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ABSTRACT

Based on the Carrera unified formulation (CUF) and first-invariant hyperelasticity, this work pro-
poses a displacement-based high order one-dimensional (1 D) finite element model for the geo-
metrical and physical nonlinear analysis of isotropic, slightly compressible soft material structures.
Different strain energy functions are considered and they are decomposed in a volumetric and an
isochoric part, the former acting as penalization of incompressibility. Given the material Jacobian
tensor, the nonlinear governing equations are derived in a unified, total Lagrangian form by
expanding the three-dimensional displacement field with arbitrary cross-section polynomials and
using the virtual work principle. The exact analytical expressions of the elemental internal force
vector and tangent matrix of the unified beam model are also provided. Several problems are
addressed, including uniaxial tension, bending of a slender structure, compression of a three-
dimensional block, and a thick pinched cylinder. The proposed model is compared with analytical
solutions and literature results whenever possible. It is demonstrated that, although 1D, the pre-
sent CUF-based finite element can address simple to complex nonlinear hyperelastic phenomena,
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depending on the theory approximation order.

1. Introduction

Structures made of hyperelastic soft materials, such as elas-
tomers and gels, can undergo extreme stretching before fail-
ure occurs. They are intrinsically compliant at the
constitutive level and have unique elastic characteristics that
can be exploited to produce functional devices; e.g. flexible
pressure sensors [1], soft optical composites for tunable
transmittance [2], electro-active tunable devices [3], etc.

Being the bulk modulus order of magnitudes larger than
the shear modulus [4], the nonlinear finite element analysis
of nearly incompressible hyperelastic materials offers many
challenges though. The main causes are volumetric locking
and hourglass instability resulting as a consequence of ill-
conditioned stiffness matrices [5]. Over the last decades,
many researches have addressed these difficulties. Classical
works explored the application of mixed methods for deal-
ing with the incompressibility constraint in the nonlinear
regime [6, 7]. Many later works were based on the seminal
idea of Simo and Armero [8], who derived a pure displace-
ment formulation with no volumetric locking by using static
condensation and introducing incompatible modes and
other enhancement functions within a Hu-Washizu mixed
formulation, see the work of Caylak and Mahnken [9] for
example. This paper and several others in the literature (e.g.
[10]) rely, instead, on the F method [11], based on a local
multiplicative split of the deformation gradient into volume-
preserving and dilatational parts.

Although the aforementioned techniques have met with
success for simulating hyperelasticity and elasto-plasticity by
plain-strain quadrilateral and solid finite elements (FEs), the
need to develop simple but effective models for soft beam,
plate and shell structures able to overcome the issues associ-
ated with the computational burdensome of some problems
of practical interest is fairly clear. However, Antman and
Schuricht [12] demonstrated that it is very complex to for-
mulate rod and shell theories that exactly preserve the
incompressibility. A brief overview of available theories for
one-dimensional (1 D) and two-dimensional (2 D) soft struc-
tures is given in the following anyhow for the sake of
completeness.

Quite recently, Attard [13] provided a comprehensive
review of finite-strain beam theories. Chen and Wang [14]
derived the governing equations of Yeoh hyperelastic soft
beams by using the inextensibility assumption of the beam’s
centerline and the principle of minimum potential energy.
Lubbers et al. [15] studied the sub-critical buckling of neo-
Hookean wide beams by developing a 1D nonlinear beam
model by combining the Reissner-Mindlin kinematics with a
nonlinearity in the stress-strain relation. A similar problem
was also considered by Chen and Jin [16]. Breslavsky et al.
[17] analyzed static deformations and free and forced non-
linear vibrations of thin rectangular plates made of incom-
pressible neo-Hookean material. The classical von Karman
nonlinear plate theory was used and the transverse normal
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strain was obtained from the incompressibility condition.
Breslavsky et al. [18] then extended this study to
Mooney-Rivlin as well as Ogden hyperelastic laws.
Rectangular plates made of isotropic or anisotropic, linearly
elastic incompressible material were studied through oppor-
tune analytical solutions by Aimmanee and Batra [19].
Amabili et al. [20] investigated the hyperelastic behavior of
a thin square silicone rubber plate analytically, numerically
and experimentally. In particular, the equations of motions
were based on a unified energy approach, whereas the geo-
metrical nonlinearities relied upon the Novozhilov nonlinear
shell theory. Later, a higher-order 9-parameter geometrically
nonlinear theory for circular cylindrical shells made of
incompressible hyperelastic materials was developed by the
same author [21]. Pascon and Coda [22] developed a tri-
angular shell FE formulation with seven nodal parameters to
analyze highly deformable shell structures composed of
homogeneous rubber-like materials.

The proposed study introduces a unified 1D finite elem-
ent for the analysis of soft material structures. This finite
beam element is based on the Carrera Unified Formulation
(CUF), which gives the possibility to write the governing
equations in a compact form by using a recursive index
notation [23]. In essence, the FE arrays are written in terms
of fundamental nuclei in CUF, which are invariant of the
theory approximation order. Hence, low- (classical) to
high-order 1D approximations can be built with ease. In
this manner, although 1D, the refined element is able to be
tuned to address slender structures as well as more com-
plex problems in which 3D stress states may arise,
for example.

Recently, CUF has been extended to deal with linear elas-
tic geometrical nonlinear analyses of beams [24], plates [25]
and shells [26]. The results have shown the great capabilities
of the FE provided to deal with static large displacement
analysis, dynamics [27], and analysis of laminated structures,
eventually providing accurate interlaminar stress fields [28].
Extension of CUF-based 1D finite elements to material and
geometrical nonlinear analysis of hyperelastic structures is
quite promising and is outlined in this paper as follows: (i)
first, based on first-invariant hyperelasticiy and F method,
the material Jacobian tensors for various stored energy func-
tions are provided in Section 2; (ii) second, the high order
FE model used is briefly discussed in Section 3; (iii) next,
Section 4 gives the governing equations and the related FE
arrays in unified form; (iv) numerical results are, then, dis-
cussed in Section 5; (v) finally, the main conclusions are
drawn in Section 6.

2. Nearly incompressible hyperelastic materials
2.1. Strain energy functions

In the case of isotropic hyperelastic materials, the strain
energy function ¥ can be expressed in terms of the princi-
pal stretches (4;, 45, 43), which are the eigenvalues of the
deformation gradient tensor F, or equivalently in terms of
the invariants (I}, I, I3) of the right Cauchy-Green strain
tensors C = FTF. It reads:
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Y =W, 1,,I) (1)
where
I =tr(C)
L= %(If ~ te(C?)) @)
I; = det(C)

and tr(e) and det(e) represent the trace and determinant of
a tensor, respectively.

For nearly incompressible materials, the Jacobian deter-
minant (volume ratio) ] = det(F) and hence I are approxi-
mately equal to unity. According to Flory [29], it is
convenient for such a problem to write the gradient tensor
as F = FyoF, where F,; = Ji1 and F = J3F represent the
volumetric and the isochoric changes, respectively.
Reasonably, by setting C,q = Ji1 and C =] 3C, we have
C = C,,C. Now, it is possible to postulate an additive
decomposition of the of the strain energy function and to
split ¥ into its volumetric (U) and isochoric (¥) parts as
well, to have:

¥ =U()+¥(,L) 3)

where I, and I, are the first two deviatoric strain invariants,
i.e. the invariants of the isochoric right Cauchy-Green tensor
C.

The volumetric function U(J) acts as a penalization of
incompressibility [30]. Several formulations are available in
the literature. In this paper we employ the model provided
by Sussman and Bathe [7], which states that:

1 2
u(J) = D_l(] -1) (4)
where D; = 2/k is the material incompressibility parameter
and k is the material bulk modulus.
The literature about the isochoric stored energy potential
W is vast. Several formulations have been derived over the
last decades [31]. Here, we focus on first-invariant hypere-
lasticity, so that ¥ = W(I;). Among the others, the neo-
Hookean model [32] is quite popular for its simplicity:

¥(n) =5 (-3 (5)

where p is the infinitesimal shear modulus. The model of
Gent [33], instead, is based on two parameters and it states

that:
b= Wy B3
(1) - 42 ln(l ]m) ©)

where J,, is the limit value of (I; — 3). Another formulation
investigated in this paper is the Exp-Ln model derived
recently by Khajehsaeid et al. [34]; it reads:

W) = Al ew (ol —3) 10 G2 (- -2) - o]

(7)

where A = ;/2 and the parameters b and a adjust moderate and
large stretch regimes, respectively. Although the aforementioned
strain energy functions have been demonstrated to be effective
for polymeric and some biological materials, there are other
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formulations that are more appropriate for soft tissue biomech-
anics, such as the Fung-Demiray model [35]:

¥(0) = L fexp (a7 ~3)) 1] ®)

In Eq. (8) f = u is the infinitesimal shear modulus and o
is the stiffening parameter. Note that in the following deri-
vations other strain energy functions can be used with no
loss of generality.

2.2. The material Jacobian tensor

Given the stored-energy function W, the second Piola-
Kirchhoff (PK-2) stress tensor can be defined as:

S=2— 9

aC )
which represents a general form of the constitutive relation.
Substituting Eq. (3) into Eq. (9), one can express the PK-2
stress tensor as the sum of a volumetric and an isochoric part.

S:SV01+SiSO
wvol __ —1
$T=lpC (10)
| o 1
SlS0:2]3i 1_*11C

ol 3

where 1 is the unity matrix, C ™' is the inverse of the right
Cauchy-Green strain tensor and p = %—IIJ is the hydrostatic
pressure. The expression of §*° provided in Eq. (10) holds
for first-invariant hyperelasticity models. A more general
form of $*° can be found in the work of Suchocki [36].

According to Holzapfel [37], the nonlinear constitutive
equation in Eq. (9) can be transformed into the following
incremental form:

AS=C- %AC (11)
which represents a linear relation between the increments of
S and C. Therefore, Eq. (11) is generally referred to as line-
arized constitutive equation. Here, C is the fourth-order elas-
ticity tensor (material Jacobian tensor) defined as:

s _, 05 _, o

~0E T oC  9coc

where E = 1(C — 1) is the Green-Lagrange strain tensor.
Substituting Eq. (10) into Eq. (12) and assuming U =

U(J) and ¥ = ¥(T)), it is possible to find the following

expression of the material Jacobian tensor [38]:

C

(12)

C:Cvol+ciso ,

ou o°U
vol —1 —1 2 —1 —1

=] —(C C " -2 —C C

c ]8](_® C)+18]2 ®
; 4 ,0¥
CISO — _ 27 1 C71 Cfl 1

31 811[ ® + ®

1 is
~L(Zer + 3 c'ech+J73C,

.
- ¥
C, :46—2

oL

1
1®1 —511(1®c*1 +C'®1)

1
+§IfC’1 ® C™'] (13)

where ® is the dyadic product operator and Z 1 =
—0C™'/AC is the fourth order identity tensor in the refer-
ence configuration, see [37].

3. High order finite beam elements

Some recalls about the Carrera Unified Formulation (CUF)
and related finite elements (FEs) are provided in this sec-
tion. Consider a deformed hyperelastic body; the displace-
ment vector U(X) maps points in the reference
configuration X = (X, Y,Z) to points in the current config-
uration x = (x,,z); i.e. U= x — X. Following the standard
notation, the deformation gradient can be expressed as:

F=1+VU=1+D (14)

where D is the displacement gradient. In the domain of
CUF, the 3D displacement field of a solid beam with main
dimension along the Y-axis, can be expressed as a generic
expansion of the generalized displacements U,(Y) :

UX,Y,2) = F.(X,2)U,(Y), t=12,..,M (15

where F; represent functions of the coordinates X and Z on
the cross-section, M stands for the number of the terms
used in the expansion, and the repeated subscript 7 indicates
summation. The choice of F, determines the class of the 1D
CUF model.

In the case of Taylor Expansion (TE) models, for
example, the generalized displacements are expanded around
the beam axis by means of a Maclaurin polynomial of trun-
cated order N, see [39]. In other words, F, functions are
polynomials of the type X'Z/ in the case of TE CUF models.
For reasons of completeness, the full 3D displacement field
of a quadratic (N=2) TE beam model (TE-2) is given in
the following:

Ux(X,Y,Z) = Ux, (Y) + X Uy, (Y) 4+ Z Uy, (Y) + X2 Uy, (Y)
+ XZ Uy, (Y) + Z* Uy, (Y)
Uy(X,Y,Z) = Uy, (Y) + X Uy,(Y) + Z Uy,(Y) + X* Uy, (Y)
+ XZ Uy, (Y) + Z* Uy, (Y)
Us(X,Y,Z) = Uy (Y) + X Uz (Y) + Z Uz (Y) + X* Uy, (Y)
+XZ Uz (Y)+ Z2 Uy (Y)
(16)

Note that TE models are hierarchical and, in the case of
a TE model of order N, the number of expansion terms is
M = (N +1)(N + 2)/2. Evidently, the classical beam theo-
ries (Euler Bernoulli and Timoshenko theories) are particu-
lar cases of the linear CUF TE model (TE-1).

TE CUF-based models have been demonstrated to be
very effective for a wide range of applications, see [40, 41].
Nevertheless, they can be inaccurate and thus are not sug-
gested in the case of heterogeneous materials (e.g., lami-
nates) or thin-walled structures [42, 43]. In these cases,
Lagrange Expansion (LE) models can be used instead. LE
beam theories, in fact, are based on the use of Lagrange-
type polynomials to expand the generalized displacements
on the beam section domain, F;. The cross-section physical
surface is discretized into a number of expansion sub-



domains, whose polynomial degree depends on the type of
Lagrange expansion employed. Three-node linear (LE-3),
four-node bilinear (LE-4), nine-node quadratic (LE-9), and
sixteen-node cubic (LE-16) beam models have been devel-
oped in the framework of CUF. For the sake of brevity, their
explicit kinematics is not included here, but they can be
found in Carrera and Petrolo [44]. In the following, the 3D
displacement field of a quadratic LE-9 beam model is given
as an example:

Ux(X,Y,Z) = Fi(X,Z) Ux, (Y) + F>(X, Z) Ux, (Y)
+ ...+ Fo(X, Z) Ux, (Y)

Uy(X,Y,Z) = Fi(X,Z) Uy, (Y) + F,(X, Z) Uy, (Y)
F o+ Fo(X, Z) Uy, (Y)

Us(X,Y,Z) = F\(X,Z) Uy, (Y) + F2(X, Z) Uy, (Y)
+ ..+ Fo(X,Z) Uy (Y)

(17)

where Fy, ... ,Fy form a usual quadratic Lagrange polynomial
set. The main feature of LE models is that they make use of
local expansions of pure displacement variables, being these
arbitrary placed over the cross-section surface. This charac-
teristic enables to capture complex 3 D-like solutions at a
global/local scale and to increase the accuracy of the solu-
tion in particular zones of interest [45].

Independently of the nature of the refined 1D theory
adopted, the generalized displacements can be approximated
along the beam axis by discretizing the 1D support with
finite elements to have:

U(Y)=N,(Y)Uy, i=1,2,..,N, (18)

In Eq. (18), i stands for summation and the generalized
displacements are described as a linear combination of the
unknown nodal vector, U, by 1D shape functions, N;. In
the case of classical shape functions, N,, stands for the num-
ber of nodes per element and determines the approximation
accuracy along the beam axis.

The main advantage of using a compact notation as in
Eqs. (15) and (18) is that the governing equations and the
FE matrices can be formulated in a unified and hierarchical
manner, which is affected neither by the choice of the the-
ory of structure, represented by F,;, nor by the FE shape
functions N,

4. Governing equations in unified form
4.1. Internal force vector

According to Pagani and Carrera [24], the Green-Lagrange
strain vector can be expressed as follows:

E=E +E, = (b+b,)U (19)

where U = U(X) and b; and b,; are the linear and nonlinear
differential operators, respectively. They are not given here
for the sake of brevity, but they can be found in many refer-
ence texts, see for example [46]. Substituting Eqs. (15) and

(18) into Eq. (19), one has:
E = (Bf' + B U (20)

where B’ and BY are the two following matrices:

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES . 345

F; N; 0 0
0 F.N;, 0
: 0 0 E.  N;
B/ =b(F, N;) = o (21)
R P
0 F. ,N; F.N;,
FE:N;, F.(N; 0
and
Uy F: (Ni Uy (F. «N; Uz Fe (Ni
Uy, E:Ni, Uy, F:Ni, Uy, F:N;i,
Ux,,F. ,N; Uy, F. ,N; Uz, F. ,N;
Bf“fl
nlfz

Ux (F: ,Ni+ Ux ,F: (\Ni Uy F:,Ni+ Uy ,F (N; Uz,F.,Ni+Uz,F. N;

Ux,Fe,Ni+ Ux,FN;, Uy,F,Ni+Uy,FNi, Uz, F ,N;+U;z,FN,

Ux FNi, + Ux,Fe,N; Uy, F:Ni, + Uy, F: N; Uz F:Ni, + Uz, F; N;
(22)

In Egs. (21) and (22), commas denote partial derivatives in
the reference configuration.

The governing equations of the problem under consider-
ation are derived from the principle of virtual work, which
states that the sum of all the virtual work done by the
internal and external forces existing in the system is zero;
ie.

5Wint - (swext =0 (23)

where Wi, is the strain energy, Wey is the work of the
external loadings, and 0 denotes the variation.

Considering E and S in their vectorial form (Voigt’s nota-
tion), the virtual variation of the internal strain energy can
be expressed as:

OWine =< OETS > (24)

where < (o) >= [, (o) dX is the volume integral in the ref-
erence configuration. Now, we can derive the virtual vari-
ation of the strain vector from Eq. (20) to have:

OE = 6((B} + BY)U,) = (B} + 2BY)oU,;

nl

(25)
Thus,

OE" = sUL(B] +2 B))" (26)
In writing Eqgs. (25) and (26), the indexes s and j have
been respectively used instead of 7 and i for the sake of con-
venience. Substituting Eq. (26) into Eq. (24) gives:
SWin = 0UY; < (B} +2 B))"S >= SU_F}

sj* int

(27)

where § is found according to Eq. (10) and Ff{lt is the 3 x 1
fundamental nucleus (FN) of the nonlinear internal force
vector. The FN is independent of the theory approximation
order and of the choice of the finite element discretizing the
beam axis. Once F; (i.e. F,) and N; (i.e. N;) are chosen, the
EN can be expanded to give the internal force vector of the
arbitrarily high order finite beam element; see Carrera et al.
[23] for further details about the expansion of the FNs.
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The FN of the external load vector is not derived here.
However, one can reasonably have:

OWege = 5UTF§’Xt (28)

Substituting into Eq. (23) and assembling over the final
structure, the set of nonlinear algebraic equations can be
found:

OU: Fipt—Fey =0 (29)

4.2. Linearization

Equation (29) constitutes the starting point for finite element
calculation of geometrically and physically nonlinear analysis
of solids and structures, and it is usually solved through an
incremental linearized scheme, typically the Newton-Raphson
method. Accordingly, Eq. (29) is written as [47]:

Pros = Fint - Fext =0 (30)

where ¢,,, is the vector of the residual nodal forces.
Equation (30) can now be linearized by expanding ¢, in
Taylor’s series about a known solution, say (U,Fex).
Omitting the second-order terms, one has

0
(pres(U + 5U’ Fext + 5F€Xt) = (pres(U) Fext) + a(plrjes 5U
0P yes
"6 5] Feq =0
+ aFext !
(31)

(‘hpm _ 3% _

where = K is the tangent stiffness matrix, and 7p=

—1.In Eq (31) it was assumed that the load varies dlreexctly
with the vector of the reference loadings F.y and has a rate
of change equal to the load parameter /, i.e. Fey = A Foy.
Equation (31) is written in a more compact form as follows:

K1 0U =) Fey — @, (32)

Since the load-scaling parameter A is taken as a variable,
an additional governing equation is required and this is
given by a constraint relationship ¢(0U, 04) to finally give:

K7 0U = 6). Fey — @,
(33)
c(0U,07) =

Depending on the constraint equation, different incremen-
tal schemes can be implemented. In this paper, a path-follow-
ing method is employed in which the constraint equation is a
function of both displacement and load parameter variations.
In particular, we employ an arc-length strategy as proposed by
Criefield [48, 49]; hence the constraint relationship corre-
sponds to a multi-dimensional sphere. Furthermore, to avoid
doubling back on the original load-deflection path for the
given iteration step, the solution of the consistent-linearized
constraint equation is used as proposed by Carrera [50] to
advance in the calculation. Details about the solution scheme
implemented are not given here although. Interested readers
are referred to Ref. [24].

4.3. Tangent stiffness matrix

Assuming that the loading is conservative so that the linear-
ization of the virtual variation of the external loads is null,
ie. 0°Wer =0, the analytical expression of the tangent
matrix can be obtained from linearizing the virtual variation
of the strain energy as follows:

Wiy =< §(SE'S) >
=< 6E'38 > + < 5(0E")S >
= OUL(KJ™ + KT + KI™)oU,

= SUK}"U,

(34)

Each nonlinear contribution in the right-hand-side of Eq.
(34), is now considered separately.

The first term, < 0ET3S >, demands for the linearized
constitutive relation provided in Egs. (11) and (12); it reads:

08 = CSE = C(B{' + 2 BY})dU; (35)
Hence, considering Eqgs. (26) and (35) gives:
< 8E"58 > = 0UJ; < (B} +2 B))"C (Bj' +2 B}j) > oUy
=oU} K KJ® oU, +0U] (2 K%y Uy
+0UY KJj 8Uy +0UY (2 Kijpy) 0U,
=oU} ( g“+1<’g5) oU;
(36)
where
K" =< (B))'C Bi' > K%¥_<<*fcsz>
K} =2 < (B))'C Bf > Ky =2<(B})C B} >
(37)

and K7° =2 K] + KU +2 KJ}%, is the sum of order-one
and order two nonhnear matrlces As in the case of the
internal force vector, the matrices Kg”, KZ:ZS, KZITZS, and KZ;;I
are given in terms of FNs. These are 3 X 3 matrices that, given
the cross-sectional functions (F; = F;, for t =s) and the
shape functions (N; = N, for i =), can be expanded by using
the indexes 7,s =1, ..., M and i,j = 1, ..., N,, in order to obtain
the elemental secant stiffness matrix of any arbitrarily refined
beam model. In other words, by opportunely choosing the
beam kinematics (i.e., by choosing F; as well as the number of
expansion terms M) classical to higher-order beam theories
and related stiffness arrays can be implemented in an auto-
matic manner by exploiting the index notation of CUF.

The evaluation of the contribution < §(SET)S > in Eq.
(34) requires the linearization of the nonlinear geometrical
relations [24]:

T

(B,)"

35Uy, 60Uy,
SUy,0Uy,
Uy, 00y,

O(SET) = (38)



Figure 1. Geometry and boundary conditions used for uniaxial tension test.

where
FT,XFS.XNYI\IJ FY,XE‘,XN’I\]] FT‘XFS,XNXN/
F.F;N; ,Nj, F.FN;i N, F.FNj ,Nj,
Ff,/FS.lN‘N/ FZ,AF‘,/N’I\’) FY‘/F&AN‘I\]]‘

B, =
" Fe (F; ,NiNj + F; ,F (NiN;  F; (F; ,)NiNj + Fe ,Fo [NiN;  F; (F ,NiNj + Fq ,F; \NiNj

F. ,F,NiN; , + F.F; ,N; \N; F.,F;,N,N;, + F.F; ,N; \N; F;,F;NN;, + F.F; ,N; N
F. (ENiNj , + F:Fs ([Ni N;  F; (FiNiN; , + F:Fg (Ni N;  F: (EiNiN; , + F.F (Ni ,N;

(39)
Given Eq. (38) and after simple manipulations, the following
passages are fairly clear:
T

(B,)'S >

nl

SUx, Uy,
5Uy, 6Uy,
U, 80y,

< O(0ET)S > =<

(40)

. s \T
= 5U§ < dlag((Bn,) S) > oUy;
= OULKI®U,

where diag((B?))"S) is the 3 x 3 diagonal matrix, whose
diagonal terms are the components of the vector ( ZI)TS.
The term elaborated in Eq. (40) defines a tangent term aris-
ing from the nonlinear form of the strain-displacement
equations and is often called the geometric stiffness [51], of

which K7™ is the fundamental nucleus.

5. Numerical results
5.1. Uniaxial tension

The first problem deals with uniaxial tension, for which the
analytical solution is easy to determine. In this case, consid-
ering first-invariant hyperelastic materials, we have:

— 2 _
I; :11:,1§+7 ¥ =Y(4) (41)
1
where /, is the stretch ratio in the traction direction, eigen-
value of F. Note that in Eq. (41) the volume ratio ] is

assumed equal to unity. Now, according to Holzapfel [37]:
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Table 1. Material parameters used for the uniaxial tension test.

Model Parameters um

Neo-Hookean [32] w=0.27 MPa

Gent [33] uw=0.27 MPa
Jm = 85.91 -

Exp-Ln [34] A=0.195 MPa
a=0.018 -
b=0.22 -

Fung-Demiray [35] p=02 MPa
a= 16 -

The penalty parameter D; is equal to 33 x 1072 MPa™ ' for all the cases.
oY oYL oY 1
2o ( 1 ) “2)

P = —— — _27 —_—
Non o anoa ol 2

where P;; is the Lagrangian stress, i.e. the first Piola-
Kirchhoff (PK-1) stress component, and % can be derived
from Egs. (5), (6) and similar. Given P;;, the PK-2 (§;;) and
the Cauchy (g;;) stress components can be found straight-
forwardly:

10¥Y 1

S = ——=
W00 A

Py (43)

., O
on =] Az =AhPu

0l (44)

For verification purpose, the aforementioned exact solu-
tion is compared to numerical solutions obtained with the
present CUF-based finite element. We consider a cubic sam-
ple, whose geometry and boundary conditions are depicted
in Figure 1. The cubic sample is modeled as a beam, discre-
tized with one single finite element along the Y-axis. For
this particular case, a linear (two-node, B2) Lagrangian
beam element is utilized. On the other hand, the theory of
structure, i.e. the beam cross-section approximation, is bilin-
ear in XZ. In other words, one L4 approximation polyno-
mial is used as F;; see Eq. (15) and Ref. [44].

All the strain energy functions described in Egs. (5)-(8)
are considered in the analysis and the material parameters
employed are given in Table 1. The stress-stretch curves are
given in Figure 2. Also, deformed states of the cubic samples
under tension made of Gent-type material are shown in
Figure 3. The comparison demonstrates a perfect matching
between the proposed finite element model and the analyt-
ical solutions, for both small to large strain regimes.
Although not documented here for the sake of brevity, the
same analysis has been performed also by considering a
larger number of finite elements and different F, approxi-
mation functions (both TE and higher-order LE). For all the
cases, the analytical solutions were perfectly superimposed
to CUF-based simulation results.

5.2. Neo-Hookean beam subjected to bending

In the second analysis case, a hyperelastic clamped-free
beam subjected to a tip transverse force is considered. The
beam has a solid rectangular cross-section (100 mm thick X
150mm height), whereas the length to thickness ratio is
equal to 100. The transverse loading is Fy = 269.5 N. The
structure is made of soft material (here modeled with the
neo-Hookean strain energy function) with infinitesimal



348 A. PAGANI AND E. CARRERA

Stress [MPa]

Stress [MPa]

shear modulus p=50MPa and bulk modulus k =2u/3.
The same problem is addressed by Maas et al. [52
provide also an analytical solution and some finite elem-

ent results.
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Figure 2. Uniaxial tension for various hyperelastic models; comparison of analytical and CUF-based FE results.
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Figure 3. Deformed states of the cube subjected to uniaxial tension and made of hyperelastic Gent-type material. 1B2-1L4 CUF-based finite element model.

=7.36

The problem under consideration is depicted in Figure 4.
The figure shows the geometry, the boundary conditions
and some deformed states of the beam subjected to large

deformations. The results demonstrated in this pictures are
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Figure 4. Neo-Hookean cantilever. Geometry, boundary conditions and
deformed states for various load levels. Fo = 269.35 N.
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obtained by the present high-order CUF beam model. A
more detailed study of the equilibrium state of the cantilever
is shown in Figure 5. In performing the analyses reported,
four-node cubic shape functions (B4) have been used to dis-
cretize the beam axis. The convergence analysis of Figure 5a
shows that five elements are enough for providing accurate
results. Figure 5b, on the other hand, shows the effect of dif-
ferent beam theories (both TE and LE). It is demonstrated
that low- and high-order beam models provide all good
results in terms of displacement prediction. This is quite
reasonable because the beam is very slender.

Different beam theories are also compared in Figure 6,
which gives the trough-the-thickness distribution on the
midspan cross-section of the PK-2 axial and transverse shear
stress components for a large loading. This figure highlights
the importance of high-order kinematics in the case of stress
prediction. Indeed, although low-order beam theories pro-
vide good accuracy in terms of Sy y, at least a third-order

0.9 , .
08 |
07 |
06 |
L o5}
-
N 04 f Anlt.
203 s LE-16 |
S B LE-9
02 <] LE-4 |
———
0.1 s TE-2 -
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0 02 04 06 08 |

F/Fy [-]

(b) Effect of theory approximation order

Figure 5. Equilibrium curves (tip displacement vs. loading) of the neo-Hookean beam subjected to bending.
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Figure 6. Effect of the theory approximation order on the through-the-thickness distribution of PK-2 axial and transverse shear stress components on the midspan
cross-section of the neo-Hookean beam subjected to a transverse loading F/Fy = 1.05.
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Figure 7. Through-the-thickness distribution of PK-2 axial and transverse shear stress components on the midspan cross-section of the neo-Hookean beam for vari-

ous transverse loadings. LE-16 CUF finite element beam model.
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Figure 8. Incompressible block under pressure: geometry, boundary conditions and cross-section models adopted.

beam model (e.g. TE-3 and LE-16) is required to correctly
predict the shear stresses Sy . As a final result for the canti-
lever hyperelastic beam, Figure 7 shows the PK-2 stress state
for various load levels. These latest results derive from a
CUF-based finite beam model discretized with 10 B4 and
making use of a LE-16 approximation over the
cross-section.

5.3. Nearly incompressible block under compression

In this section, the nearly incompressible block under pres-
sure, introduced by Reese et al. [53] and later considered by
many authors (see for example [9, 30, 54, 55]), is studied.

The problem under consideration is depicted in Figure 8. It
consists of a cube loaded by an applied pressure in the cen-
ter of the top face. Note that only a quarter of the cube is
modeled with each side equal to 1 mm. Symmetric Dirichlet
boundary conditions are applied to the vertical faces and the
top face is fixed in the horizontal plane. The cube is made
of neo-Hookean material with u = 80.194 MPa and k=
400'953.269 MPa.

In the framework of the present paper, the block is mod-
eled via refined 1D finite elements laying along the Y-axis.
In contrast, LE expansions are used in the cross-section
domain (TE exhibits poor convergence for this problem and
are not reported hereafter). The models are referred to as N
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Table 2. Vertical displacement Uy [mm] at point A for various 1D CUF models
of the block under compression for various pressure levels and comparison
with results from the literature.

Model p =320 MPa p =640 MPa dof’s
Caylak and Mahnken [9] 0.6935 - (202463 tet. el.)
Karabelas et al. [30] 0.6979 0.8527 10°+

4 LE-16 0.6925 0.8504 6591

2 LE-16 0.7383 0.9306 1029

4 LE-9 0.7149 0.8583 2187

2 LE-9 0.6952 0.8014 375

4 LE-4 0.3266 0.4684 375

2 LE-4 0.3183 0.4591 81

LE-4, N LE-9 or N LE-16, where N is the number of ele-
ments adopted along X, Y and Z (see Figure 8). For consist-
ency reason, linear (B2), quadratic (B3) and cubic (B4)
shape functions are employed to discretize the longitudinal
axis in the case, respectively, of LE-4, LE-9 and LE-16 beam
models. Furthermore, a reduced order integration is utilized
to calculate the integrals of the shape functions [N;N; to
attenuate locking phenomena.

Figure 9 shows the vertical displacement Uy of point A
(center of the block) as a function of the applied pressure p
for various LE beam models and a reference solution based
on a stabilized mixed U-p three-dimensional finite element
formulation [9]. The equilibrium curves range from p=0 to
p=320MPa; higher values are not given in the reference
solution. It is clear that the LE-4 models are affected by the
locking. In contrast, quadratic (LE-9) as well as cubic (LE-
16) beam formulations provides good results. In particular,
the 4 LE-16 model matches perfectly the 3D refer-
ence solution.

A further assessment is provided in Table 2, where the
proposed model is compared to 3D finite elements for both
moderate (p=320MPa) and large (p=640MPa) pressure
loads. In detail, the refined LE models are here compared
with the best solution from Caylak and Mahnken [9], based
on a 3D model using more than 200,000 tetrahedral mixed
solid elements, and with a pressure-projection stabilized
finite element model from Karabelas et al. [30]. For the lat-
ter, the results were extrapolated from a plot and, from the
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many solutions provided in the paper, the first model giving
convergent solution for both the pressure levels
was selected.

As a final result, Figure 10 shows some deformed state of
the solid block subjected to different pressure loads. The
deformations depicted were calculated by using the present
LE-16 beam model. The 3D mesh shown in the figure is a
plotting mesh used for convenience. The mathematical
model is 1D indeed.

5.4. Thick hyperelastic cylinder

The thick hyperelastic cylindrical structure shown in Figure
11 is considered as the last analysis case. For symmetry rea-
son, only one-quarter of the structure is considered as in
[56]. The inner radius is equal to 8 cm, whereas the thick-
ness is t=2cm. The length of the cylindrical portion ana-
lyzed is equal to L =15cm. A neo-Hookean material model
is adopted with infinitesimal shear modulus u=6000kN/
cm? and bulk modulus k = 280,000 kN/cm®. Note that in
this case the Poisson ratio is v = 0.4, hence no volumetric
locking is expected.

This problem was already analyzed in the literature by
many authors using shell or brick elements [53, 54, 56]. Our
objective here is to demonstrate the proposed beam model
can deal with large cross-sectional deformation, thus can be
used effectively for soft thin-walled structures. Indeed, the
cylinder is modeled by using one single four-node cubic
finite element (B4) along the beam axis laying on Y. On the
other hand, LE-16 approximations are employed on the
beam cross-section because of their superior convergence
capabilities demonstrated in the previous sections.

The analyses conducted show that one B4 beam element
is enough to guarantee convergence. In contrast, the cross-
section needs to be discretized using a number of LE-16
sub-domains. Table 3 gives the transverse displacement at
point A for various LE-16 models and p=999.47 kN/cm.
They are referred to as N LE-16, where N is the number of
elements employed along the circumferential direction. One
single element along the thickness was instead enough to
catch the bending effects. The table also shows the difference
between the proposed approach and some results from the
literature, even in terms of number of degrees of freedom.

Analogous comparison with references is also possible
from Figure 12, which presents the equilibrium curves
resulting from the proposed 1D formulation. Here, the con-
vergence of the models employed can be appreciated. Note
that Biichter et al. [56] used a 7-parameter nonlinear shell
formulation based on the enhanced assumed strain concept.
The same problem was solved by Reese et al. [53] with a
locking-free brick element using reduced integration plus
stabilization concept. Finally, Elguedj et al [54] performed
detailed analysis of the same structure with NURBS-based
isogemetric solutions and F method.

For completeness, Figure 13 shows some important
deformed states of the cylindrical beam under different line
load levels, from p=179kN/cm to p =886 kN/cm. As in the
previous cases, note that the one shown in the figures is
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Figure 11. Geometry, boundary conditions and FE discretization of the thick cylinder.

Table 3. Transverse displacement at point A for p =999.47 kN/cm and dof’s.

Model Uy [em] dof's
Blichter et al. [56] 16.00 3003
Reese et al. [53] 16.49 4902
Elguedj et al. [54] 16.94 -

16 LE-16 16.88 2352
8 LE-16 16.77 1200
4 LE-16 15.85 624

Comparison between CUF 1D FE models the pinched hyperelastic thick cylin-
der and solutions from the literature.

only a mesh used for plotting convenience and is represen-
tative neither of the actual mathematical model nor of the
discretization used for the analysis.
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Figure 10. Deformed states of the nearly incompressible block under compression according to the 4 LE-16 CUF beam model. Displacement magnitude in mm.
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Figure 12. Equilibrium curves (vertical displacement at point A vs. distributed
line load) of the thick cylinder. Comparison between LE-16 models and refer-
ence solutions from Biichter et al. [56], Reese et al. [53], and Elgued; et al. [54].

6. Conclusions

This paper has discussed one-dimensional (1D) high order
finite elements for the analysis of first-invariant hyperelastic
materials and structures. The model is based on the Carrera
Unified Formulation (CUF), according to which classical to
refined beam theories can degenerate into an arbitrary,
recursive approximation of the generalized 1D unknowns.
The governing equations and the related FE arrays are given
accordingly by using a few fundamental nuclei, which are
invariant of the theory approximation order.

Several problems are considered and the effect of the the-
ory approximation order on the convergence and the
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accuracy of the solutions is studied in detail. The numerical
investigation has demonstrated that the model provided is
able to deal effectively with the analysis of soft materials and
structures, from moderate to deep nonlinear regimes. Future
works will deal with the extension to plates and shells and
to inhomogeneous, eventually anisotropic, soft structures.
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