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Abstract

Background: Mitochondrial DNA is an ideal source of information to conduct evolutionary and phylogenetic
studies due to its extraordinary properties and abundance. Many insights can be gained from these, including but
not limited to screening genetic variation to identify potentially deleterious mutations. However, such advances
require efficient solutions to very difficult computational problems, a need that is hampered by the very plenty of
data that confers strength to the analysis.

Results: We develop a systematic, automated methodology to overcome these difficulties, building from readily
available, public sequence databases to high-quality alignments and phylogenetic trees. Within each stage in an
autonomous workflow, outputs are carefully evaluated and outlier detection rules defined to integrate expert
knowledge and automated curation, hence avoiding the manual bottleneck found in past approaches to the
problem. Using these techniques, we have performed exhaustive updates to the human mitochondrial phylogeny,
illustrating the power and computational scalability of our approach, and we have conducted some initial analyses
on the resulting phylogenies.

Conclusions: The problem at hand demands careful definition of inputs and adequate algorithmic treatment for
its solutions to be realistic and useful. It is possible to define formal rules to address the former requirement by
refining inputs directly and through their combination as outputs, and the latter are also of help to ascertain the
performance of chosen algorithms. Rules can exploit known or inferred properties of datasets to simplify inputs
through partitioning, therefore cutting computational costs and affording work on rapidly growing, otherwise
intractable datasets. Although expert guidance may be necessary to assist the learning process, low-risk results can
be fully automated and have proved themselves convenient and valuable.

Background
Mitochondria are remarkable among eukaryotic orga-
nelles for possessing their own genome, which is inher-
ited independently from the nucleus. Even though
mitochondrial DNA (mtDNA) constitutes a very small
fraction of the whole genome in higher organisms, the
few genes it encodes are essential to cellular metabo-
lism, and therefore main actors in the development of
genetic diseases. Their functional roles grant them con-
servation and homogeneity; in fact, the analysis of their
genetic variation is one of the primary sources of

information for the inference of evolutionary relations in
phylogenetics research.
In addition, mitochondrial DNA is an excellent intras-

pecies phylogenetic marker due to its strictly uniparental
inheritance in most species and elevated mutation rate,
and the structuring of its variability in humans indeed
sheds light on many important questions [1]. To name a
few, mtDNA-based phylogenetic studies have provided
strong support for the African origin of the human spe-
cies [2]; contributed to define the role of selection in
human mitochondrial evolution [3]; and associated dis-
tinct mitochondrial genetic backgrounds to particular
disease phenotypes [4], among others.
More specifically, this study relates to and shares some

of the goals of the Human Genome Diversity Project
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(HGDP) [5], a worldwide survey of the genetic wealth of
the human species undertaken shortly after the launch
of the Human Genome Project. The HGDP ultimately
aims to gain an understanding of genetic diversity pat-
terns, their generative processes and evolutionary his-
tory. This, in turn, is expected to generate an immense
amount of valuable biomedical information. Phyloge-
netics is naturally suited to the organization and analysis
of genetic and variational data to elucidate the course of
evolution that culminates in the observed diversity of
the human species, as follows from the aims of the
HGDP.
In this light, we set out to explore the systematic,

escalated reconstruction of human mitochondrial phylo-
genies, gaining insight from present accomplishments
and improving on the available methods and data to
understand the evolution of mtDNA.

Related efforts
The reconstruction of comprehensive phylogenies based
on mitochondrial DNA is not a novel undertaking: the
defining features of the molecule indeed make it an
ideal target for such evolutionary studies. The number
of available sequences has grown exponentially since the
advent of frequent sequencing and submission of
human mtDNA genomes to GenBank a decade ago. In
particular, the number of published human mtDNA
sequences has doubled over the last three years from
approximately 4000 to more than 8000. Though cer-
tainly beneficial, the very fast pace of progress can
undermine efforts to keep explanatory phylogenies up to
date in detail. This steady growth represents an out-
standing opportunity for comprehensive work on huge
datasets and an excellent benchmark for all sorts of
algorithms and techniques.
In this section we evaluate the merits and shortcom-

ings of current alternatives and derive some convenient
properties that will be incorporated into our proposal.
MITOMAP
MITOMAP [6] hosts what can be considered to this day
the most comprehensive fine-grain human mitochon-
drial phylogeny available for general purpose. It was
built from approximately 1000 mtDNA sequences and
subsequently updated and maintained manually by Dr
Wallace’s group until the start of the ZARAMIT project
[7] in 2007. The in-depth update process that it required
is reportedly unfeasible as it cannot keep up with the
growing number of published sequences; thus, it has not
been updated since shortly before reaching the 3000-
sequence milestone. Moreover, manual augmentation
invalidates the formal principles of most construction
methods: a mathematical optimality criterion and statis-
tical support measures that lend credibility to a given
tree.

Strictly speaking, the MITOMAP phylogeny is not a
tree due to the introduction of reticulation events in
those places where a simple, unequivocal path to each
leaf cannot be determined (so some nodes may have
two or more postulated parents, in contradiction with
the mitochondrial mode of inheritance). Moreover,
input sequences can be found associated to internal
nodes instead of confined to leaf nodes, thus blurring
the distinction between known hereditary relations and
inferred ancestral sequences, commonly assumed to
span all internal nodes. These irregularities encumber
work with the tree and its evaluation, which is further
encumbered by the lack of a machine-readable version
of the phylogeny.
Lastly, the tree is enriched with abundant annotations

on provenance, mutations and pointers to related litera-
ture. These important additions are largely dependent
on supervised selection of features; consequently, actions
should be taken to ensure coherence, avoid redundancy
and decouple these steps from explicit tree upgrade
operations.
PhyloTree.org
PhyloTree [8] is another recently started project that
publishes periodically updated trees. Its focus is on hap-
logroup-like classification and as such offers very clean
and simple results. It is a very useful resource, though
several factors make it unsuitable for our purposes. First
and foremost, it is a “tree skeleton” rather than a com-
plete phylogeny and as such it does not offer a complete
mutational landscape as a basis for in-depth genetic
study. Secondly, like MITOMAP, it is, to a lesser extent,
annotation-oriented, relying on curated bibliography list-
ings, thus introducing a supervision factor that may pre-
vent thoroughness to a degree. And thirdly, the details
of the construction of the tree are unknown, as are the
criteria for definition of new haplogroups and suppres-
sion of common polymorphisms. Nonetheless, as a
repository of expert knowledge it can serve as an excel-
lent guide for automated construction, as will be noted
in the discussion of partitioning techniques for phyloge-
netic analysis below.
Other trees
Some recent studies such as [9] make use of special-
purpose phylogenies which, though limited in their
scope and extent, provide insight into desirable proper-
ties of the resulting trees, as well as common operations
on them. These works could greatly benefit from the
availability of high-quality, general-purpose phylogenies
and in turn provide feedback to these. Lacking those,
studies have to be conducted from scratch, most likely
not aiming for automation, scalability or continuity.
Overall, there exist burdensome trends towards man-

ual supervision or annotation, as well as a serious lack
of information regarding construction methods and
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statistical support measures that could both be used to
evaluate and improve existing trees. It is also apparent
that expert knowledge plays an important role, which
should be formalized and automated. Here we propose a
methodology to automatically and efficiently build peri-
odically updated phylogenetic trees where human super-
vision is kept to a minimum and does not disturb the
reconstruction process itself.

Results and discussion
Sequences
Human mitochondrial DNA sequences are the raw
materials of our study, processed all the way from public
databases to annotated phylogenies. We consider both
flexible and strict databases. The former encompass all
available full sequences as defined by a suitable query,
while the latter satisfy some additional quality con-
straints, the most significant being the suppression of
sequences whose non-coding control region is
unavailable.
The quality of strict sequence databases is especially

relevant due to the conceptually simpler treatment that
clean, uniform data allow. The effects of outliers and
other anomalies should be mostly local, but incomplete
sequences (in the form of gaps in the alignment) can
severely limit the effective range of useful positions and
decrease the resolution of the dataset. Although a loose
database query can ideally avoid false negatives and
ensure completeness, more extensive cleaning is needed
to correct for the potentially larger number of false
positives.
Sequence length tests
Almost all of the complete human mtDNA sequences
have lengths in the 16550:16600 base pair range. No
sequences can be found beyond the 16600 bp thresh-
old. Sequences devoid of control region are clearly
identified by the vacuum in the 15600:16300 range,
supposing these are the only coherent “almost com-
plete” sequences we allow (see Sequence composition
tests below).
Outliers deserve special attention and, though automa-

tically locatable, may require manual inspection prior to
their inclusion in a dataset. All sequences in the
16500:16550 range belong to cancer tissue samples from
[10] except for a healthy sequence with a 50-bp deletion
[11]. The 16400:16500 range illustrates a rare 154-bp
non-deleterious deletion [12] and thus is a legitimate
sequence. Finally, two Indian sequences are found in the
16300:16400 range that appear to lack the first ~250
positions, though there is no mention to this irregularity
in the original study [13] and the rest of its published
sequences seem normal. For the sake of completeness
and evaluation, none of these have been excluded from
the study.

Sequence composition tests
Length criteria and formal sequence properties com-
bined can yield a good approximation of the desired
clean dataset, but data quality and query (or database)
limitations must be taken into account to detect further
false positives and disruptive data, including incomplete
sequences that pass the simple length tests we have just
described. Gaps neither have meaning nor are expected
in raw sequences, though there is at least one case
where the correction of a sequencing error (in the origi-
nal human mtDNA reference sequence, predecessor to
the current rCRS) has inserted an artificial N pseudode-
letion to preserve the canonical numbering of positions
established by its first, though faulty, incarnation. There
is no simple way to tell apart these violations to the
IUPAC nomenclature, which should be avoided using
an additional “false gap” symbol, if possible.
Uncertainty in sequences (reflected in ambiguous or

unknown positions) is undesirable because it blurs
results and complicates their interpretation. These pro-
blems are widespread: from a strict database of 7395 full
sequences, ambiguities exist in 24.0% of these, at least at
the base pair level. We may accommodate an acceptable
level of uncertainty by defining a maximum allowed
number (or fraction) of ambiguous positions per
sequence, hence adjusting the trade-off. We observe that
a static threshold of 1 covers 95% of all sequences,
whereas a threshold of 5 covers 99%. Sequences that
exceed these boundaries significantly are clear candi-
dates for inspection. Figure 1b shows database covering
as a function of the ambiguity threshold. Flexible data-
bases include a special case of partial sequences whose
unknown control region can be considered a form of
ambiguity, in the guise of long gaps at both ends of the
alignment with no biological meaning. Its impact will be
discussed in following sections.
Sequence identity
In large collections of densely sampled, closely related
genomes, which are furthermore highly conserved and
comparatively short in our case, not every sequence can
be assumed to be unique as might be in other circum-
stances. Equality between two sequences does not pro-
vide any additional information to the single-sequence
case, and this fact may be used to reduce effective data-
sets to some extent.
Within strict databases, 10.1% of all sequences may be

thus compressed due to equality with others, which may
act as their representatives until the final results are
produced. Flexible databases include 944 additional
sequences, 10.0% of which can be unified.

Alignments
Construction of datasets for input to tree construction
algorithms proceeds iteratively applying the procedures
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detailed in this section. Potential problems will be
described together with the methods designed to solve
them, as well as their effects on both inputs and
outputs.
Each sequence is split prior to alignment according to

the structural boundaries of coding and non-coding
regions defined by the rCRS record on GenBank, result-
ing in 50 subalignments of lengths between 1-1812 bp
(as defined by the reference) computed separately: 37
genes, 11 non-coding gaps in the coding region, and the
D-loop, split in two by the numbering scheme. Their
(overlapped) concatenation results in a full, 16832-posi-
tion alignment where increases in sequence length are
chiefly due to a handful of lineage-specific indels. Each
partial alignment can be computed on a standard work-
station in up to 6.5 hours for the biggest dataset and
considerably less for medium-size inputs. Times increase
somewhat for flexible databases, though total alignment
costs remain comparable. Through this technique,
otherwise problematic computations of large alignments
become affordable.
Although pairwise alignments with the reference are

generally required in order to robustly split sequences
into their structural units (due to insufficient database
annotation), these only need to be computed once and
stored for future use, taking approximately 7 seconds
each.

Simple results
Feeding an alignment algorithm with the results of a
standard database query is a very straightforward proce-
dure, but the results of this practice are rife with errors.
Gene partitioning makes execution times manageable
and to an extent structures the solution, but does not
solve defects that are inherent to the sequences
themselves.
The length of a direct alignment of the results of the

MITOMAP query without any further preprocessing
goes up to approximately 18000 characters. This is due
to the fact that a few (<0.1%) complete sequences from
[14,15] suffer from a bad definition of their starting
position according to the reference: roughly speaking,
the circular mtDNA chain has been cut at the wrong
point for numbering purposes and canonical position 1
is found somewhere in the middle of the resulting
string. These displacements produce an erroneous num-
bering in the affected sequences and, if left untreated,
can severely damage alignment quality by creating very
long gaps on both ends of the alignment, disrupting
numbering and degrading otherwise usable characters in
all other sequences. This, in turn, will have a negative
effect on any phylogenies including such sequences.
Distance matrices and curation
Computation of pairwise distance matrices is not only a
necessary step for some of the most popular tree
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Figure 1 Individual sequence features. These descriptors operate directly on sequences. Due to their simplicity, they comprise the first tests to
be applied to any prospective members of a dataset. (a) The sequence length histogram locates unusually short or long sequences, commonly
classifying correct genomes as belonging to strict or flexible sets, and also detecting outliers which cannot be straightforwardly ascribed to
either group. Blue dots mark accepted strict sequences; red dots, outlier strict sequences; and green dots, flexible and not strict sequences. (b)
The ambiguity covering histogram serves as an aid for determining acceptable ambiguity thresholds and approximates a simple measure of
aggregated quality. (The green dot shows the base covering of fully defined sequences, with zero ambiguous positions.)
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building methods, but also a means of detecting uncom-
mon sequences to check for false positives. Parsimony
edit distances are a straightforward means of building a
histogram and looking for outliers, though more sophis-
ticated models could be used as well. We have found
that all strict outliers within the accepted length ranges
are actually incomplete sequences presenting long series
of unknown positions, marked as N, belonging to just a
few different studies [10,16-20]. Once these are treated,
structural anomalies require more refined sequence
checks.
Once highly anomalous sequences have been removed,

we are left with 7390 full sequences (6644 unique
sequences), whose statistics are summarized in Figure 2.
The distribution of Homo sapiens intraspecies distances,
restricted for correctness to unambiguous sequences,
follows a bimodal distribution with a main peak at 45
differing positions and a secondary peak at 100. Dis-
tances range between 0 and 130, with a combined aver-
age of 46.36 differences (s = 16.26).
Predictably, the seven available Homo neanderthalensis

sequences [21,22] and three Homo sp. altai sequences
[23,24] are clearly separated from Homo sapiens
sequences in terms of pairwise base differences. Gener-
ally speaking, whenever we consider clusters of statisti-
cally differentiated sequences (e.g., distinct species),

these should be studied separately to avoid external
sources of noise, determining relevant properties and
outliers within each group; doing otherwise results in a
mix of underlying distributions that sensibly complicates
the problems of inference and detection. Sequences
lacking their control regions could be studied jointly
with full sequences if parsimony scores treat indels as
single events; otherwise all sequences should be consid-
ered without their control region for comparability.
There is clearly some overlap with the simpler tests

that have been described in preceding sections. The final
battery of tests should be applied in order of ascending
power (and complexity) to maximize efficiency. It is pos-
sible to compute edit distances from unaligned
sequences, but a complete alignment is desirable for con-
ducting more thorough examinations based on homology
levels and conservation criteria, among others.

Phylogenies
Trees produced from curated alignments, shown in
Figure 3, exhibit generally good properties. If we take
MITOMAP’s simplified mtDNA lineages [25] as the
basis for a haplogroup classification and plot these
groups on the resulting phylogenies, we observe that
these qualitative properties and the relations between
them are appropriately respected.
What local inaccuracies occur concern the exact situa-

tion of small haplogroups (i.e., those with a small num-
ber of specimens) or scattering of portions thereof in
the tree, due to low relative weight and other phenom-
ena. Although visually puzzling, it is correct to find
some important parent haplogroups embedding their
child haplogroups (and consequently “broken” into sev-
eral parts) instead of indivisibly grouped together. This
is reasonable because a child haplogroup is simply a
convenient designation for a subtree within its parent;
different subtrees need not be evolutionary siblings,
though a detailed classification can certainly be benefi-
cial. For purposes of visualization, emphasis should be
placed on clearly marking parent clades as such.
If one is willing to sacrifice a small fraction of auton-

omy in the tree stage to guide the reconstruction pro-
cess, it is possible to decree that a certain hierarchy of
haplogroups (or clades, generally speaking) be imposed
on any acceptable solution. In this case, the desired hap-
logroup hierarchy needs to be provided together with
decision rules to classify individual sequences as pertain-
ing to one particular group. A haplogroup subtree can
be constructed for each group and later grafted into
their combined supertree according to the postulated
hierarchy, as we have described in [26]. As an added
benefit, this strategy offers a great improvement in per-
formance, and so it becomes feasible to employ sophisti-
cated and comparatively costly algorithms.
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Figure 2 Parsimony edit distances. This figure plots the edit
distance histogram of the strict database. The intraspecies markers
are: blue dots for H. sapiens distances, red dots for H.
neanderthalensis, and dark yellow dots for H. sp. altai (the latter two
are clearly limited by the available sequences). Interspecies markers
are: purple dots for H. sapiens-H. neanderthalensis, green dots for H.
sapiens-H. sp. altai, and orange dots for H. neanderthalensis-H. sp.
altai. The separation between all three species is clearly visible.
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The effect of bootstrap sampling on the trees is a
trade-off between the inferred robustness of the recon-
struction and the amount of potential blurring it may
cause. Support tends to be very high near the leaves and
decreases as we move higher up the tree. Polytomies
result in those regions where a clearly dominant relation
cannot be identified. This is particularly visible in the N
haplogroup catch-all branch, which is the main point of
dispersion in bootstrapped consensus trees. However,
and although this represents a departure from the bin-
ary tree model, this compaction is coherent with estab-
lished multifurcations at the haplogroup level.
Simple results
Flexible phylogenies feature very long gaps associated
with missing information, even if curated databases

are used. While these lacks are not enough to disrupt
classification on a broad scale, they can entail a sig-
nificant loss of fine grain resolution. Non-canonical
start/end points have a similar effect on the align-
ment, inserting rows of gaps at both ends, as noted
above.
All in all, artificial gaps degrade the effective perfor-

mance of most tree reconstruction methods. The inclu-
sion of these positions in the final labeled phylogenies is
troublesome as these defects will be passed down to a
large number of ancestral sequences, which will be pla-
gued by many false indel events, completely unrelated to
evolution. Therefore, it is advisable to either distinguish
legitimate gaps from unsequenced regions, or else dis-
card the latter altogether.

Figure 3 Updated human mitochondrial phylogeny. The left phylogram shows the base binary tree with its associated branch lengths (note
the long Neanderthal and Altai clades next to L0). The right cladogram presents the aggregate bootstrap consensus and locates the main
haplogroups as defined by MITOMAP’s simplified lineages. Both trees are rooted according to the directionality of said classification.
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Quantitative analysis
The standard consensus (multifurcating) tree derived
from the strict database of previous sections requires
67900 point mutations as defined by Fitch’s parsimony
algorithm (which, treating each character independently,
does not unify indels). 31.21% of these involve at least
one ambiguous position. 69.88% of all mutations affect
highly conserved positions (a >0.95); this is expected
due to the very high conservation of the alignment (μ =
99.80%, s = 1.60%; see Figure 4): only 0.57% of all
aligned characters fall below the 95% bound. Back-muta-
tions occur in 24.91% of all point mutational events.
Table 1 summarizes the relations between the differ-

ent types of basic events. Two interesting remarks arise
from the data: first, ambiguous mutations are one of the
main sources of disruption of conserved positions and
never involve back-mutations (so their effects appear as
local and close to the leaves); and second, many back-
mutations are related to indels, suggesting a suboptimal
treatment of these mutations. In fact, alignment col-
umns with any number of gaps are usually ignored alto-
gether due to the inability of typical substitution models
to account for anything but simple substitution events.
Changes are not uniformly distributed across clades.

There is an average of 5 mutations per branch (μ =

4.68, s = 34.66), though 20.1% of all branches are, in
fact, empty. There may be up to 1574 events in a
branch, but these are isolated cases that will be consid-
ered in the next section.
If all ambiguities were suppressed, a minimum of 7416

point mutations would be needed to build a perfect phy-
logeny [27] if at all possible, where for each character,
every occurring symbol would have a single generation
point (except the one found in the root of the tree).
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Figure 4 Genetic conservation measures. Conservation statistics are useful to evaluate single sequences and extract knowledge from the
combined pool of available data. Incomplete sequences have to be discarded at least partially for results to reflect true polymorphic variations
exclusively; the following plots do not include non-strict data. (a) The sequential conservation profile of the alignment indicates regions and
positions of special interest. (b) When this profile is transformed into the conservation frequency histogram, some global trends become apparent.
Blue dots are used for a ≥ 0.99, green dots for 0.95 ≤ a <0.99, and red dots for a <0.95. Note that under these thresholds, the great majority of
mutations affects conserved positions: P(a <0.95) = 0.570%, P(a <0.99) = 2.905%. In view of these extreme levels of conservation, it may be
interesting to tune a to adjust the significance of “high” conservation levels to the raw amounts of closely related data.

Table 1 Point mutation statistics for the reference strict
phylogeny

Mutation
type

Conserved Back-
mutation

Conserved
B-M

Remaining Total

Unambiguous 27489 16915 4672 6976 46708

Ungapped 22158 6825 3365 2159 27777

Ambiguous 19960 0 0 1232 21192

Total 47449 16915 4672 8208 67900

Mutations are classified and counted according to their qualitative properties.
Row categories separate perfectly defined mutations from those that involve
ambiguous positions of some sort; “ungapped” unambiguous substitutions
(mutations that do not involve gaps, i.e., indels) are given a separate category
as well (Total = Ambiguous + Unambiguous, Unambiguous ≥ Ungapped).
Columns relate mutations with alignment conservation information (95%
threshold) and evolutionary history from the root of the tree to several types
of significant events (Total = Conserved + Back-mutation - Conserved B-M +
Remaining).
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Therefore, the additional excess events indicate muta-
tions that occur several times in the tree. As a matter of
fact, some mutations are exceedingly common, arising
up to 1256 times in the reference tree. However, all
mutations with more than 100 generation points are
either indels or transitions or involve ambiguous charac-
ters, and take place within the D-loop, except for posi-
tions 709 (transition), an insertion after 3105
(ambiguity) and 3107 (ambiguities and indels). The
same trends are observed for mutations with 50-100
generation points, extended to a few other positions in a
non-coding gap (8272-4 and 8281-3) and in coding
regions: 3010, the insertion after 3105, 3106-7, 5460,
11914, 13708 and 15924.
Predictably, as we approach the common case of sin-

gle point generation, more interesting mutations can be
observed. Overall, there is a negative correlation
between number of generation points and frequency, as
seen in Figure 5b. The distribution is essentially the
same whether or not we consider mutation variants uni-
fied by alignment position and/or include ambiguous
mutations. We find 8328 fully defined mutations folded
into 6328 positions, and 16991 total mutation types
affecting 11520 positions, pointing to a significant

decrease in (full) conservation levels exclusively due to
sequence ambiguity.
Trees and dataset quality
A labeled phylogeny has the advantage of allowing
sophisticated hypothesis testing. An obvious application
of the inferred history of the tree is detection of clearly
discordant sequences from which we may suspect an
intrusion or defect of some sort.
In particular, an abnormally high number of branch

mutations points to exceptionally divergent sequences,
which should as such be inspected. Within our refer-
ence strict database and phylogeny, any node with
more than 50 point mutation events is found to be a
leaf associated with one of the studies referenced in
Distance matrices and curation [10,16-20], except for
the deletions reported in [11,12] and internal nodes
joining the short sequences in [13] and the three fol-
lowing clades: H. sp. altai and H. sapiens-H. nean-
derthalensis, and H. sapiens and H. neanderthalensis
each with the common ancestor of both. Below 50
events per branch we find legitimate changes, so more
refined tests should be used to discern exceptional
situations. Figure 5a shows both trends, which clearly
follow different patterns.
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Figure 5 Mutational statistics for the reference strict phylogeny. Quantitative and statistical analysis of tree properties not only offers useful
information about the evolutionary processes under study, but is also a very powerful means of detecting discordances at all stages of the
reconstruction. Strict trees are particularly amenable to this treatment. (a) The histogram of point mutations per branch highlights typical
patterns of evolution and identifies unusual and possibly error-prone generation points. Red dots represent outliers; and blue dots mark standard
ranges and legitimate exceptions within the outlier range, with the green dot signaling the frequency of empty clades. (b) The histogram of
individual mutation frequencies (i.e., the number of generation points for each mutation or group of related mutations) aims at the identification
of especially important and recurrent mutations and the subsequent study of their patterns of generation.
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Thus, the outliers that we found in sequences and
alignments so far are reflected in the resulting tree if
left untreated, and can be detected using tree-specific
methods, though these require a higher overall cost due
to their reliance on an existing phylogeny. Their impact
within the tree appears as completely local and does not
affect other regions of the tree; therefore, inclusion
should be balanced against the marginally higher infor-
mation these data may offer.
The suppression of affected terminal branches has,

however, a significant effect on tree statistics; in particu-
lar, the number of point mutation events drops by
27.92% and most ambiguous mutations disappear. Thus,
the tree approaches full definition, down to 2.91 muta-
tions per character (from 4.03 in the initial tree), or 6.62
mutations per leaf (from 9.19). Note the significant
decrease from random pairwise distances, indicating
high compatibility.
Lack of information, as present in flexible phylogenies,

has roughly the same effect as ambiguity, due to its
equivalent representation within sequence alignments.

Conclusions
Sequences
We have automatically collected and sanitized all pub-
licly available human mtDNA sequences, classifying
them according to their completeness into flexible and
strict databases. The former include all reasonably
coherent sequences, a relatively heterogeneous set due
to a historical pool of genomes whose control region is
unavailable. The latter are restricted to structurally com-
parable, full sequences. Some preliminary tests
(sequence length, composition, equality) on single
sequences have further allowed us to cluster potentially
related groups and isolate unusual data for inspection.
Many of the potential problems that need to be

addressed arise from data ambiguity. Incomplete infor-
mation is the most serious drawback, be it in the form
of incomplete sequences or, especially, completely
unknown positions which should be left for detection to
subsequent steps. These imperfections blur to an extent
the clean results that high-quality datasets should offer,
as well as the simplicity of the methods upon which
they rely.
In the future, the importance of correct representation

of individual sequences and their underlying semantics
should be stressed: the adoption of a formal ontology to
describe sequences and their features would be of great
aid for data classification and manipulation; it would
also be of help to design simpler, more accurate queries.
We will study integration and coherence between multi-
ple primary data sources, as well, and application of
sequence identity criteria to this end (we have addressed
the latter in connection with parsimony models in [28]).

Of special concern is the treatment of ambiguous char-
acters according to their significance (be it missing
information, artificial gaps or, most remarkably, hetero-
plasmy) and the adequate machine representation of
sequences.

Alignments
From partially curated sequence datasets, we have built
high-quality alignments efficiently using structural sub-
problem decomposition techniques. We have subse-
quently used the results to study the relations between
individual sequences and detect compositional anoma-
lies by means of distance measures. The set of subpro-
blems we have presented allows semantically sound, fast
divisions which result in biologically meaningful suba-
lignments. Whereas this basic partition suffices pre-
sently, we ought to consider the relative scaling of
computing power and dataset growth (and associated
processing costs). Should it become necessary to achieve
further reductions in the overall cost of the alignment,
unambiguous, conserved regions could be used to per-
form intragene splitting. The number of sequences per
individual alignment could also be reduced by classifying
and clustering related sequence groups.
Simple edit distances have been used to perform basic

data classification related to automated curation pro-
cesses. The intraspecies and interspecies group distribu-
tions reported in [21,23] have been confirmed and
refined with extensive Homo sapiens mitochondrial
datasets. These results encourage us to research
improved preprocessing and clustering measures; dis-
tances can be computed using special-purpose, possibly
exact, pairwise alignment algorithms such as Needle-
man-Wunsch and Smith-Waterman [29,30]. Legitimate
yet incomplete sequences (i.e., those found in flexible
sets and absent from strict sets) may be processed sepa-
rately to guarantee homogeneity, or jointly with homo-
logous regions of complete sequences as well, depending
on distance models. Likewise, the effects of ambiguity in
sequence alignment should be investigated more
thoroughly.
Although we have removed especially disruptive data

from our input sets, some conditions –displaced posi-
tion numbering in particular– may be corrected auto-
matically. This, however, requires that local databases
store corrected sequences, overriding any bad copies
found in public databases until an update is made, at
which point a renewed quality check could be made.
Such procedures preclude treatment of mtDNA
sequences as circular in favor of simpler, conventional
methods. Moreover, we intend to exploit the structure
and conservation of the human mtDNA molecule to
achieve further improvements in computational costs
and alignment quality.
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Phylogenies
We have demonstrated the applicability of our approach
reconstructing updated, current and complete human
mitochondrial phylogenies integrating the control region
in the analysis; and carried out some preliminary ana-
lyses on them, using the trees to test several quality
assessment criteria as well. The main improvements
over previous phylogenies are: the use of a well-founded,
systematic methodology, which spans all stages of the
reconstruction; the exposition of said methodology; the
study of its scalability and repeatability over time and
growing datasets; and the customizability of the proce-
dures according to the requirements of both inputs and
outputs.
Efficiency has been achieved by means of a combina-

tion of biologically sound problem partitioning and
effective parallelization of compatible subproblems
through distributed systems. Thus, algorithm complexity
is offset and problem complexity turned into computa-
tional advantage: periodic reconstruction becomes feasi-
ble, as does accommodation of dataset growth. To this
end, both fundamental problem dimensions (number of
sequences and sequence length) can be attacked through
known or inferred properties.
As a result we produce automated (save for inclusion

of dubious data), high-quality trees which, coupled with
an appropriate computational framework, yield workable
representations, which we can annotate, extend and ana-
lyze easily, as we have done to produce some of the
results presented throughout the paper. Some interest-
ing problems remain to be dealt with in the near future.
From the end user standpoint, the ability to define and
add attributes to the tree, as well as query and interact
with it, is fundamental (we have recently addressed this
problem in [31]). The main shortcomings concern visual
interaction with such huge trees, particularly in combi-
nation with annotations and intensive exploration of
these. On the other hand, most formats lack extension
capabilities; we have found phyloXML [32] to be the
only reasonable choice for such complex tasks.
Besides user-defined custom rules, special-purpose

attributes and filters could be defined to analyze biologi-
cal patterns of sequence quality and mark leaves as
potential outliers, if not removed in previous sanitizing
steps; likewise, such procedures could be applied itera-
tively to refine the original datasets. Another obvious
improvement is the elaboration (and automation) of an
adequate descriptive formalism for mutations: for
instance, merging indels; detecting, if applicable, the
gene where the mutation takes place, whether it is
synonymous or else what change it effects on the amino
acid sequence.
Yet another interesting aspect concerns qualitative

evaluation and comparison between different

alignments and trees. This comprises everything from
model selection [33] and sensitivity analysis to poster-
ior tree scoring and topological distances. A related
prospect deserving of further attention is the addition
of general constraints to reflect known biological prop-
erties, which may further simplify certain tasks and
favor decomposition as usual, possibly including past
results as guidelines. The conservation of such proper-
ties in the outputs can be used as a qualitative measure
of correctness, as well.
In addition to phylogeny-supported curation, it is pos-

sible to conceive procedures for tree-driven data correc-
tion, determining the simplest ways to integrate
discordant data in a way that is consistent with the scor-
ing model. These ideas can be of use to resolve ambigu-
ity and elegantly integrate lacking regions in flexible
databases without greatly affecting tree scores, as is
usually the case when unknown information is treated
as absence of biological features.
Tree optimality and robustness are among the most

difficult qualities to evaluate. Statistical methods provide
an approximation to these problems, subject to a certain
evolutionary model, at the cost of greatly increased
computational loads. In addition, more general phyloge-
netic networks could be used to mark ambiguous hot-
spots while retaining the information of the main tree.
Likewise, polytomous trees are not strictly undesirable,
since consistently unresolved binary nodes may point to
relevant evolutionary properties, as has been noted
before.
To summarize, our intent is to keep improving tree

reconstruction from both computational and biological
standpoints, as much as to add and extract useful infor-
mation from the results. We believe formalization of
knowledge and automation are keys to carry out these
objectives, supported by expert assistance to the infor-
mation systems designed to this end. As phylogenies
become recipients and organizers of information, intero-
perability with external systems becomes of the utmost
importance.
Both biological and computational goals can be greatly

aided by integration and cooperation with existing
efforts in the study of human mitochondrial diversity at
the sequence level, such as MITOMAP [6] and HmtDB
[34], and at the tree level, like PhyloTree [8]; this should
be one of the first steps to take. Additionally, improved
and specialized algorithms can take advantage of the
special structural features of mtDNA and the size and
density of growing datasets, both to learn or infer new
information from these and to use it to assist in and
improve the reconstruction of phylogenies. Finally, reli-
able information systems must be matured to handle all
these tasks and make them easily available to
researchers.
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Availability
Updated phylogenies and research results are made
available through the project website at [35]. Trees can
be browsed online by means of the ATV-derived
Archaeopteryx applets [36], and downloaded for local
use. We plan to publish different versions of each tree,
including enriched and cross-referenced phylogenies,
related data and continuing research.

Methods
Each stage of the reconstruction requires specific algo-
rithms (and software that implements them) and tests of
increasing complexity and power, which are summarized
under the following headings. These processes are
arranged into a workflow (see Figure 6) that describes
their constructive interactions and feedback loops, and
ultimately documents and directs the execution of jobs.

Sequences
The selection of input sets is a trade-off between simpli-
city and inclusiveness, and a demand for high-quality
data; it should be kept in mind that treatment of gaps is
suboptimal under practically any tree reconstruction
method. The simplest preprocessing is the removal of
ambiguous or incomplete sequences, and further sieves
are supported by alignments and phylogenies.
GenBank [37] is the primary source of our data.

Sequence identity, as discussed above, could be a simple
method to incorporate additional sources while avoiding
consistency problems, as well as to determine sequence
exclusion. The current MITOMAP query on GenBank
(Homo[Organism] AND gene in mitochondrion[PROP]
AND 14000:19000[SLEN] NOT pseudogene[All Fields]) is
used as a starting point, though caution must be exer-
cised due to the partly unstructured nature of database
submissions [38]. Query correctness and database cura-
tion are of paramount importance to subsequent steps
of the reconstruction, locating and isolating suspicious
entries for expert supervision and incorporating new
findings as formal procedures and rules. False positives
(i.e., intrusions) should be kept to a minimum or elimi-
nated; false negatives (i.e., absences) are undesirable,
though they do not harm accuracy. Outliers are detected
by comparative and compositional tests of various types.

Alignments
Alignment quality is also critical to the correctness of
the results. Unlike sequence curation, sequence align-
ment is a very complicated algorithmic problem for
which no efficient exact methods exist either in general
or simplified models [39,40]. However, finding a (near-)
optimal alignment of closely related sequences is signifi-
cantly easier, since their conserved structure make good
solutions easy to spot. Exploiting unambiguous biologi-
cal units within sequences (e.g., genes), the problem is
split in a set of smaller instances. Thresholds are
inferred robustly by pairwise alignment with a known
reference sequence (rCRS in human mtDNA [41,42]). It
is necessary to contemplate overlaps between adjacent
units and two types of indel events in protein-coding
genes: full indels operating at the codon level and fra-
meshift mutations. Finally, the results are merged into
the complete alignment.
Furthermore, it is necessary to recognize defective

alignments and identify the data that cause their degra-
dation. Alignments allow complex quality tests, which
we can classify according to their scope:

• Pairwise tests, usually against a reference sequence,
which estimate the fitness of an individual datum.
• Global tests that detect statistical outliers and sur-
vey the underlying structure of the dataset.

Figure 6 System workflow architecture. Individual algorithms and
testing procedures are integrated into a workflow that directs and
automates their interactions. Storage stages are interleaved with
transformation stages, which are either algorithmic (marked as
arrow-shaped triangles, they explicitly advance the resolution of the
problem associated to their input) or restrictive (marked with a
diamond shape, these tests refine algorithmic inputs diverting
simple flows through feedback loops to previous storage stages).
Note many transformation stages are actually concurrent scatter-
gather processes (e.g., gene alignments, bootstrap replicates, etc.).
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It must be borne in mind that alignment algorithms
may not respect any standard biological nomenclature.
MUSCLE [43] has been used to produce the results pre-
sented in our study.
Alignments can be used to detect global problems, but

also to study anomalies within individual sequences. A
pairwise alignment of a sequence with a canonical refer-
ence is useful for conducting classification and other
analyses. Edit distances computed against a high-quality
reference can be used to detect potentially troublesome
sequences, as well. These methods generalize some
direct composition tests on individual sequences. Accep-
table thresholds can be set to find anomalies in all these
tests.

Phylogenies
The phylogeny reconstruction problem is known to be
NP-complete [44,45], and most approximate methods
scale poorly with problem size. However, even for our
target datasets, it is possible to employ maximum likeli-
hood methods efficiently in a parallel execution environ-
ment and with some performance tweaks. Using
jModelTest [46] and random sampling of the complete
alignment, we have confirmed the GTR model with
gamma-distributed rate heterogeneity among sites as the
best fit for human mtDNA, even when penalized by
information criteria; invariant sites have no observable
effects. Robustness is assessed by fully parallel bootstrap
sampling [47,48]. The H. neanderthalensis and H. sp.
altai sequences pinpoint the root of the tree and no
external outgroups are needed. RAxML [49] has been
used as the software engine using the GTRCAT approx-
imation to rate heterogeneity [50], with model para-
meters estimated for each bootstrap sample.
Evaluation of the resulting trees can obey to qualita-

tive (e.g., verification of structural properties, population
haplogroups) and quantitative criteria (e.g., bootstrap
estimates). The fit of sequences and branches (subtrees)
can be determined by defining relevant features (e.g.,
number of mutations per branch) and inspecting their
outliers. Comparison between different candidate phylo-
genies, and possibly different datasets, requires a well-
defined scoring framework, for which parsimony
schemes offer useful metrics independent of problem
dimensions. Average number of mutations per sequence
(and position, if needed) and mutations per branch are
two such measures.
Automated and extensible annotation is one of the

defining features of our approach. The first step from a
basic phylogeny to one that can be used to assist in
sophisticated studies is the labeling of its branches with
their hypothesized mutation events. The mutational his-
tory can be derived from the inferred ancestral
sequences; for this we use generalized Fitch parsimony

[51] due to its intuitive interpretation and implicit reso-
lution of ambiguities. Enriched labels can include addi-
tional information determined by user-defined rules. We
have applied custom rules to detect higher-level events
that can be of interest to detect potentially deleterious
and rare mutations. In particular, mutations affecting
extremely conserved characters in the alignment
(defined by a custom dominant fraction a ≲ 1) may
have important phenotypic effects and so should be
monitored. Likewise, back-mutations, which reverse
changes occurred during the evolution of the sequence
from the root to the leaves, are marked for inspection.
Other rules can be added to perform other thorough
analyses and integrate their results into the tree.

Acknowledgements
This work was supported by the Government of Aragon [PM063/2007,
PM083/2008], Carlos III Health Institute [FIS-PI08-0264], the Spanish Ministry
of Science and Innovation (MICINN) [TIN2008-06582-C03-02], and the
Spanish Ministry of Education [AP2008-03447].
The authors wish to thank José Manuel Colom for many fruitful discussions
and the editor and anonymous reviewers for their valuable comments and
suggestions.

Author details
1Departamento de Informática e Ingeniería de Sistemas, Universidad de
Zaragoza, María de Luna 1, 50018 Zaragoza, Spain. 2Instituto de Investigación
en Ingeniería de Aragón, Universidad de Zaragoza, María de Luna 1, 50018
Zaragoza, Spain. 3Departamento de Bioquímica y Biología Molecular y
Celular, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
4Centro de Investigación Biomédica en Red de Enfermedades Raras, Miguel
Servet 177, 50013 Zaragoza, Spain. 5Agencia Aragonesa para la Investigación
y el Desarrollo, Miguel Servet 177, 50013 Zaragoza, Spain.

Authors’ contributions
RB designed and implemented the system, performed the analyses and
drafted the manuscript. EM designed the system and revised the
manuscript. JM and ERP designed the experiments. All authors read and
approved the final manuscript.

Received: 14 June 2010 Accepted: 19 May 2011 Published: 19 May 2011

References
1. Torroni A, Achilli A, Macaulay V, Richards M, Bandelt HJ: Harvesting the

fruit of the human mtDNA tree. Trends Genet 2006, 22:339-345.
2. Cann RL, Stoneking M, Wilson AC: Mitochondrial DNA and human

evolution. Nature 1987, 325:31-36.
3. Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC: Effects of

purifying and adaptive selection on regional variation in human mtDNA.
Science 2004, 303:223-226.

4. Wallace DC: A mitochondrial paradigm of metabolic and degenerative
diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev
Genet 2005, 39:359-407.

5. Cavalli-Sforza LL: The Human Genome Diversity Project: past, present and
future. Nat Rev Genet 2005, 6:333-340.

6. Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, Yi C,
Kreuziger J, Baldi P, Wallace DC: An enhanced MITOMAP with a global
mtDNA mutational phylogeny. Nucleic Acids Res 2007, 35:D823-D828.

7. Blanco R, Mayordomo E: ZARAMIT: a system for the evolutionary study of
human mitochondrial DNA. Lect Notes Comput Sci 2009, 5518:1139-1142.

8. van Oven M, Kayser M: Updated comprehensive phylogenetic tree of
global human mitochondrial DNA variation. Hum Mutat 2008, 29:
E386-E394.

9. Soares P, Ermini L, Thomson N, Mormina M, Rito T, Röhl A, Salas A,
Oppenheimer S, Macaulay V, Richards MB: Correcting for purifying

Blanco et al. BMC Bioinformatics 2011, 12:174
http://www.biomedcentral.com/1471-2105/12/174

Page 12 of 13

http://www.ncbi.nlm.nih.gov/pubmed/16678300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16678300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3025745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3025745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14716012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14716012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16285865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16285865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15803201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15803201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17178747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17178747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19500773?dopt=Abstract


selection: an improved human mitochondrial molecular clock. Am J Hum
Genet 2009, 84:740-759.

10. Gasparre G, Porcelli AM, Bonora E, Pennisi LF, Toller M, Iommarini L,
Ghelli A, Moretti M, Betts CM, Martinelli GN, Ceroni AR, Curcio F, Carelli V,
Rugolo M, Tallini G, Romeo G: Disruptive mitochondrial DNA mutations in
complex I subunits are markers of oncocytic phenotype in thyroid
tumors. Proc Natl Acad Sci USA 2007, 104:9001-9006.

11. Bi R, Zhang AM, Zhang W, Kong QP, Wu BL, Yang XH, Wang D, Zou Y,
Zhang YP, Yao YG: The acquisition of an inheritable 50-bp deletion in the
human mtDNA control region does not affect the mtDNA copy number
in peripheral blood cells. Hum Mutat 2010, 31:538-543.

12. Behar DM, Blue-Smith J, Soria-Hernanz DF, Tzur S, Hadid Y, Bormans C,
Moen A, Tyler-Smith C, Quintana-Murci L, Wells RS, Genographic
Consortium: A novel 154-bp deletion in the human mitochondrial DNA
control region in healthy individuals. Hum Mutat 2008, 29:1387-1391.

13. Rajkumar R, Banerjee J, Gunturi HB, Trivedi R, Kashyap VK: Phylogeny and
antiquity of M macrohaplogroup inferred from complete mt DNA
sequence of Indian specific lineages. BMC Evol Biol 2005, 5:26.

14. Arnason U, Gullberg A, Janke A, Kullberg M: Mitogenomic analyses of
caniform relationships. Mol Phylogenet Evol 2007, 45:863-874.

15. Family Tree DNA. [http://www.familytreedna.com/].
16. Abu-Amero KK, Larruga JM, Cabrera VM, González AM: Mitochondrial DNA

structure in the Arabian Peninsula. BMC Evol Biol 2008, 8:45.
17. Yao YG, Kong QP, Salas A, Bandelt HJ: Pseudomitochondrial genome

haunts disease studies. J Med Genet 2008, 45:769-772.
18. Fornarino S, Pala M, Battaglia V, Maranta R, Achilli A, Modiano G, Torroni A,

Semino O, Santachiara-Benerecetti SA: Mitochondrial and Y-chromosome
diversity of the Tharus (Nepal): a reservoir of genetic variation. BMC Evol
Biol 2009, 9:154.

19. Malhi RS, Cybulski JS, Tito RY, Johnson J, Harry H, Dan C: Brief
communication: mitochondrial haplotype C4c confirmed as a founding
genome in the Americas. Am J Phys Anthropol 2010, 141:494-497.

20. Gunnarsdóttir ED, Li M, Bauchet M, Finstermeier K, Stoneking M: High-
throughput sequencing of complete human mtDNA genomes from the
Philippines. Genome Res 2011, 21:1-11.

21. Green RE, Malaspinas AS, Krause J, Briggs AW, Johnson PLF, Uhler C,
Meyer M, Good JM, Maricic T, Stenzel U, Prüfer K, Siebauer M, Burbano HA,
Ronan M, Rothberg JM, Egholm M, Rudan P, Brajković D, Kućan Ž, Gušić I,
Wikström M, Laakkonen L, Kelso J, Slatkin M, Pääbo S: A complete
Neandertal mitochondrial genome sequence determined by high-
throughput sequencing. Cell 2008, 134:416-426.

22. Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, Lalueza-Fox C,
Rudan P, Brajković D, Kućan Ž, Gušić I, Schmitz R, Doronichev VB,
Golovanova LV, de la Rasilla M, Fortea J, Rosas A, Pääbo S: Targeted
retrieval and analysis of five Neandertal mtDNA genomes. Science 2009,
325:318-321.

23. Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Pääbo S: The
complete mitochondrial DNA genome of an unknown hominin from
southern Siberia. Nature 2010, 464:894-897.

24. Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, Viola B,
Briggs AW, Stenzel U, Johnson PLF, Maricic T, Good JM, Marques-Bonet T,
Alkan C, Fu Q, Mallick S, Li H, Meyer M, Eichler EE, Stoneking M, Richards M,
Talamo S, Shunkov MV, Derevianko AP, Hublin JJ, Kelso J, Slatkin M,
Pääbo S: Genetic history of an archaic hominin group from Denisova
Cave in Siberia. Nature 2010, 468:1053-1060.

25. Simplified mtDNA lineages. [http://www.mitomap.org/pub/MITOMAP/
MitomapFigures/simple-tree-mitomap2009.pdf].

26. Blanco R, Mayordomo E, Montes E, Mayo R, Alberto A: Scalable
phylogenetics through input preprocessing. Adv Soft Comp 2010,
74:123-130.

27. Gusfield D: Efficient algorithms for inferring evolutionary trees. Networks
1991, 21:19-28.

28. Blanco R: Structural parsimony: reductions in sequence space. Proceedings
of the 2010 IEEE International Conference on Bioinformatics and Biomedicine
2010, 57-61.

29. Needleman SB, Wunsch CD: A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol
1970, 48:443-453.

30. Smith TF, Waterman MS: Identification of common molecular
subsequences. J Mol Biol 1981, 147:195-197.

31. Blanco R, de Miguel Casado G, Requeno JI, Colom JM: Temporal logics for
phylogenetic analysis via model checking. Proceedings of the 2010 IEEE
International Conference on Bioinformatics and Biomedicine Workshops 2010,
152-157.

32. Han MV, Zmasek CM: phyloXML: XML for evolutionary biology and
comparative genomics. BMC Bioinformatics 2009, 10:356.

33. Posada D, Crandall KA: Selecting the best-fit model of nucleotide
substitution. Syst Biol 2001, 50:580-601.

34. Attimonelli M, Accetturo M, Santamaria M, Lascaro D, Scioscia G,
Pappadà G, Russo L, Zanchetta L, Tommaseo-Ponzetta M: HmtDB, a human
mitochondrial genomic resource based on variability studies supporting
population genetics and biomedical research. BMC Bioinformatics 2005,
6(Suppl 4):S4.

35. ZARAMIT project website. [http://www.zaramit.org/].
36. Zmasek CM, Eddy SR: ATV: display and manipulation of annotated

phylogenetic trees. Bioinformatics 2001, 17:383-384.
37. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank.

Nucleic Acids Research 2011, 39:D32-D37.
38. Pereira L, Freitas F, Fernandes V, Pereira JB, Costa MD, Costa S, Máximo V,

Macaulay V, Rocha R, Samuels DC: The diversity present in 5140 human
mitochondrial genomes. Am J Hum Genet 2009, 84:628-640.

39. Wang L, Jiang T: On the complexity of multiple sequence alignment. J
Comput Biol 1994, 1:337-348.

40. Bonizzoni P, Della Vedova G: The complexity of multiple sequence
alignment with SP-score that is a metric. Theor Comput Sci 2001,
259:63-79.

41. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J,
Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R,
Young IG: Sequence and organization of the human mitochondrial
genome. Nature 1981, 290:457-465.

42. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM,
Howell N: Reanalysis and revision of the Cambridge reference sequence
for human mitochondrial DNA. Nat Genet 1999, 23:147.

43. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res 2004, 32:1792-1797.

44. Foulds LR, Graham RL: The Steiner problem in phylogeny is NP-complete.
Adv Appl Math 1982, 3:43-49.

45. Day WHE: Computational complexity of inferring phylogenies from
dissimilarity matrices. Bull Math Biol 1987, 49:461-467.

46. Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008,
25:1253-1256.

47. Felsenstein J: Confidence limits on phylogenies: an approach using the
bootstrap. Evolution 1985, 39:783-791.

48. Hillis DM, Bull JJ: An empirical test of bootstrapping as a method for
assessing confidence in phylogenetic analysis. Syst Biol 1993, 42:182-192.

49. Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models. Bioinformatics 2006,
22:2688-2690.

50. Stamatakis A: Phylogenetic models of rate heterogeneity: a high
performance computing perspective. Proceedings of the 20th IEEE
International Parallel & Distributed Processing Symposium 2006, 278.

51. Maddison WP: Reconstructing character evolution on polytomous
cladograms. Cladistics 1989, 5:365-377.

doi:10.1186/1471-2105-12-174
Cite this article as: Blanco et al.: Rebooting the human mitochondrial
phylogeny: an automated and scalable methodology with expert
knowledge. BMC Bioinformatics 2011 12:174.

Blanco et al. BMC Bioinformatics 2011, 12:174
http://www.biomedcentral.com/1471-2105/12/174

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/19500773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17517629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17517629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17517629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20151402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20151402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20151402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18629826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18629826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15804362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15804362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15804362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17919938?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17919938?dopt=Abstract
http://www.familytreedna.com/
http://www.ncbi.nlm.nih.gov/pubmed/18269758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18269758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18611982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18611982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19573232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19573232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20027611?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20027611?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20027611?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21147912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21147912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21147912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18692465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18692465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18692465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19608918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19608918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20336068?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20336068?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20336068?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21179161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21179161?dopt=Abstract
http://www.mitomap.org/pub/MITOMAP/MitomapFigures/simple-tree-mitomap2009.pdf
http://www.mitomap.org/pub/MITOMAP/MitomapFigures/simple-tree-mitomap2009.pdf
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19860910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19860910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12116655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12116655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351753?dopt=Abstract
http://www.zaramit.org/
http://www.ncbi.nlm.nih.gov/pubmed/11301314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11301314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21071399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426953?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426953?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8790475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7219534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7219534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10508508?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10508508?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15034147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15034147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3664032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3664032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18397919?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16928733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16928733?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Related efforts
	MITOMAP
	PhyloTree.org
	Other trees


	Results and discussion
	Sequences
	Sequence length tests
	Sequence composition tests
	Sequence identity

	Alignments
	Simple results
	Distance matrices and curation

	Phylogenies
	Simple results
	Quantitative analysis
	Trees and dataset quality


	Conclusions
	Sequences
	Alignments
	Phylogenies
	Availability

	Methods
	Sequences
	Alignments
	Phylogenies

	Acknowledgements
	Author details
	Authors' contributions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


