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ABSTRACT

Thanks to sequencing technology, modern molec-
ular bioscience datasets are often compositions of
counts, e.g. counts of amplicons, mRNAs, etc. While
there is growing appreciation that compositional
data need special analysis and interpretation, less
well understood is the discrete nature of these count
compositions (or, as we call them, lattice composi-
tions) and the impact this has on statistical analy-
sis, particularly log-ratio analysis (LRA) of pairwise
association. While LRA methods are scale-invariant,
count compositional data are not; consequently, the
conclusions we draw from LRA of lattice composi-
tions depend on the scale of counts involved. We
know that additive variation affects the relative abun-
dance of small counts more than large counts; here
we show that additive (quantization) variation comes
from the discrete nature of count data itself, as
well as (biological) variation in the system under
study and (technical) variation from measurement
and analysis processes. Variation due to quantiza-
tion is inevitable, but its impact on conclusions de-
pends on the underlying scale and distribution of
counts. We illustrate the different distributions of real
molecular bioscience data from different experimen-
tal settings to show why it is vital to understand the
distributional characteristics of count data before ap-
plying and drawing conclusions from compositional
data analysis methods.

INTRODUCTION

Compositional measurements are made in many molecu-
lar bioscience studies. At the beginning of the last decade,
the implications of this for the analysis and interpretation
of molecular bioscience data were not widely appreciated
(1). By the end of the decade, this had changed dramati-

cally with an increasing number of authors acknowledging
how sampling and sequencing generally remove or distort
information about the absolute abundance of components
in omics data (2).

In tandem, methodologists from mathematics, statistics
and computer science have been stimulated by the chal-
lenge of applying compositional philosophies and enhanc-
ing compositional techniques for bioscience data. Promi-
nent methodologies include the log-ratio approach pio-
neered by Aitchison (3,4) and correspondence analysis (5);
other methods have been suggested (6,7).

Currently, there is significant activity in the develop-
ment, application and evaluation of new compositionally
aware methods (as evidenced by this special issue). This is
a fertile and exploratory era for methodological develop-
ment; we are not yet at a stage where we have characterized
the strengths and limitations of different approaches suffi-
ciently well to know which methods are appropriate in dif-
ferent circumstances. Consistent with that, the intent of this
paper is to deepen our understanding of one important as-
pect of compositional data analysis (CoDA) for bioscience
data: the analysis and interpretation of counts.

Thanks especially to sequencing technology, molecular
bioscience studies are replete with count data, or data de-
rived from counts, e.g. counts of mRNA transcripts and
counts of operational taxonomic units (OTUs) derived from
assigning amplicon sequences to taxa in metagenomic sur-
veys.

At first blush, this may seem unremarkable––after all,
these counts form vectors of non-negative components and
that is precisely the domain of CoDA (noting that the treat-
ment of count zeros has long been recognized as a challenge
for log-ratio analysis (LRA) (8)). However, as we will show,
count compositional data (or as we term them lattice com-
positions) have some characteristics that could lead the un-
wary analyst astray, especially when exploring pairwise re-
lationships between components.

We focus on LRA of lattice compositions because of the
appeal and increasing popularity of this approach in molec-
ular bioscience (2). We want to ensure that bioscientists (es-
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pecially bioinformaticians) better understand the strengths
and limitations of LRA and its applicability to different
kinds of omics data, such as in transcriptomics where there
tend to be fewer zeros and larger counts than in metage-
nomics, where data are often dominated by low and zero
counts.

While this paper concentrates on LRA, it is important
to be aware of other approaches that respect the under-
lying discrete nature of count compositional data, such
as methods based on the log-normal Poisson distribution
(9,10), correspondence analysis (5) (which can be related
to LRA by the Box–Cox transformation), multinomial
logistic-normal modeling (11–13), Dirichlet-multinomial
models (14–16) and log-linear modeling with generalized es-
timating equations (17).

We also focus on LRA methods for assessing pairwise as-
sociation between components because of their increasing
use to explore interactions: ‘Inferring interactions among
different microbial species within a community and under-
standing their influence on the environment is of central im-
portance in ecology and medicine’ (18). This has resulted
in the (inappropriate) use of correlation to construct net-
works of association between species (e.g. microbes, mR-
NAs) based on data about their relative abundance (e.g.
see (19,20)). We stress that ‘...in the absence of any other
information or assumptions, correlation of relative abun-
dances is just wrong’ (21); alternative approaches are being
actively pursued (22,23).

The following sections aim to give all readers a deeper
understanding of lattice compositions and their analysis by
log-ratio methods. We begin with the geometry of the nat-
ural number lattice and its compositions and provide inter-
active graphics in the Supplementary Data to give intuition
about concepts including closure, the simplex and coordi-
nates. We also show how lattice compositions relate to fun-
damental concepts in number theory.

Next, we show how count data carry information about
the scale (i.e. the relative extent and size) of counts and
then explore the implications of this for LRA of pairwise
association. We demonstrate that small counts can form a
big part of bioscience datasets and discuss the implications
of this for bioinformaticians and quantitative bioscientists
who seek to draw sound conclusions from compositions of
counts.

THE GEOMETRY OF LATTICE COMPOSITIONS

We coin the term ‘natural number lattice compositions’
to describe compositions of count data. This emphasizes
that the components of these data come from the set of
natural numbers that we count with N = {0, 1, 2, . . . }, and
that when we measure D components, they form a D-
dimensional lattice LND that consists of points (x1, x2,
. . . ,xD), where x ∈ N. ‘When we speak of lattice systems, we
are imagining grids of points in space connected like monkey
bars on a playground’ (24).

We appreciate that the term ‘count composition’ is con-
ventionally (and very understandably) used to describe
compositions of counts. However, counts are not the
only kind of compositional data that take discrete values:
most empirical compositional data will be measured and

recorded with finite precision and will therefore exist on a
lattice. In using the term ‘lattice composition’ in this paper,
we want to highlight the connection between these kinds of
compositional data and the mathematical study of lattices
and number theory so that deeper understanding might
emerge, e.g. links to Euclid’s orchard and the Riemann zeta
function discussed below.

In bioscience, the components or parts of a composi-
tion could be things like counts of different molecules, nu-
cleotide sequences or OTUs. When we treat these data as
compositions, we consider only the relative values of the
components (i.e. their ratios) to be informative (3). Thus,
the compositions (1, 2, 3) and (100, 200, 300) are composi-
tionally equivalent, even though these two vectors of counts
may carry different information, e.g. in the context of a
species abundance study.

In the biosciences, lattice compositions arise in two
ways: experimentally––when processes like sampling, sam-
ple preparation and sequencing remove information about
the absolute abundance of components in the system being
measured; and mathematically––typically when numbers
are converted to proportions, percentages, ppm or ‘normal-
ized’ by dividing through by some total, a process known as
closure in CoDA. This conversion from absolute to relative
abundances destroys information: given only relative abun-
dance data, we cannot say how many species, transcripts,
etc. were present in the original sample, just as knowing only
the proportion of votes in an election tells us nothing about
how many votes were actually cast. Less obviously, a range
of familiar statistical methods (such as correlation (21)) are
no longer applicable to relative data: this has been a driving
motivation for CoDA.

Figure 1A shows 1000 (x, y, z) triples on the natural num-
ber lattice and Figure 1B shows the corresponding lattice
compositions formed by closure, i.e. dividing these triples
by the total (x + y + z). It is important to appreciate that
closure will project any point on the natural number of lat-
tice onto the triangular simplex S3 in Figure 1B and, once
transformed in this way, there is no return to the original
(i.e. absolute) counts in N

3 using the closed (i.e. relative)
data alone.

Each point on the simplex corresponds to an equiva-
lence class of vectors that lie on the ray from the origin
through that point. For reference, Figure 1B shows the ray
corresponding to the (x, y, z) triples where x = y = z. In
other words, closure maps (infinitely) many vectors of D-
dimensional counts to a single point in the D-dimensional
simplexSD. But what about lattice points? How many of the
1000 points in Figure 1A will map to the same points in Fig-
ure 1B? Number theory, a branch of mathematics that stud-
ies the integers and integer-valued functions, tells us that if a
lattice point is picked at random in D dimensions, the prob-
ability that it is visible from the origin is 1/� (D), where � (D)
is the Riemann zeta function (25). This suggests there will
be around 1000/� (3) ≈ 832 points visible from the origin in
Figure 1B; there are actually 841 unique points in the closed
data.

The triangular simplex S3 in Figure 1B is the basis of the
ternary diagram used to display three quantities that sum
to a constant; in essence a ternary diagram gives a 2D view
of S3 as one would see from looking along the ray (1, 1,
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Figure 1. (A) The three-dimensional lattice of 1000 (x, y, z) triples where x, y, z are integers from 1 to 10. Points are colored from blue to red as distance
to the origin increases. The line from (1, 1, 1) to (10, 10, 10) is shown for reference, and the extreme points are labeled A–H. (B) The lattice of points in (A)
after closure, i.e. dividing each component x, y, z by the total x + y + z. The triangular section of the plane x + y + z = 1 where the points lie on is called
the simplex in three dimensions, S3. This is a many-to-one transformation because all points in (A) that lie on the same ray from the origin (i.e. (kx, ky, kz)
for some positive k) will map to one point in S3, as is the case for points A and H in (A). Of the 1000 unique points in (A), there remain 841 unique points
on this simplex. The line from (0, 0, 0) to (1, 1, 1) is shown for reference and the extreme points from (A) are labeled. (C) The lattice of points in (A) after
the centered log-ratio (clr) transformation, i.e. dividing the log of each component log x, log y, log z by the log of the geometric mean of all components log
gm(x, y, z) = 1/3log xyz. These points lie on the plane log x + log y + log z = 0. There is a one-to-one mapping between the points on the simplex in (B)
and the points on this clr-plane. The line from (0, 0, 0) to (1, 1, 1) is shown for reference and the extreme points from (A) are labeled. (Interactive versions
of these plots are available in the Supplementary Data.)

1). LRA uses transformation to map the (constrained) sim-
plex SD to the (unconstrained) space of real numbers R

D

in which statistical methods can be applied without fear of
creating results that are not valid compositions. These trans-
formations include the clr, arithmetic log-ratio (alr) and iso-
metric log-ratio (ilr) transforms, as explained in (4). Once
statistical analysis has been conducted in clr-, alr- or ilr-
spaces, the results can be inversely transformed back to the
corresponding simplex.

Figure 1C shows the 1000 (x, y, z) triples on the natural
number lattice after clr-transformation onto the centered
log-ratio plane in R

3. As with closure, this is a many-to-
one mapping and there are 841 unique points in the clr-
transformed data, e.g. the corner points A (1, 1, 1) and H
(10, 10, 10) in Figure 1A are mapped to (0, 0, 0) by clr-
transformation, as is every other point where x = y = z.
The perspective view in Figure 1C aims to show how the clr-
transformation maps compositions to a plane in R

3, specif-
ically the plane where log x + log y + log z = 0. Isometric
log-ratio transformation into ilr-coordinates (26) provides a
(D − 1)-dimensional view of compositions of D parts, and
we will use that approach to help visualize three-part com-
positions in this paper (Figure 2).

Bioscience experiments can easily yield compositions
with hundreds or thousands of components: why are we
considering only three? By using ratios of components,
LRA is subcompositionally coherent: ‘measures of associa-
tion or measures of dissimilarity between components...are
unaffected by considering subcompositions’ (27). This
means that we can explore the simplest case of pairwise as-
sociation (say between components x and y) in the presence
of just one more component (z) knowing that our conclu-
sions about x and y would be the same even if there were
many more components present. This enables us to visual-
ize key aspects of LRA in two and three dimensions.
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Figure 2. An isometric log-ratio transformation of the 1000 (x, y, z) triples
in Figure 1A. Isometric log-ratios define a family of transformations rather
than a single transform and we have used the specific ilr transformation
ilr1 = −√

1/2 log10(x/y), ilr2 = −√
2/3 log10(

√
xy/z), which corresponds

to the view of the clr-plane in Figure 1C along the ray (1,1,1). Points are
colored and the extreme points are labeled as in Figure 1––note that corner
points A and H map to the same point.

The aims of this visual presentation of lattice composi-
tions and their transformations are (i) to give readers a ge-
ometric intuition of LRA and (ii) to show how the discrete
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Figure 3. (A) Imagine an environment populated by species x and y. We take 100 samples and find that there are about 500 of species x in each sample
and that there are around half as many of species y in each sample (blue points). To simulate what we might have seen if these species were 10-fold less
abundant, we divide all our counts by 10 and round them to the nearest whole number (green points). (This does not simulate sampling variation, but our
intent is to illustrate the impact of quantization on counts.) We repeat this process to simulate 100-fold reductions in abundance (red points). (B) As our
counts decrease by orders of magnitude, we see (on a log-scale) that the natural number lattice affords a coarser representation of the initial counts.

nature of lattice compositions manifests in the simplex, clr-
and ilr-coordinates. Now we are well prepared to consider
what information lattice compositions carry into the sim-
plex.

COUNT DATA CARRIES SCALE INFORMATION

Scale invariance is a fundamental principle of CoDA. Put
simply, scale invariance means that the functions we use to
analyze compositions return identical results when we scale
compositions by multiplying all components by a constant.
‘...two compositions x and X are regarded as equivalent ...if
there is some a > 0 such that X = ax. ...it follows that any
meaningful function of a composition must satisfy the re-
quirement of scale invariance f(ax) = f(x)’ (28).

Count compositional data (and therefore lattice compo-
sitions) are not scale-invariant representations of continu-
ous data. In general, scaled-down lattice compositions can-
not be exactly represented on the lattice. For example, scal-
ing down the lattice composition (86, 75, 309) by factor of
10 gives the composition (8.6, 7.5, 30.9), which is not on the
natural number lattice; the nearest lattice composition ap-
proximation is (9, 8, 31). The original lattice composition
carries more information than its scaled-down approxima-
tion. The impact of this quantization is felt most at small
scales: ‘Consider the metric spaces Zn and Rn. Their small-
scale structure––their topology––is entirely different, but on
the large scale they resemble each other closely’ (29). This sit-
uation is analogous to display resolution on digital devices:
IBM’s 1981 Color Graphics Adaptor (CGA) had 320 × 200
pixels; full high definition displays have 1920 × 1080; both
can display images, but the CGA device’s approximation is
obvious.

We illustrate the impact of quantization in Figure 3 by
taking a set of counts (x, y, z) and repeatedly scaling them
down by a factor of 10, and then then rounding them to
the nearest integer. Initially, there were 100 unique samples;

after scaling counts down by 100-fold, there are only nine
distinct count pairs on the lattice. Clearly, low counts can-
not carry as much information as high counts, and in the
next section, we explore the consequences that this has on
measures of pairwise association.

PAIRWISE ASSOCIATION IN LATTICE COMPOSI-
TIONS

The statistical assessment of pairwise association is a key
method in making sense of bioscience data. It needs to be
approached with particular care for compositional data be-
cause change in one component necessarily affects the rel-
ative abundance of others. The parts of a composition are
correlated by design and are not free to vary independently:
an increase in the proportion of one component demands
a decrease in at least one other. This is one way of under-
standing why Pearson’s correlation is not a valid measure
of association in compositions, as Pearson himself showed
in 1897 (30).

Proportionality is a valid measure of association for data
that carry relative information (21). In this section, we con-
sider three related statistics that measure the extent to which
pairs of components are proportional, and look at their be-
havior on lattice compositions.

To introduce these statistics, we first define X as an N × D
matrix of N observations where the ith observation is the D-
part composition xi = (xi1, . . . , xi j , . . . , xi D). The clr repre-
sentation of composition xi is the logarithm of the compo-
nents after dividing by the geometric mean of xi :

clr(xi ) =
(

log
xi1

gm(xi)
, . . . , log

xi j

gm(xi)
, . . . , log

xi D

gm(xi)

)
.

Hence, the sum of the elements of clr(xi ) is zero. The row-
wise clr-transformed version of X is written as C, its jth col-
umn is written as C· j and its element i, j is denoted by cij.
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Figure 4. Lattice compositions cannot, in general, exactly represent proportional relationships between pairs of components, and this affects statistical
measures of proportionality. (A) This plot shows three different colored lines of exact proportionality between x and y; the colored points show their
discrete lattice approximation. The slopes of the lines are 1/3 (red), 9/10 (blue) and 10/1 (green). The corresponding proportionality statistics of the lattice
approximations are shown in the boxes using logarithms to base 10. Note that we have used a third component z = 1 (not shown) to ensure that �s and �p
are defined. Also, we have defined the lattice approximation so that 1 is the minimum x and y value to avoid taking logarithms of 0. (B) Keeping the same
lines of exact proportionality as in (A), we now use colors to indicate different regions of the natural number lattice from radius 1–10 (red), 10–20 (green)
and 20–30 (blue). By sweeping a line of proportionality through positive slopes from 0 to ∞ (i.e. angles 0–90◦ to the x-axis), we can record the values of
vlr, �s and �p in different regions of the lattice approximation.

The first proportionality statistic is the variance of the log-
ratios of parts j and k (3):

vlr(X· j , X·k) � var
i

(
log

xi j

xik

)

= var
i

(log xi j − log xik)

= var
i

(ci j − cik). (1)

(This is also referred to as ‘log-ratio variance’; however
‘variance of log-ratios’ makes the order of operations clear.)
When X· j and X·k are exactly proportional, the variance of
their log-ratios is 0. However, this statistic has been criti-
cized because, when pairs of components are not exactly
proportional, ‘it is hard to interpret as it lacks a scale. That
is, it is unclear what constitutes a large or small value...(does
a value of 0.1 indicate strong dependence, weak dependence
or no dependence?)’ (31). This led to the proposal of scaled
versions of vlr, introduced in (21) and developed further in
(32):

φs(C· j , C·k) � vari (ci j − cik)
vari (ci j + cik)

, (2)

ρp(C· j , C·k) � 1 − φs(C· j , C·k)
1 + φs(C· j , C·k)

. (3)

Like vlr, �s is zero when its arguments are exactly propor-
tional and positive otherwise, so it could be thought of
as a distance from proportionality. �p maps this distance
from [0, ∞) to the interval [1, −1), reminiscent of Pear-
son’s correlation coefficient. Note that Equation (2) is not
defined for compositions with two parts since, by definition,
ci1 + ci2 = 0.

Each of these statistics has strengths and limitations
(32) and development of new statistics to measure pair-
wise association continues (33). However, the behavior of
vlr, �s and � p with lattice compositions has not yet been
explored.

Figure 4A shows that lattice compositions cannot exactly
represent proportional relationships (x = ky) between pairs
of components, except for equality i.e. k = 1. Consequently,
the statistics vlr, �s and � p do not indicate precise propor-
tionality when applied to the lattice approximation. Instead,
vlr and �s are >0 and � p is <1 (in one case, <0) even though
the underlying continuous relationships that generated the
lattice compositions are perfectly proportional. To evaluate
how these proportionality statistics behave across a range
of lattice approximations we systematically sampled lines of
positive slopes between zero and infinity (Figure 4B). Since
real count data will have a finite range, we evaluated vlr, �s
and � p on finite ranges of lattice points as indicated by the
colored annular in Figure 4B.

Figure 5 shows some of the curves we observed, demon-
strating clearly that measures of pairwise proportionality
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Figure 5. These plots show the behavior of the proportionality statistics vlr, �s and �p for lattice approximations to a line of proportionality as it is swept
through positive slopes from 0 to ∞ as described in Figure 4B. Different colored lines indicate these statistics reported on different regions of the natural
number lattice, e.g. from radius 1–10 (red), 10–20 (green) and 30–100 (blue) in (A). For reference, we plot a sample of Euclid’s orchard (50) in the background
out to radius 50 to show the finite number of rational slopes available to lattice points. As in Figure 4A, we use logarithms to base 10 and have defined the
lattice approximation so that 1 is the minimum x and y value to avoid taking logarithms of 0. (A) As the region of lattice available to approximate the line
of proportionality increases, the proportionality statistics move closer to the values they would have for continuous compositions, i.e. vlr = �s = 0 and �p
= 1. (B) When counts span smaller regions, in this case regions of around 10 points on the lattice, the proportionality statistics vary markedly at angles
close to horizontal and vertical, corresponding to low count values in either x or y. (C) Close-up of the curves from (B) for angles 0–10◦. In theory, these
curves should be piecewise constant with discontinuities rather than the connected steps shown. This reflects our method of generating these curves by
sampling the statistics at regular intervals.
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Figure 6. Five strategies for zero replacement (8) using the zCompositions package (36) applied to the three-part lattice compositions formed by the 1100
(x, y, z) triples where x and y are integers from 1 to 10, and z is an integer from 0 to 10. Each panel shows the lattice of counts for x and z with no zeros
(the gray points) along with the value used to replace z = 0 (the colored points). Colored points connected by lines have the same y value (from 1 to 10).
While all the gray points lie on the natural number lattice L

N2 , none of the zero replacements lie on the lattice of next lower magnitude L0.1N2 .

behave differently, sometimes very differently, on lattice
compositions from LN3 than their continuous counterparts.
(vlr and �s would be 0 and � p would be 1 in all panels of
Figure 5 for proportional compositions from R

3
+.)

In theory, the curves in Figure 5 are piecewise constant,
with discontinuities as the lattice approximations involve
different points. Our plots connect values of vlr, �s and � p
sampled at 900 equiangular intervals from (0 + �)◦ to (90 −
�)◦ for a small value of �.

Figure 5A shows that the lattice approximation of lines of
continuous slope improves as we increase the radius of lat-
tice points involved; radius 1 : 10 (the red curve) shows the
impact of quantization on proportionality most markedly.
Figure 5B shows more clearly that it is not just the slope of
the line that effects the lattice approximation, but the scale
of the counts involved. Figure 5C shows that different re-
gions of the lattice exhibit quantization effects at different
angles.

Before we discuss the implications of these findings, we
need to address one count value that we have so far carefully
avoided: zero.

ZEROS IN LATTICE COMPOSITIONS

Modeling and analysis of zeros in count data has received
a lot of attention (34,35), especially in LRA of composi-
tions (8,36–37) since zero is the natural enemy of the loga-
rithm. Lattice compositions can have zeros and it is impor-
tant to appreciate that these can arise for different reasons
that in turn, demand different treatments and interpretation
(37,38).

Treatment of count zeros is a rich topic in its own right
and we are not going to pursue it in detail here. Instead, our
aim is to look briefly at the results of popular methods for
zero replacement in the context of LRA.

Figure 6 shows the results of five methods for zero re-
placement implemented in the zCompositions package (36).
From these plots, we can observe that there appear to be
two main families of zero imputation: multiplicative and
Bayesian, with count zero multiplicative (CZM) replace-
ment somewhat of a hybrid. Choice of detection limit in
multiplicative replacement clearly affects how close the im-
puted values are to the compositions on the lattice. This is
also an issue in CZM replacement. As Martı́n-Fernández
et al. note, ‘this treatment adds spurious correlation be-
tween rare parts resulting from adding a fixed value, shared
by the parts with count zeros’ (8).

With respect to lattice compositions, clearly none of the
methods replace zeros with values that necessarily lie on
the lattice of next lower magnitude to LN, i.e. the lattice
of ‘tenths’ L0.1N. We can envisage ‘lattice-friendly’ zero-
replacement methods whose results belong to {0.1, 0.2, . . . ,
0.9}.

SMALL COUNTS CAN BE A BIG ISSUE

We have shown that count data carry scale information into
the scale-invariant machinery of LRA. We have also shown
that when counts are low, and when the range of counts
is limited, pairwise measures of compositional association
(i.e. proportionality) can be very different in lattice com-
positions than their continuous counterparts. The question
now is does this matter in practice? And if so, when?

The answer depends on the scale of the counts involved,
and in this section, we consider the scale and distribution of
some real datasets.

Figure 7 summarizes the count distribution for three
kinds of sequencing-based molecular bioscience studies:

Yeast RNA-seq data (39) are from a study to better un-
derstand cell-regulatory functions in cell proliferation and
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Figure 7. The distribution of counts from three molecular bioscience studies that make use of high-throughput sequencing. The x-axes show count bins
using a log-like binning method (see text for description) while the proportion (in %) of the data are on the y-axis. There are two distinct shapes in the
datasets, especially when comparing the proportion of zero counts (labeled in red) against the remainder of the dataset. RNA-seq data (A) do not consist
of many zeros, whereas environmental and metagenomic studies (B) and (C) are inundated with zero counts. The plots on the right are a close-up of the
shaded gray region on the left.

quiescence, comparing yeast transcript expression levels
over N = 16 time points.
Approximately 38M reads, 2.4M reads per sample.

Tara ocean data (40) examined the biodiversity catalog of
marine micro-organisms (prokaryotes) using shot-gun se-
quencing and environmental data from the Tara Oceans
expedition collected over N = 139 stations.
Approximately 14M reads, 0.102M reads per sample.

Gut microbiome study (41) aimed to test the Hubell’s neu-
tral model of ecology by showing that bacterial diversity
in gut samples was positively associated with animal mass.
The study was performed over N = 265 individuals across
10 classes of animals, representing 64 species, from very
small body mass (e.g. bedbugs, flies, bees) to very large
body mass (e.g. sharks and whales).

Approximately 17M reads, 0.065M reads per sample.

The dynamic range of these count data is challenging
to present and Figure 7 shows counts on the x-axis using
‘logarithmic-like’ bins. The bins includes zero counts, and
accumulate counts in the groups [0, 1–10, 11–20, ..., 101–
200, 201–300, ..., 1001–2000, ...] with each bin width in-
creasing by a factor of 10 when reaching the next order.
The y-axis shows the percentage of the dataset contained in
each bin. As each study consists of multiple samples (16, 139
and 265, respectively), a boxplot summarizes the range per
bin, revealing the count variability between samples within
a study.

These studies fall into two groups, with the zero count
boxplot highlighted and labeled in red in the graph. The
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Table 1. The six categories of OTUs from abundant to rare as defined in (46); see also Figure 8

Category
Relative abundance

(%) No. of samples

AAT: always abundant taxa ≥1 all
CAT: conditionally abundant taxa ≥0.01 all

≥1 some
ART: always rare taxa <0.01 all
CRT: conditionally rare taxa <0.01 − 1 all

<1 all
MT: moderate taxa 0.01 − 1 all
CRAT: conditionally rare and abundant taxa <0.01 − ≥1 any?

CRAT

MT

CRT

ART

CAT

AAT

conditionally rare and abundant

moderate

conditionally rare

always rare

conditionally abundant

always abundant

0.01 0.10 1.00
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Figure 8. A graphical representation of the six OTU categories (y-axis) defined in (46). The relative abundance range for each category is shown on the
x-axis, with solid squares representing ≥x and the open diamonds representing <x.

RNA-seq dataset has far fewer zero counts than the two
metagenomic studies in which zeros account for up 90%
of the data. To show the trend of the remaining counts, the
right-hand side of the figures shows a close-up of the grayed
region on the left-hand side. The microbiome studies are
‘cataloging’ experiments aimed to survey organisms across
a broad and diverse landscape. The landscape for the RNA-
seq experiment is quite narrow by comparison: we expect to
see similar mRNAs present in each sample.

Abundance distributions in microbial community studies
display a ‘long tail’ of low-abundance organisms (42). This
tail is referred to as the ‘rare biosphere’ and often accounts
for the vast majority of the phylogenetic diversity present.
The rare biosphere has most commonly been defined using
relative abundance of <0.1 or 0.01% (42). Despite their rar-
ity, these low-abundance taxa have been shown to perform
essential roles in biochemical processes, community assem-
bly and stability and resilience (43). For example, Desulfos-
porosinus spp., representing only 0.006% of the total com-
munity, play a pivotal role in sulfate reduction and carbon
flow in peatland soils (44).

A common approach in metagenomic and environmen-
tal DNA (eDNA) processing is to perform low-abundance
filtering of OTUs since these could be a result of technical
variations in the library preparation and sequencing. ‘It has
been shown that when unique reads, such as chimeras and
singletons, are withheld [i.e., retained] in analysis, the esti-
mation of diversity can be severely inflated (45)’. Unfortu-
nately there is no consensus about the best filtering stan-
dard, and methods vary from study to study. Many studies
will remove singleton OTUs (those that only appear once in
the entire study) (46,47), otherwise the filtering is generally
based on either a minimum count (typically 10 for a conser-

vative approach) or at a minimum relative abundance (e.g.
0.001) (48). The choice of filtering method depends on the
biological question.

Xue et al. describe six categories of OTUs from abundant
to rare (46) (see Table 1 and Figure 8). Using these defini-
tions, we filter our three case study datasets and report the
results in Tables 2 and 3. Using the six OTU categories pro-
posed by Xue et al., the differences between the three case
study datasets stand out most clearly in Table 3.

Yeast RNA-seq: while the bulk of mRNAs (41%) are con-
ditional rare (CRT), they only make up 16% of the se-
quenced reads, compared to half the reads being from
moderate features (MT).

Tara Oceans: there are no always abundant taxa (AAT) at
all. Nearly 80% of the OTUs are tagged as always rare
taxa (ART), but these are mainly zero data points. The
conditionally rare (CRT) OTUs make up 75% of the se-
quenced reads, which makes sense as the samples are col-
lected across 139 stations around the globe.

Gut microbiome: there are no always abundant (AAT), con-
ditionally abundant (CAT) or even moderate OTUs. This
indicates that the data are very sparse. The majority of the
data are within the conditionally rare and abundant taxa
(CRAT), indicating that OTUs are very specific to differ-
ent environments.

It is clear that low and small counts are very prevalent
in biological datasets, particularly in microbiome studies
where the OTUs that they represent account for the major-
ity of the biodiversity and play important roles in microbial
communities. Awareness of the limitations of analytic tech-
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Table 2. The number (and proportions) of remaining (a) sequences, (b) features (mRNA in the case of RNA-seq data and OTUs in the case of metagenomic
data), (c) data with zero counts and (d) data counts between 2 and 9, after different filtering methods for the three example studies

(a) (b) (c) (d)

Dataset Threshold No. of sequences % No. of features % No. of zeros % No. [2-9] %

Yeast RNAseq, N = 16 samples (mRNA)
No filtering 37 710 728 100.00 3034 100.00 56 100.00 278 100.00
Relative
abundance ≥ .0001

34 330 805 91.04 2019 66.55 0 0.00 7 2.52

Relative
abundance ≥ .001

22 464 080 59.57 317 10.45 0 0.00 0 0.00

Relative
abundance ≥ .01

8 277 104 21.95 24 0.79 0 0.00 0 0.00

Count ≥ 2 37 710 696 100.00 3031 99.90 8 14.29 278 100.00
Count ≥ 10 37 708 896 100.00 3029 99.84 7 12.50 269 96.76

Tara Oceans, N = 139 samples (OTU)
No filtering 14 129 941 100.00 35 651 100.00 4 394 814 100.00 199 424 100.00
Relative
abundance ≥ .0001

13 093 797 92.67 7250 20.34 595 938 13.56 155 003 77.73

reRelative
abundance ≥ .001

8 241 812 58.33 2450 6.87 135 678 3.09 56 849 28.51

Relative
abundance ≥ .01

1 499 364 10.61 113 0.32 5324 0.12 2369 1.19

Count ≥ 2 13 941 637 98.67 19 803 55.55 2 222 449 50.57 199 424 100.00
Count ≥ 10 13 147 108 93.04 7483 20.99 623 333 14.18 157 107 78.78

Gut microbiome, N = 265 samples (OTU)
No filtering 17 365 964 100.00 10 000 100.00 2 535 419 100.00 37 964 100.00
Relative
abundance ≥ .0001

17 266 878 99.43 9862 98.62 2 499 064 98.57 37 893 99.81

Relative
abundance ≥ .001

16 302 087 93.87 8992 89.92 2 276 347 89.78 34 302 90.35

Relative
abundance ≥ .01

12 125 721 69.82 1521 15.21 370 082 14.60 7431 19.57

Count ≥ 2 17 346 927 99.89 9897 98.97 2 508 181 98.93 37 964 100.00
Count ≥ 10 17 180 567 98.93 9419 94.19 2 382 756 93.98 37 141 97.83

The first row shows no filtering of the dataset, so for yeast, there are 37.7M sequences, of which 56 are zero counts and 278 have counts between 2 and
9; these sequences collapse down to 3K features after clustering. The second row shows in the Tara Oceans dataset that by filtering on relative abundance
≥0.0001, we reduce the number of OTUs from 35 651 down to 7250 (20%), which is comparable to using the threshold of absolute minimum count of 10.
The number of zero count data has also reduced significantly from 4.4M to 596K.

Table 3. The number (and proportions) of remaining (a) sequences, (b) features (mRNA in the case of RNAseq data and OTUs in the case of metgenomic
data), (c) data with zero counts and (d) data counts between 2 and 9, after categorizing the features (mRNA or OTUs) into the size groups as defined by
(46); see also Table 1 and Figure 8

(a) (b) (c) (d)

Dataset Code No. of sequences % No. of features % No. of zeros % No. [2–9] %

Yeast RNA-seq, N = 16 samples (mRNA)
AAT 3 888 103 10.31 3 0.10
CAT 6 844 187 18.15 19 0.63
ART 1 696 865 4.50 1015 33.45 56 100 271 97.48
CRT 5 980 056 15.86 1253 41.30 7 2.52
MT 19 079 234 50.59 742 24.46
CRAT 222 283 0.59 2 0.07

Tara Oceans, N = 139 samples (OTU)
AAT
CAT 779 811 5.52 2 0.01 NA NA 1 0.00
ART 239 961 1.70 28 401 79.66 3 798 876 86.44 44 421 22.27
CRT 10 615 556 75.13 7121 19.97 590 614 13.44 152 632 76.54
MT 462 899 3.28 16 0.04 NA NA 2 0.00
CRAT 2 031 714 14.38 111 0.31 5324 0.12 2368 1.19

Gut microbiome, N=265 samples (OTU)
AAT
CAT
ART 1245 0.01 138 1.38 36 355 1.43 71 0.19
CRT 3 063 513 17.64 8341 83.41 2 128 982 83.97 30 462 80.24
MT
CRAT 14 301 206 82.35 1521 15.21 370 082 14.60 7431 19.57

AAT: always abundant taxa; ART: always rare taxa; CAT: conditionally abundant taxa; CRAT: conditionally rare and abundant taxa; CRT: conditionally
rare taxa; MT: moderate taxa.
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niques and their implications for small counts is essential to
drawing appropriate conclusions from these datasets.

DISCUSSION AND CONCLUSION

As quantitative bioscientists, it is critical we have a clear
view of all the sources of variation in our data. This is so
that we understand the extent to which a numerical repre-
sentation of the system under study reflects the biological
variation of interest, compared to all the technical variation
we have introduced in our attempts to measure that system.
It is also critical that we understand the methods we might
apply to analyze and interpret these numbers so that we can
be confident that our conclusions and findings are about the
biology of interest and not artifacts of our analysis methods.

There is growing appreciation of the compositional na-
ture of many molecular bioscience datasets (49) and a natu-
ral desire to apply CoDA methods that have a strong mathe-
matical basis and proved useful in other domains (3). How-
ever, we must be careful to respect the true nature of the data
we apply these methods to. In this paper, we have focused
intently on the underlying discrete nature of count compo-
sitions and shown how it introduces quantization variation
that can eclipse the biological variation of interest, espe-
cially when counts are low.

Even though LRA is scale-invariant, applying it to scale-
dependent data such as counts means that the conclusions
we draw from this analysis of lattice compositions depend
on the scale of the data we apply it to. We presented three ex-
amples of real bioscience data from different experimental
settings to illustrate the variety of scales and count distribu-
tions that can arise in the molecular biosciences.

For bioinformaticians and quantitative bioscientists, this
is a salutary reminder that the tools we use to analyze our
data produce results regardless of whether the tools are ap-
propriate for the data; our wisdom (i.e. the knowledge of
how to use knowledge) lies in appreciating the strengths and
limitations of different analytical techniques in different sit-
uations. When it comes to assessing pairwise association be-
tween counts of components in a lattice composition, we
must beware of situations where we will be unable to ob-
serve the components of interest in sufficient number to re-
solve a proportional relationship amidst the variation due
to quantization.

While this presents an outstanding challenge to bioinfor-
maticians and data analysts, it may be a challenge better
taken up by experimentalists. If we could find ways to sys-
tematically deplete high-abundance molecular species (as
can be done with ribosomal RNAs) to increase the counts
of less abundant members, LRA of these adjusted composi-
tions could be more confidently applied to explore relation-
ships between rarer species.

In summary, while technology enables us to read many
millions of nucleotide sequences, the diversity of sequences
present in different experimental settings can give rise to big
numbers of small (and zero) counts. As we have shown, lat-
tice compositions have fundamental limits to the amount
of information they can represent and these limits become
apparent when counts are low. LRA approaches to mea-
suring pairwise association will struggle in this setting. The
implications of this are that counts remain an outstanding

challenge for LRA of compositional data in the molecular
bioscience, especially metagenomic data.
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OCLC,TerrassaUniversitat Politècnica de Catalunya, Barcelona,
Spain, pp. 46–56.

34. Martin,T.G., Wintle,B.A., Rhodes,J.R., Kuhnert,P.M., Field,S.A.,
Low-Choy,S.J., Tyre,A.J. and Possingham,H.P. (2005) Zero tolerance
ecology: improving ecological inference by modelling the source of
zero observations: modelling excess zeros in ecology. Ecol. Lett., 8,
1235–1246.

35. Warton,D.I. (2005) Many zeros does not mean zero inflation:
comparing the goodness-of-fit of parametric models to multivariate
abundance data. Environmetrics, 16, 275–289.

36. Palarea-Albaladejo,J. and Martı́n-Fernández,J.A. (2015)
zCompositions––R package for multivariate imputation of
left-censored data under a compositional approach. Chemometr.
Intell. Lab., 143, 85–96.

37. van den Boogaart,K.G. and Tolosana-Delgado,R. (2013) Zeroes,
Missings, and Outliers. In: Analyzing Compositional Data with R. Use
R!. Springer, Berlin, Germany, pp. 209–253.

38. Silverman,J.D., Roche,K., Mukherjee,S. and David,L.A. (2018)
Naught all zeros in sequence count data are the same. bioRxiv:
https://doi.org/10.1101/477794, 26 November 2018, preprint: not peer
reviewed.

39. Marguerat,S., Schmidt,A., Codlin,S., Chen,W., Aebersold,R. and
Bähler,J. (2012) Quantitative analysis of fission yeast transcriptomes
and proteomes in proliferating and quiescent cells. Cell, 151, 671–683.

40. Sunagawa,S., Coelho,L.P., Chaffron,S., Kultima,J.R., Labadie,K.,
Salazar,G., Djahanschiri,B., Zeller,G., Mende,D.R., Alberti,A. et al.
(2015) Structure and function of the global ocean microbiome.
Science, 348, 1261359-1–1261359-9.

41. Sherrill-Mix,S., McCormick,K., Lauder,A., Bailey,A.,
Zimmerman,L., Li,Y., Django,J.-B.N., Bertolani,P., Colin,C.,
Hart,J.A. et al. (2018) Allometry and ecology of the bilaterian gut
microbiome. Mbio, 9, e00319-18.

42. Lynch,M.D.J. and Neufeld,J.D. (2015) Ecology and exploration of
the rare biosphere. Nat. Rev. Microbiol., 13, 217–229.

43. Jousset,A., Bienhold,C., Chatzinotas,A., Gallien,L., Gobet,A.,
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