the protocol
given in Section 4.3.1. Multiple samples were taken during incubation and analyzed with
regard to the presence of the enone metabolite 4 in the incubation mixture.

The time course of the formation of 4 from precursor 6 was monitored by incubation
of 6 (4 µM) with either 1.0 mg/mL HLM for 150 min or 0.4 mg/mL RLM for 100 min
according to the procedures described in Section 4.3.1. but with a prolonged centrifugation
cycle (15 min) for protein precipitation. Chromatographic separation was performed on a
Kromasil C18 column (see Section 4.3.1) equipped with a 3 mm NH2 guard column (OPTI-
GUARD, Optimize Technologies Inc., Oregon City, OR, USA) using an eluent composed of
MeCN/H2O/AcOH 45:55:0.1 (v/v/v). All other chromatographic parameters resembled
those given above. Incubations were conducted in triplicate.

4.4. Data Analysis

Elimination rate constants (k) of CBX, MCBX, and CPFPX were derived via linear
regression analysis of semi-logarithmic peak area vs. time plots.
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In vitro half-life (t1/2) was calculated as:

t1/2 =
ln 2

k
(1)

In vitro intrinsic clearance was calculated as follows [42]:

Clint =
ln 2

t1/2 × c
(2)

where c is the microsomal protein concentration. Since the main focus of the study was
to compare CLint between species, but not between compounds, no correction for the
microsomal unbound fraction was applied.

5. Conclusions

Human microsomal metabolism of the three A1AR ligands could not be accurately
modeled by microsomes of a single animal species. In particular, the closely related rhesus
macaque, which represents a popular animal model in pharmacology, exhibited large
differences in terms of metabolic activity toward the test compounds. This in turn casts
doubts on the usefulness of this species for the pharmacokinetic evaluation and dosimetry
of xanthine-derived A1AR ligands. By contrast, the beagle dog appears to be a promising
preclinical species, especially with regard to in vivo metabolite profiling. The discrepancy
between in vitro and in vivo biotransformation of CPFPX in rodents was attributable to the
incapacity of the rodent microsomal enzymes to catalyze the final oxidation step leading
to the enone metabolite. In conclusion, differences in pharmacokinetics and metabolism
of radiolabeled compounds in distinct species should be carefully determined during
preclinical development in order to obtain reliable data that can be extrapolated to humans.
This is especially important in the context of preclinical dosimetry studies preceding
first-in-human clinical trials with new diagnostic or therapeutic radiopharmaceuticals.
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