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The cloning of leptin in 1994 by Zhang et al. introduced a novel concept about white adipose
tissue (WAT) as a very dynamic organ that releases a plethora of immune and inflammatory
mediators, such as adipokines and cytokines, which are involved in multiple diseases. Actually,
adipokines exert potent modulatory actions on target tissues involved in rheumatic diseases in-
cluding cartilage, synovial, bone and immune cells. The goal of this paper is to elucidate the recent
findings concerning the involvement of adipokines in rheumatic diseases, such as rheumatoid ar-
thritis (RA), osteoarthritis (OA), and systemic lupus erythematosus (SLE).
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1. INTRODUCTION

In addition to the central role of lipid storage, white adipose tissue (WAT) is now recognized to be a multi-
factorial organ. It has a major endocrine function secreting several hormones, most notably leptin and
adiponectin, together with a diverse range of other protein signals and factors. These adipose-derived
peptides have been termed collectively “adipokines.” It is important to underline that these factors might
be also synthesized in other tissues, rather than WAT, and participate in other relevant functions correlated
with energy homeostasis and metabolism [1].

Adipokines include a variety of proinflammatory peptides. These proinflammatory adipokines are in-
creased in obesity and appear to contribute to the so-called “low-grade inflammatory state” of obese sub-
jects creating a cluster of metabolic aberrations including cardiovascular complications and autoimmune in-
flammatory diseases.

Initially restricted to metabolic activities, adipokines represent a new family of compounds that can
be currently considered as key players of the complex network of soluble mediators involved in the patho-
physiology of rheumatic diseases. For instance, obesity has long been considered as a risk factor for oste-
oarthritis (OA). It has been reported that obesity increases the incidence of OA, particularly in weight-bear-
ing joints such as knees, and weight reduction is correlated with decreased progression of OA. A prevailing
hypothesis is that obesity increases mechanical loading across the articular cartilage that leads to its
degeneration. However, obesity is also associated with OA in non-weight-bearing joints such as finger
joints and wrists, which suggest that these metabolic factors contribute to the high prevalence of OA in
obese subjects [2].

This paper addresses current data concerning the involvement of adipokines in the rheumatic
diseases, focussing on the role of adipokines played in the pathophysiology of OA, rheumatoid arthritis
(RA), and systemic lupus erythematosus (SLE).

2. LEPTIN AND ADIPONECTIN: A TALE OF TWO GIANTS

2.1. Leptin: A Short Overview

Leptin is the protein product of the ob gene, the murine homologue of the human gene LEP, cloned in
1994 [3]. White adipose tissue cells mainly produce this adipokine, and its plasma concentration is directly
correlated with the body-fat stores. It has a central role in fat metabolism; in fact leptin is considered a major
regulator of body weight by suppressing appetite and stimulating energy expenditure via hypothalamic
receptors. This hormone decreases food intake by inducing anorexigenic factors as cocaine-amphetamine-
related transcript (CART) and increases energy consumption by suppressing orexigenic neuropeptides such
as neuropeptide Y (NPY). The biological activity of leptin is mediated by specific receptors (Ob-R), which
belong to the class 1 cytokine receptor superfamily and are encoded by the gene diabetes (db). Alternative
splicing of the db gene produces multiple isoforms, but only the long isoform Ob-Rb appears to be capable
of transducing the leptin signal.

Leptin is a hormone with pleiotropic actions. In fact, in addition to regulation of food intake, it
also affects a variety of other physiological functions, including fertility, bone metabolism, inflammation,
infection, and immune responses.

In the last years, important advancements have been added to clarify the involvement of leptin in
promoting autoimmune and rheumatic pathologies, particularly rheumatoid arthritis, osteoarthritis, and
systemic lupus erythematosus (SLE).

2.2. Leptin and Osteoarthritis

It is increasingly evident that this hormone plays a key role in the OA pathophysiology. Leptin expression is
much higher in osteoarthritic human cartilage than in normal cartilage, and there exists a strong correlation
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of synovial fluid leptin levels with body mass index (BMI) in people with severe osteoarthritis [4]. The first
findings have suggested that high circulating leptin levels in obese individuals may protect cartilage from
osteoarthritic degeneration. Actually, Dumond et al. have demonstrated that the intra-articular injection of
leptin can strongly stimulate the synthesis of insulin-like growth factor-1 (IGF-1) and transforming growth
factor-β (TGF-β) at both the messenger RNA (mRNA) and protein levels which can exert anabolic activities
in cartilage metabolism [4].

By contrast, leptin has been demonstrated to act as a proinflammatory agent in osteoarthritis. Otero
et al. showed that, in cultured human and murine chondrocytes, type 2 nitric oxide synthase (NOS2) is
activated by the combination of leptin plus IFNγ , and NOS2 activation by IL1 is increased by leptin via a
mechanism involving JAK2, PI3K, MEK1, and p38 [5–7]. The costimulation of leptin plus IFNγ induces
nitric oxide, a well-known proinflammatory mediator on joint cartilage, where it triggers chondrocyte
phenotype loss, apoptosis, and metalloproteinases (MMPs) activation.

Leptin, per se, is able to induce also the expression of MMPs involved in OA cartilage damage, such
as MMP-9 and MMP-13 [8]. Recently, Koskinen et al. have suggested that leptin alone or in combination
with IL-1β upregulates MMP-1 and MMP-3 production in human OA cartilage through the transcription
factor NF-κB, protein kinase C, and MAP kinase pathways, and its levels correlate positively with MMP-1
and MMP-3 in synovial fluid (SF) from OA patients [9].

Noteworthily, very recently, Gómez et al. have showed that in human chondrocytes leptin increased
IL-8 production, which is one of the major mediators of the inflammatory response [10].

Moreover, in articular cartilage of rats, gene expression of ADAMTS-4 and ADAMTS-5 (a disin-
tegrin and metalloproteinase with thrombospondin motifs) was markedly increased after treatment with
leptin inducing also a depletion of proteoglycans [11].

Leptin could also contribute to abnormal osteoblast function in OA. Indeed, the elevated production
of leptin in OA abnormal subchondral osteoblast is correlated with the increased levels of ALP (alkaline
phosphatase), OC (osteocalcin), collagen type I, and TGF-β1, inducing a dysregulation of osteoblast
function [12]. Very recently, Griffin et al. showed that the incidence of OA was not higher in ob/ob and
db/db female obese mice than in control background strain (C57BL/6J) [13]. Nevertheless, in this study, no
standard was set for the incidence of OA in obese control mice (without leptin mutation) [12].

This recent finding suggests that obesity, as dysregulated body fat accumulation, per se, is not a
risk factor for joint degeneration since adiposity in the absence of leptin signaling is insufficient to induce
systemic inflammation and knee osteoarthritis in female mice.

2.3. Leptin and Rheumatoid Arthritis

Together with other neuroendocrine signals, leptin seems to play a role in autoimmune diseases such as RA,
but whether leptin can harm or protect joint structures in RA is still unclear. In patients with RA, circulating
leptin levels have been described as either higher or unmodified in comparison to healthy controls
[8, 14]. In RA patients, a fasting-induced fall in circulating leptin is associated with CD4+ lymphocyte
hyporeactivity and increased IL-4 secretion [15]. Experimental antigen-induced arthritis is less severe
in leptin-deficient ob/ob mice than in wild-type mice, whereas leptin-deficient mice and leptin-receptor-
deficient mice exhibited a delayed resolution of the inflammatory process in zymosan-induced experimental
arthritis. Notably, leptin decreased the severity of septic arthritis in wild type mice. So, in the light of the
present results it seems difficult to make an unambiguous conclusion about a potential role of leptin in
RA [16]. Several authors have also demonstrated that there may exist a close dependence between the risk
of aggressive course of RA and leptin levels [17, 18]. In addition, a correlation between serum leptin and
synovial fluid/serum leptin ratio and disease duration and parameters of RA activity has been reported [19].

The action of leptin in RA is not only targeted to articular tissue, but this adipokine also exerts direct
modulatory effects on activation, proliferation, maturation, and production of inflammatory mediators in
a variety of immune cells, including lymphocytes, natural killer cells, monocytes/macrophages, dentritic
cells, neutrophils, and eosinophils [20].
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In particular, it is known that leptin is able to modulate T regulatory cells that are potent suppressors
of autoimmunity. The group of Matarese has recently demonstrated that leptin secreted by adipocytes
sustains Th1 immunity by promoting effector T cell proliferation and by constraining TReg cells expansion.
Weight loss, with concomitant reduction in leptin levels, induces a reduction in effector T cells proliferation
and an increased expansion of TReg cells leading to a downregulation of Th1 immunity and cell-mediated
autoimmune diseases associated with increased susceptibility to infections. On the contrary, an increase in
adipocyte mass leads to high leptin secretion, which results in expansion of effector T cells and reduction
of TReg cells. This fact determines an overall enhancement of the proinflammatory immunity and of T-
cell-mediated autoimmune disorders. Though, leptin can be considered as a link among immune tolerance,
metabolic function, and autoimmunity and future strategies aimed at interfering with leptin signaling may
represent innovative therapeutic tools for autoimmune disorders.

Very recently it has been demonstrated that leptin can activate mammalian target of rapamycin
(mTOR) and regulate the proliferative capacity of regulatory T (TReg) cells. This study suggests that the
leptin-mTOR signalling pathway is an important link between host energy status and TReg cell activity.
Authors conclude that oscillating mTOR activity is necessary for TReg cell activation and suggest that this
might explain why TReg cells are unresponsive to TCR stimulation in vitro when high levels of leptin
and nutrients may sustain mTOR activation [21, 22]. To note, both direct and indirect effects of leptin
on the immune system have been described to account for the immune defects observed in leptin- and
leptin-receptor-deficient rodents. Actually, Palmer et al. have also showed an indirect effect of leptin on
the immune system, demonstrating that leptin receptor deficiency affects the immune system indirectly via
changes in the systemic environment [23].

2.4. Leptin and Systemic Lupus Erythematosus (SLE)

Leptin has been suggested to have a role also in other rheumatic diseases such as systemic lupus erythe-
matosus (SLE), in particular modulating the cardiovascular risk of SLE patients. Recently, the group of La
Cava demonstrated that leptin and high-fat diet are able to induce proinflammatory high-density lipopro-
teins and atherosclerosis in BWF1 lupus-prone mice. These data suggest that environmental factors associ-
ated with obesity and metabolic syndrome can accelerate atherosclerosis and disease in a lupus-prone back-
ground [24].

A relationship between leptin and lupus-disease-related factors is also found. In fact, patients with
SLE have increased concentrations of leptin and these concentrations are associated with insulin resistance,
BMI (body mass index), and CRP (C-reactive protein) in these patients [25].

3. ADIPONECTIN

3.1. Adiponectin: A Short Overview

Adiponectin, also known as GBP28, apM1, Acrp30, or AdipoQ, is a 244-residue protein that is produced
mainly by WAT. Adiponectin has structural homology with collagens VIII and X and complement factor
C1q, and it circulates in the blood in relatively large amounts in different molecular forms (trimers, hexam-
ers, and also 12-18-mer forms) [26, 27]. It increases fatty acid oxidation and reduces the synthesis of glucose
in the liver. Ablation of the adiponectin gene has no dramatic effect in knockout mice on a normal diet, but
when placed on a high-fat/sucrose diet they develop severe insulin resistance and exhibit lipid accumulation
in muscles [28]. Circulating adiponectin levels tend to be low in morbidly obese patients and increase with
weight loss and with the use of thiazolidinediones, which enhance sensitivity to insulin [26, 29].

Adiponectin acts via two receptors, one (AdipoR1) found predominantly in skeletal muscle and the
other (AdipoR2) in liver. Transduction of the adiponectin signal by AdipoR1 and AdipoR2 involves the
activation of AMPK, PPAR-α, PPAR-γ , and other signalling molecules [26]. To note, targeted disruption
of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and all its metabolic actions [30].
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Actually, some evidences, indicates that adiponectin has a wide range of effects in pathologies
with inflammatory component, such as cardiovascular disease, endothelial dysfunction, type 2 diabetes,
metabolic syndrome, OA, and RA [31]. Adiponectin acts as a potent modulator of both B and T cells;
moreover, it modulates the activity of immune innate response by inducing relevant anti-inflammatory
factors such as IL-1 receptor antagonist and IL-10 [26].

3.2. Adiponectin and RA

The potential role of adiponectin in rheumatic diseases has been actively investigated. In general,
low adiponectin levels have been associated with obesity, type 2 diabetes, atherosclerosis, and vessel
inflammation, and in metabolic syndrome the role of adiponectin is clearly anti-inflammatory. On the other
side, multiple studies described high adiponectin levels in patients with RA, and these levels correlate
with severity of RA [14, 32]. Giles et al. identified a robust cross-sectional association between serum
adiponectin levels and radiographic damage in patients with RA [33], suggesting that this adipokines may
be a mediator of the paradoxical relationship between increasing adiposity and protection from radiographic
damage in RA, due to adiponectin circulating levels decrease as adiposity increase. Indeed, considering that
adiponectin may have negative effects on joint, this adipokine could be a relevant mediator to the inverse
relationship between increasing adiposity and radiographic damage observed in RA studies.

In contrast to its “protective” role against obesity and vascular diseases, at joint levels adiponectin
might be proinflammatory and involved in matrix degradation. In synovial fibroblasts, adiponectin induces
IL-6 production and metalloproteinase-1, two of the main mediators of RA via the p38 MAPK pathway
[34]. Similarly, IL-8 is induced by adiponectin through an intracellular pathway involving NF-κB [10, 35].

Recent studies showed that adiponectin might also contribute to synovitis and joint destruction in RA
by stimulating matrix metalloproteinase-1, matrix metalloproteinase-13, and vascular endothelial growth
factor expression in synovial cells, surprisingly, more than conventional proinflammatory mediators (i.e, IL-
1 beta) [36]. In addition adiponectin increases both cyclooxygenase-2 (COX-2) and membrane-associated
PGE synthase-1 (mPGES-1) mRNA and protein expression, in RA synovial fibroblasts (RASFs) in a
time- and concentration-dependent manner [37]. This increase was inhibited by siRNA against adiponectin
receptor (AdipoR1 and AdipoR2) or using inhibitors of specific proteins involved in adiponectin signal
transduction [37].

Recently, Frommer et al. have confirmed the proinflammatory role of adiponectin in RA by dem-
onstrating that this adipokine promotes inflammation through cytokine synthesis, attraction of inflammatory
cells to the synovium, and recruitment of prodestructive cells via chemokines, thus promoting matrix
destruction at sites of cartilage invasion [38].

3.3. Adiponectin and OA

It is possible that adiponectin is also implicated in OA pathogenesis. Adiponectin has emerged as a regulator
of immune responses and inflammatory arthritis. However, its role in OA and cartilage degradation is con-
troversial and, under many aspects, poorly known. Nevertheless, in chondrocytes this adipokine induces
proinflammatory mediators such as nitric oxide, IL-6, MCP-1, MMP-3 and MMP-9 as well as IL-8 [10, 39,
40].

Recent studies show a potential source of adipokines at articular level: the infrapatellar fat pad (IFP).
Actually, recent evidence indicates an inflammatory phenotype of this adipose compartment in patients
with OA showing that IFP could contribute to the pathophysiological changes in the OA joint via the
local production of cytokines and adipokines [41–43]. In addition, the implication of adiponectin in OA
pathogenesis is supported also by clinical observations. Lauberg et al. have reported that plasma adiponectin
levels were significantly higher in OA patients than in healthy controls [44], and they also observed higher
plasma adiponectin levels in female patients with erosive hand OA than those with nonerosive OA [45].
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It is noteworthy that adiponectin-leptin ratio has been proposed as predictor of pain in OA patients
[46]; in fact this adipokine has been detected in the OA synovial fluids correlating with osteoarthritis severity
[47] and aggrecan degradation [48].

3.4. Adiponectin and SLE

The role of adiponectin in the SLE pathophysiology is not clear. High levels of adiponectin have been found
in patients with systemic lupus erythematosus (SLE) in comparison with healthy controls [49]; intriguingly,
among the SLE patients, patients with insulin resistance (IR) showed significantly lower adiponectin levels
than patients without IR [50].

Rovin et al. have reported that plasma adiponectin levels are increased in patients with renal SLE
compared to healthy controls and patients with nonrenal SLE. During renal but not nonrenal SLE flare, urine
adiponectin levels increase significantly. For this reason, urine adiponectin may be a biomarker of renal SLE
flare [51]. Intriguingly, the group of Aprahamian has suggested that PPAR-gamma agonists may be useful
agents for the treatment of SLE and also demonstrated that induction of adiponectin is the major mechanism
underlying the immunomodulatory effects of PPAR-gamma agonists [52]. However, these authors obtained
their data by using a murine model of lupus so that the reality regarding the potential therapeutic effect of
PPAR gamma agonists in human SLE may be completely different.

In addition, the study of Vadacca et al. reported no difference of adiponectin levels in SLE patients
in comparison to healthy subjects [53].

In addition, very recently, McMahon and colleagues have demonstrated that leptin levels confer
increased risk of atherosclerosis in women with systemic lupus erythematosus and that there is no significant
association between adiponectin and atherosclerotic plaques in SLE [24].

4. RESISTIN

4.1. Resistin: A Short Overview

Resistin, known as adipocyte-secreted factor (ADSF) or found in inflammatory zone 3 (FIZZ3), was
discovered in 2001 and was proposed as potential link between obesity and diabetes [54]. It was secreted
by adipose tissue but has been found also in macrophages, neutrophils, and other cell types. Serum resistin
levels increase with obesity in mice, rats, and humans [55, 56]. Increasing evidence indicates its important
regulatory role in various biological processes, including several inflammatory diseases.

4.2. Resistin and RA

There are demonstrations that resistin may be involved in the pathogenesis of RA. Increased levels of
this adipokine in synovial fluid from patients of rheumatoid arthritis (RA) compared to patients with
noninflammatory rheumatic disorders have previously been observed [57].

Actually, resistin has been found in the plasma and synovial fluid of RA patients, and injection of this
adipokine into mice joints induce an arthritis-like condition, with leukocyte infiltration of synovial tissues,
hypertrophy of the synovial layer, and pannus formation [58, 59]. Bokarewa et al. have showed also that
resistin induces and is induced by several proinflammatory cytokines, such as TNF-α or IL-6, in peripheral
blood mononuclear cells, via NF-κB pathway, indicating that resistin can increase its own activity by a
positive feedback mechanism [58] Increased serum resistin in patients with rheumatoid arthritis correlated
with both C-reactive protein (CRP) and DAS28, suggesting a role of this adipokine in the pathogenesis of
rheumatoid arthritis [59]. Gonzalez-Gay et al. have confirmed this association between laboratory markers
of inflammation, particularly CRP and resistin levels and have showed that anti-TNF-alpha therapy results
in a rapid reduction of serum resistin levels in patients with RA [60].
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There is also an association between resistin and increased inflammation, joint destruction and levels
of interleukin 1 receptor antagonist (IL-1RA) in rheumatoid arthritis female patients [61].

4.3. Resistin and OA

The proinflammatory profile of resistin, together with its association with obesity suggest that this adipokine
might be another potential mediator that links OA with inflammation and obesity. It was demonstrated
that this adipokine is elevated in both serum and SF after traumatic joint injuries. Recombinant resistin
stimulated proteoglycan degradation in mouse femoral head cultures and the induction of inflammatory
cytokines and PGE2 production. Moreover, it inhibited proteoglycan synthesis in human cartilage explants
[62]. However, Berry et al. have not identified any association between baseline serum levels of resistin and
cartilage volume loss [63].

Recently, Zhang and colleagues demonstrated that resistin has diverse effects on gene expression
in human chondrocytes, affecting chemokines, cytokines, and matrix gene expression. Messenger RNA
stabilization and transcriptional upregulation are also involved in resistin-induced gene expression in human
chondrocytes [64].

4.4. Resistin and SLE

In addition, resistin has a role as a marker of inflammation in other rheumatic diseases, such as systemic
lupus erythematous (SLE). In fact, Almehed et al. have demonstrated a positive correlation between serum
resistin levels, inflammation, bone mineral density, and renal functions in patients with SLE [65].

5. VISFATIN

5.1. Visfatin: A Short Overview

Visfatin, also named pre-B-cell colony-enhancing factor (PBEF) and nicotinamide phosphoribosyltrans-
ferase (Nampt), was originally discovered in liver, skeletal muscle, and bone marrow as a growth factor for
B-lymphocyte precursors; however, it is also secreted by visceral fat [66, 67]. It is supposed that visfatin
had insulin mimetic properties, but the role of this adipokine in the modulation of glucose metabolism, as
well as its binding to insulin receptors, is still amatter of debate [67, 68].

It has been reported that visfatin is increased in obesity. Moreover, leucocytes from obese patients
produce higher amounts of visfatin compared with lean subjects, and, specifically, granulocytes and
monocytes are the major visfatin-producing cells [69, 70]. However, leucocytes are not the only nonfat cell
type that synthesizes visfatin. Actually, macrophages have been described as a source for visfatin production
[71], and, interestingly, this adipokine promoted macrophage survival by reducing apoptosis [72].

5.2. Visfatin and RA

Visfatin may be considered another potential therapeutic target for RA with important proinflammatory and
catabolic roles in RA pathogenesis. Our group demonstrated that circulating visfatin is higher in patients
with RA than in healthy controls [14]. These data were also further confirmed by other authors [73]. To note,
enhanced visfatin levels are associated with augmented joint damage [73]. Brentano and colleagues reported
that visfatin was localized in the site of invasion of synovial tissue in joints of RA patients. Moreover, it
is able to induce IL-6, MMP-1, and MMP-3 in RA synovial fibroblasts, as well as IL-6 and TNF-α in
monocytes [74]. To note, PBEF knockdown in RASFs significantly inhibited basal and TLR ligand-induced
production of IL-6, IL-8, MMP-1, and MMP-3 [74].

Very recently, Busso et al. have showed that visfatin is a key mediator in inflammatory arthritis.
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The administration of a visfatin inhibitor to mice with collagen-induced arthritis reduced arthritis
severity with similar effect to that produced by TNF-α inhibitor [75]. Moreover, pharmacological inhibition
of visfatin led to reduced levels of intracellular NAD in inflammatory cells and decreased the production
of TNF-α and IL-6 in affected joints [75]. However, the mechanisms by which visfatin exerts its catabolic
effect in arthritic joints are still incompletely understood.

5.3. Visfatin and OA

At cartilage level, OA chondrocytes are able to produce visfatin and its expression is increased after IL-
1β treatment [76]. Visfatin administration, like IL-1β, enhances PGE2 release. In line with this, visfatin
also increases MMP-3 and MMP-13 synthesis and release and ADAMTS-4 and ADAMTS-5 expression in
mouse articular chondrocytes [76]. Probably due to this augment in the expression of matrix degradative
enzymes, visfatin decreases aggrecan expression [76].

In addition, we showed that serum visfatin concentrations were higher in patients with OA compared
to healthy controls [11]. Very recently, Duan et al. have reported that SF visfatin was positively correlated
with degradation biomarker of collagen II, helix-II, and C-telopeptide of type II collagen (CTX-II) and
degradation biomarker of aggrecan, aggrecanase-1 (AGG1), and aggrecanase-2 (AGG2), suggesting an
involvement of adiponectin in cartilage matrix degradation [77].

Taken together, these data suggest that visfatin has a catabolic function in cartilage and may have an
important role in the pathophysiology of osteoarthritis.

5.4. Visfatin and SLE

Recent findings report also an implication of visfatin in SLE pathophysiology. It was showed that, in SLE
patients, visfatin levels were higher compared to healthy controls [49, 73]. However, further studies are
needed for more precise elucidation of the role that this adipokine plays in the SLE.

6. CHEMERIN

Chemerin, also known as tazarotene-induced gene 2 and retinoic acid receptor responder 2 (RARRES2),
is a novel identified chemoattractant adipokine [78]. It is secreted as an 18 kDa inactive proprotein
and activated by posttranslational C-terminal cleavage [79]. Chemerin acts via the G-coupled receptor
chemokine-like receptor 1 (CMKLR1 or ChemR23) [78]. Chemerin and its receptor are mainly expressed,
but not exclusively, in adipose tissue [80], for instance, dendritic cells, and macrophages express chemerin
receptor [81]. ChemR23 is also expressed by endothelial cells, and it is upregulated by proinflammatory
cytokines such as TNF-α, IL-1β, and IL-6 [82]. Moreover, chemerin exogenous challenge promotes in vitro
angiogenesis by inducing cell proliferation, endothelial migration, and capillary tube formation, critical
steps in the development of angiogenesis [82].

Interestingly, chondrocytes express chemerin and its receptor [83–85], and IL-1β is able to increase
chemerin expression [84]. In the same way, Berg et al. have demonstrated that recombinant chemerin
enhances the production of several proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8), as well
as different MMPs (MMP-1, MMP-2, MMP-3, MMP 8, and MMP-13) in human articular chondrocytes
[83]. These factors play a role in the degradation of the extracellular matrix, by causing a breakdown of the
collagen and aggrecan framework, and result in the irreversible destruction of the cartilage in OA and RA.
Moreover, these authors reported that the intracellular signalling after ChemR23 activation occurs through
p42/44 MAPK and Akt phosphorylation.

Chemerin and ChemR23 expression was found in SLE skin biopsies [85]. In vitro experiments
showed that chemerin acts as a chemotactic factor for plasmacytoid DCs. The tissue distribution of this
adipokine, located at the luminal side of inflamed blood vessels, suggests that chemerin is involved in
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the migration of plasmacytoid DCs and the accumulation of these cells in inflamed tissues in SLE patients
[85]. Moreover, De Palma et al. found chemerin expression in renal tubular epithelial cells from SLE
patients with nephritis [86]. These authors, using a transendothelial chemotaxis assay, demonstrated that
the recruitment of plasmacytoid DCs by TNF-α was mediated by chemerin/ChemR23 interaction, which
may be due to the induction of the cleavage of prochemerin by TNF-α through the local production of serine
proteases in proximal tubular epithelial cells [79, 86–88].

7. LIPOCALIN 2

Lipocalin 2 (LCN2), also termed siderocalin, 24p3, uterocalin, and neutrophil gelatinase-associated lipo-
calin (NGAL), is a 25 kDa glycoprotein isolated from neutrophil granules although white adipose tissue
(WAT) is thought to be the main source [89]. The LCN2 protein has been isolated as a 25 kDa monomer, as
a 46 kDa homodimer, and in a covalent complex with MMP-9, and its cellular receptor, megalin (GP330),
was recently described [90]. LCN2 is involved in apoptosis of haematopoietic cells [90], transport of fatty
acids and iron [91], modulation of inflammation [92], among other processes.

LCN2 has recently been identified in chondrocytes [93]. In these cells IL-1β, leptin, adiponectin,
LPS, and dexamethasone act as potent modulators of LCN2 expression [84]. Lipocalin 2 is likely to be
involved in matrix degradation since it forms molecular complexes with MMP-9 [94].

Recently, the group of Katano confirmed that the level of NGAL in SF was significantly higher in
patients with RA than in those with osteoarthritis. Through proteome analysis Katano et al. have showed that
GM-CSF may contribute to the pathogenesis of RA by the upregulation of LCN2 in neutrophils, followed by
induction of Cathepsin D, transitional endoplasmic reticulum ATPase (TERA), and transglutaminase 2 (tg2)
in synoviocytes [35]. These enzymes may contribute to the proliferation of synovial cells and infiltration of
inflammatory cells inside the synovia [35].

Finally, LCN2 is also a candidate biomarker for the early detection of LN (lupus nephritis) that is
an inflammation of the kidney caused by systemic lupus erythematosus (SLE), which is very common in
childhood-onset SLE (cSLE). Hinze et al. have demonstrated that urinary and plasma NGAL (U-NGAL
and P-NGAL) are excellent candidates for predictive biomarkers for worsening of cSLE renal and global
disease activity, respectively [95].

8. SERUM AMYLOID A3

Serum amyloid A3 (SAA3) protein is an adipokine that belongs to the family of acute-phase serum amyloid
A proteins (A-SAA) secreted in the acute phase of inflammation. In mice, all A-SAA proteins are actively
transcribed [96–98] whereas, in humans, SAA3 is encoded by a pseudogene and its functional protein
is unknown [99, 100]. In contrast to that, in other species, murine SAA3 expression is not confined to
the liver but found in several cell types [101–103]. Murine SAA3 is involved in immune, metabolic,
and cardiovascular homeostasis [103–105]. Certain factors (e.g., IL-1β, TNF, dexamethasone, IL-6, and
bacterial LPS) and conditions such as obesity modulate SAA3 expression [101–103, 106]. SAA3 is induced
by IL-1β in primary rabbit chondrocytes and can induce transcription of MMP-13 [107].

9. OTHER ADIPOKINES WITH A POTENTIAL ROLE IN RHEUMATIC DISEASES

9.1. Apelin, Vaspin, and Omentin

9.1.1. Apelin

Apelin is a bioactive peptide that was originally identified as the endogenous ligand of the orphan G protein-
coupled receptor APJ [108]. TNF increases both apelin productions in adipose tissue and blood plasma
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apelin levels when administered to mice [109]. Intriguingly, in mice with diet-induced obesity, macrophage
counts and the levels of proinflammatory agents such as TNF rise progressively in adipose tissue [110].
Thus, one can envisage that overproduction of apelin in the obese might be an adaptive response that
attempts to forestall the onset of obesity-related disorders such as mild chronic inflammation.

Very recently, Hu et al. have suggested that apelin may play a catabolic role in cartilage metabolism
and that it can be a risk factor in the pathophysiology of osteoarthritis. Apelin stimulates the proliferation of
chondrocytes and significantly increases mRNA levels of MMP-1, MMP-3, MMP-9, and IL-1β in vitro.
Intra-articular injection with apelin in vivo upregulates the expression of MMP-3, MMP-9, and IL-1β

decreases the level of collagen II. In addition, after treatment with apelin, mRNA levels of ADAMTS-4
and ADAMTS-5 markedly increased and depletion of proteoglycan in articular cartilage was found [11].

9.1.2. Vaspin

Vaspin is a serpin (serine protease inhibitor) that was produced in the visceral adipose tissue [111]. Interest-
ingly, administration of vaspin to obese mice improved glucose tolerance and insulin sensitivity and reversed
altered expression of genes that might promote insulin resistance. The induction of vaspin by adipose tissue
might constitute a compensatory mechanism in response to obesity and its inflammatory complications.

9.1.3. Omentin

Omentin is a protein of 40 kDa secreted by omental adipose tissue and highly abundant in human plasma that
had previously been identified as intelectin, a new type of Ca2+-dependent lectin with affinity to galactofur-
anosyl residues (the last are constituents of pathogens and dominant immunogens) [112]. So, it was sug-
gested that a biological function of omentin/intelectin was the specific recognition of pathogens and bacte-
rial components, playing an important role in the innate immune response to parasite infection [113].
Moreover, several studies have shown that omentin gene expression is altered by inflammatory states and
obesity [114]. Indeed, Kuperman et al. have found increased gene expression of omentin in airway epithelial
cells of patients with asthma [115]. Intriguingly, a differential expression of omentin mRNA occurs in
omental adipose tissue of patients with Crohn’s disease, suggesting that omentin could be a new candidate
factor potentially involved in chronic inflammatory diseases in humans [112].

Recently, Senolt et al. have found increased levels of vaspin and reduced levels of omentin in the
synovial fluid of patients with RA compared with those with OA [116]. This finding suggests that these two
adipokines are likely involved in OA pathophysiology.

10. CONCLUSIONS

The physiological role of adipokines is becoming much more clear and several clinical and experimental
lines of evidence showed their contributions to inflammatory and rheumatic disorders. The complexity of the
adipokine network in the pathogenesis and progression of rheumatic diseases raises, since the beginning,
one important question of whether it may be possible to target the mechanism(s) by which adipokines
contribute to disease selectively without suppressing their physiological actions. The data presented in this
paper suggest that adipokines and their signalling pathways may represent innovative therapeutic strategies
for autoimmune and rheumatic disorders (See Supplementary Tables S1 and S2). (See Supplementary
Materials available at doi:10.1100/2011/290142).

Although, these data are almost incomplete to allow translation of these approaches to clinical prac-
tice, several potential approaches are likely feasible. For instance, the control of leptin levels by using anti-
bodies in a similar way to anti-TNF therapy might be an interesting strategy. Only further insights that clar-
ify the mechanisms by which adipokines are regulated and which are the concrete roles of them in the rheu-
matic pathology could propose new pharmacological approaches for this disease.
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