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Intra‑urban microclimate 
investigation in urban heat island 
through a novel mobile monitoring 
system
Ioannis Kousis1,2, Ilaria Pigliautile1,2 & Anna Laura Pisello1,2*

Monitoring microclimate variables within cities with high accuracy is an ongoing challenge for a 
better urban resilience to climate change. Assessing the intra‑urban characteristics of a city is of 
vital importance for ensuring fine living standards for citizens. Here, a novel mobile microclimate 
station is applied for monitoring the main microclimatic variables regulating urban and intra‑
urban environment, as well as directionally monitoring shortwave radiation and illuminance and 
hence systematically map for the first time the effect of urban surfaces and anthropogenic heat. 
We performed day‑time and night‑time monitoring campaigns within a historical city in Italy, 
characterized by substantial urban structure differentiations. We found significant intra‑urban 
variations concerning variables such as air temperature and shortwave radiation. Moreover, the 
proposed experimental framework may capture, for the very first time, significant directional 
variations with respect to shortwave radiation and illuminance across the city at microclimate scale. 
The presented mobile station represents therefore the key missing piece for exhaustively identifying 
urban environmental quality, anthropogenic actions, and data driven modelling toward risk and 
resilience planning. It can be therefore used in combination with satellite data, stable weather station 
or other mobile stations, e.g. wearable sensing techniques, through a citizens’ science approach in 
smart, livable, and sustainable cities in the near future.

Within recent decades the rural-to-urban population flow has substantially increased. In 2016, 54% of the world 
population was reported to live in urbanised areas. At the same time, future projections of urbanization rates 
are rather alarming. It is expected that by 2050 and 2100 the corresponding fraction will increase up to 66% and 
85%  respectively1. Urbanization is typically followed by high population and building density and consequent 
land-use and surface alterations, e.g. deforestation, loss of  farmland2,3. Natural-to-urban land alterations affect 
in turn the local energy balance of cities and thus their microclimatic characteristics and thermal environment 
in  particular4,5. As a result, cities tend to systematically experience higher surface and air temperatures as com-
pared to the surrounding rural areas, a phenomenon reported as Urban Heat Island (UHI)  effect6–9. The driving 
physics behind UHI is the reduction in latent heat flux and increase in sensible heat  flux10,11. UHI is a significant 
human-induced environmental change that poses threats to human life. For instance, increased morbidity and 
 mortality12, indoor/outdoor  discomfort13, air  pollution14,15, increased energy  consumption16 and greenhouse gas 
 emissions17,18, impaired air and water  quality19 and intensification of energy poverty on vulnerable social groups 
during the hot months of the  year20,21 are just some of UHI consequences that usually are interconnected. Also, 
UHI is associated with global warming and moreover has been found to synergistically act with heatwaves and 
amplify their  impacts22–24. Considering the projections linked to the ongoing climate change, the livability of 
cities will be seriously  endangered25. In fact, according to IPCC’s Representative Concentration Pathway (RCP) 
8.5, global warming is expected to reach up to 1.5° above pre-industrial levels by 2050, and up to 2.0°–4.9° by 
2100 as compared to 1861–188026,27. Thus, heat-related risk within urban canopy layers is likely to increase even 
more in the very near future, making the urban population particularly vulnerable during periods of hot weather.

Measures for counterbalancing UHI and its aftermaths are deemed of critical importance. In fact, techniques 
for controlling the variables regulating the urban microclimate are receiving increased attention from academics, 
urban planners and policy-makers28–32. Quantifying, however, the magnitude of each microclimatic parameter 
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is not trivial, especially because affected by dynamic and granular anthropogenic forcing. Instead, due to the 
complex morphology of urban areas, microclimatic conditions have been found to significantly vary not only 
among different cities but also among different locations of the very same  city33. For instance, UHI incidences has 
been found not only between urban and rural areas but also between urban and suburban  areas34,35. In general, 
the profile of each investigated urban microclimate is determined by the unique characteristics of the correspond-
ing  area36. Therefore, the intrinsic inhomogeneity of urban microclimate needs to be in-depth investigated with 
respect to the spatio-temporal variations originated from the local morphology, anthropogenic actions, urban 
planning, and temporal weather  conditions37–39. For precisely determining the gradient and the intra-urban 
deviations of microclimatic variables, their spatial extent needs to be thoroughly delineated. Mapping out each 
variable’s footprint can result in a better understanding and evaluation of cities’ function, as well as decreased 
biases concerning local phenomena, such as UHI magnitude and its consequent heat stress and risk mapping. 
Furthermore, more efficient comparison analysis among relevant studies will be  feasible40.

Traditionally, in-situ meteorological stations have been implemented for measuring parameters such as air 
temperature and humidity, in and out of the city. For instance, Santamouris et al.41 utilised and retrieved data 
from a network of 23 experimental weather station within the city of Athens and gauged the corresponding UHI 
magnitude while the same did Yang et al.16 in the city of Nanjing, China and Foisard et al.42 within the city of 
Rennes, France by implementing networks of 15 and 22 weather stations, respectively. Similarly, Richard et al.43 
employed an extended network of 47 fixed air temperature sensors for identifying thermal zones within the city 
of Dijon, France during a 3-week heatwave. Another sensor network of high density is established by the Bir-
mingham Urban Climate Laboratory and comprises 29 sensors distributed within the entire city of  Birmingham44. 
Results of such studies are of critical importance since not only gauge the magnitude of local phenomena, such 
as UHI, but also shed light on the corresponding mechanisms of urban climate and hence help towards efficient 
countermeasures. However, since in most cases meteorological stations are sparsely distributed, data retrieved 
from this method represent a point-wise momentum of each microclimatic variable and not the overall footprint 
and the corresponding spatial  patterns16.

To overcome this limitation, recent studies employed remote sensing techniques. In fact, land surface tem-
perature (LST) data from satellites have been widely utilised for measuring the magnitude of microclimatic 
variables determining surface UHI mainly due to their high spatial resolution. For example, several studies used 
MODIS LST  data45,46 for assessing UHI and its drivers within high populated cities in China. However, due to 
their typically low temporal resolution, together with lack of direct air temperature profiles, data retrieved from 
satellites cannot be used for evaluating an extensive intra-urban distribution of UHI.

Under this framework, mobile meteorological units, placed typically on motorized vehicles, are becoming 
popular among academics for determining the spatial variability of microclimatic variables within a city. Table 1 
gives a brief overview of relevant published scientific works. Unlike fixed units, mobile stations can offer data 
acquisition of higher spatial resolution within the desired urban context and thus can be used for identifying 
the intra-urban diversifications of the parameters affecting the urban microclimate and consequently human 
well-being. For instance, Hart and  Sailor47 utilised vehicular temperature traverses in order to determine the 
spatial variability of air temperature at two-meter height across the metropolitan area of Portland, US. Santa-
mouris et al.48 developed a mobile weather station on a telescopic mast placed atop of a vehicular van capable of 

Table 1.  Studies with mobile traverse monitoring methods. Tair is air temperature, RH is relative humidity, 
WS and WD are wind speed and direction, SR and LR are short-wave and long-wave incident radiation, P is 
pressure, E v is illuminance, � is Longitude, φ is latitude, h is altitude and dr is precipitation.

Study Year Type Variables Speed City Scale Access
51 1998 Automobile,bicycle Tair – Vancouver, CASacramento, US Macro,micro Roadways,pedestrians
52 2000 Automobile Tair – Regina, CA Macro Roadways
47 2009 Automobile Tair 36 km/h Portland, US Macro Roadways
48 2012 Automobile Tair , WS, WD – Athens, GR Macro Roadways
34 2014 Automobile Tair , RHWS, WD – Padua, IT Macro Roadways
53 2014 Bicycle Tair , RH, WSSR radiation – Vienna, AT Micro Roadways
54 2016 Automobile Tair , � , φ , h – Doha, QA Macro Roadways
49 2016 Automobile Tair – Roanoke, US Macro Roadways
55 2017 Automobile Tair , RH 50 km/h Adelaide, AU Macro Roadways
56 2018 Automobile Tair , � , φ , h – Los Angeles, US Macro Roadways

37 2018 Helmet Tair , RH, Pr, SR, E v  , WS,WD, � , φ , h, 
CO2 , CO, VOC Walking speed Gubbio, IT Micro Pedestrians

57 2019 Automobile WS, WD  � , φ , h,dr, P, Tair/RH  Tsur

SW, LW 30–40 km/h Seoul, KR Macro Roadways

58 2019 Motor vehicle Tair , RH – Tainan, TW Macro Roadways
59 2019 Automobile Tair , RH, WS, SR 18–36 km/h Delhi,INDhaka, BDFaisalabad, PK Macro Roadways
60 2019 Wearable Tair , RH Walking speed Lyon, FR Micro Pedestrians
50 2020 Automobile,hexacopter Tair , WSSR, Pr – Sydney, AU Macro Roadways
61 2020 Bicycle Tair , � , φ , h 15 km/h Seville, SP Macro Roadways
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measuring air temperature, wind speed, and direction at different heights with time-step of 30 s and performed 
a monitoring campaign before and after the implementation of cool pavements in an urban park at the city of 
Athens, Greece. Similarly, Busato et al.34 assessed UHI incidences within the city of Padua, Italy through the 
development and utilisation of a mobile weather station built on a vehicle and capable to measure air tempera-
ture, relative humidity, and solar global radiation with a time-step of 5 s. Mobile weather units were employed 
also in the study of Parece et al.49 aiming to capture spatial patterns of air temperature (2 s time-step) across the 
Roanoke, Virginia, USA. Santamouris et al.50 also developed a mobile weather station, called “EnergyBus”, that 
measures air temperature, relative humidity, pressure, and wind speed.

Moreover, mobile weather stations have been also developed on human-wearable  helmet37 and  trolleys62 in 
order to monitor pedestrian pathways and the corresponding thermal comfort. Nevertheless, areas of vehicular 
traffic dominate typically the outdoor urban  environment63. Hence understanding the differing and localized 
patterns of the parameters that regulate the corresponding microclimate through an exhaustive monitoring 
techniques is of primary importance. That said, both weather variables, such as temperature, humidity, wind 
speed and direction, and parameters, such as materials implemented into the built environment, must be taken 
into consideration. Subsequently, thermal environment and comfort can be efficiently accessed and evaluated 
for safeguarding the well-being of the citizens.

Under this framework, this study aims to contribute towards detailed monitoring techniques that can iden-
tify the environmental quality of urban areas and hence safeguard fine standards of the corresponding risk and 
resilience planning. It presents the application of an advanced mobile weather station within a city of central 
Italy. The mobile station can monitor profiles of the main parameters that regulate the lower levels of a typical 
urban canopy layer. More specifically, it can monitor not only scalar or vector variables such as air temperature, 
humidity, wind profile, and air pollutants’ concentration, but also directionally dependent variables, such as 
reflected and diffused shortwave radiation and illuminance that are typically affected by the properties of urban 
surfaces. The start-up of the novel methodology is demonstrated through two transect campaigns during the 
winter period of 2020 within the historical city of Perugia, Italy. The main variables that define the quality of a 
typical urban environment were subsequently mapped and evaluated in terms of intra-urban variations within 
districts of different morphology.

Methods
The mobile monitoring station includes five units equipped on the 3D surface of the vehicle (Fig. 1). All units 
are placed above a specifically designed wooden base for minimizing possible affections originated from the 
van surface. Each unit comprises various sensors (Table 2). The variables measured by the mobile station are 
air temperature, relative humidity, solar global radiation, illuminance, CO2 and PM10 concentration, and wind 
speed and direction. Incoming short-wave radiation is among the main regulators of urban microclimate and 
it is typically measured by a pyranometer facing directly the sky. However, this method is not adequate for 
accurately depicting solar radiation at a specific height since it compromises shortwave radiation reflected from 
surfaces at lower heights.

For that reason, in order to ensure an accurate point-wise microclimatic representation of the investigated 
route, the mobile station presented here is equipped with five pyranometers each one facing towards a different 
direction. Similarly, five luxmeters were placed towards different orientations for capturing directional illumi-
nance. In more detail, solar global radiation and illuminance are measured each by five different sensors oriented 
towards (1) the sky, (2) the street, the (3) right, the (4) left, and the (5) backside of the vehicle. The sensors are 
positioned on the top and back facades of the vehicle so as to minimize both external interferences, e.g. shad-
ing effects, and overlapping incidences. Furthermore, in order to ensure an accurate air temperature profile, a 

Table 2.  Characteristics of the sensors comprised by the station.

Sensor Unit Monitored variable Specifications Orientation

GMX501 1 Tair Accuracy : ±0.3° @ 20° resolution: 0.1° –

RH Accuracy : ±2% @ 20° (10–60% RH) 
resolution: 1% –

WS Accuracy : ±3% @ 40 m/s resolution: 
0.001 m/s –

WD Accuracy : ±3° @ 40 m/s resolution: 1°

P Accuracy : ±0.5 hPa @ 25° resolution: 
0.1 hPa –

SR Spectral range: 300–3000 nm 1 W/mq Downward

DH2021T 8.1 1, 2, 3, 4, 5 Ev Range: 0–10000 lx Downward, leftward, rightward, forward, 
upward

EE820 1 CO2

Range: 0–2000 ppm accuracy: ± (50 ppm 
+2% of measured value) –

PT100 2, 3, 4 Tair Resolution: 0.1° –

SR05 2, 3, 4, 5 SR Spectral range: 285–3000 nm calibration 
uncertainty: < 1.8% Leftward, rightward, forward upward

LCT-12 3 PM10 Resolution: 1/4096 Accuracy: < 1% –
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corresponding probe is placed in each of the five units. It should be mentioned that in the present study the air 
temperature probe of unit no. 5 was not utilized. All measurements are taken at the same timestamp every 10 s.

The sensor’s main characteristics, such as operation range, accuracy, and sensitivity error are opted for ensur-
ing the desired level of precision of the corresponding variables. All the main technical characteristics of the 
installed sensors are summarized in Table 2. Furthermore, since the station is mobile, apart from monitoring 
micrometeorological parameters, data related to the specific position of the sensors are retrieved by a Global 
Positioning System (GPS) antenna which is also installed on the vehicle. Therefore, all variable measurements 
can be directly linked with the corresponding latitude, longitude, and altitude as collected by the GPS antenna 
that has a Circular Error Probability (CEP) of less than 2.5 m in sky clear view conditions. The spatial accuracy 
is expected to be lower when the system is located in an urbanized environment, but the error is assumed as 
acceptable since data points are collected almost every 50 m and the analysis is focused on areas of monitoring 
path length of 1.2 km at the minimum, as better specified in section 2.1 (Table 4). Furthermore, the GPS antenna 
is specifically integrated within the wind speed/direction sensor for correcting direction misalignment due to 
the vehicle’s motion. Further information about the correction algorithm can be found  in64.

Once the transect is concluded, data loggers of the designed configuration automatically generate a “.csv” file 
in which all data are saved. Data retrieved from the GPS antenna are also included in the same file and were uti-
lized for intra-urban illustration. In order to minimize overheating incidences and ensure aspiration by vehicle’s 
motion to the extent possible, the sensors of temperature were placed and ventilated in a PVC radiation shield. 
All sensors utilised in this study are commercially available products, thus are tested, validated and certified in 
terms of accuracy by the producing company following the corresponding protocol and standards.

Monitoring campaigns. Apart from the development and presentation of the mobile monitoring station 
this study aims to report on two startup monitoring campaigns, performed on weekdays. In order to demon-
strate the suitability of the proposed monitoring architecture both campaigns represent data collection at two 
significant day-times for microclimate investigation purposes, i.e. day-time (around solar noon) and night-time 
(after sunset and thus in absence of incoming shortwave radiation). The monitoring campaigns were carried out 
by the authors during the months of January and February of 2020, i.e. in winter conditions. The winter period is 
a rather under-reported period in terms of mobile microclimate monitoring, while the UHI phenomenon could 
lead up to +9° in core cities with respect to rural  surroundings65. Moreover, during the winter period, the city of 
Perugia is characterized by standard anthropogenic actions, e.g. standard working and school schedules, affect-
ing the thermal environment and air quality, whilst during the summer period, possible biases may occur due 
to tourism forcing and varied school and working schedules. Previous studies showed that correlations between 
microclimate parameters and urban morphology are more accurate in terms of statistical significance during 
clear sky conditions and generally stable boundary  conditions37. Hence, one clear sky day-time and one clear sky 
night-time days were chosen for carrying out the presented monitoring campaigns (Table 3).

Figure 1.  Monitoring system scheme.
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Both monitoring campaigns followed the very same pathway within the city of Perugia, in central Italy. 
According to the Köppen and Geiger classification, Perugia is classified as Cfa and is characterized by humid 
subtropical climate  conditions66. The pathway (Fig. 2) is almost circular and ends where it starts. It is specifically 
planned to pass through and monitor areas characterized by different types of (1) urban morphology, (2) land-
use, and (3) human activity. Under this scenario, three significantly different areas in a radius of almost 2 km 
from the main train station of the city were identified. These areas present different building densities, prevailing 
built materials, and amount of greenery and were already identified in previously published research of the same 
authors in Pigliautile et al.67. More specifically, the case study city of Perugia presents an urban structure that 
comprises: (1) a hilly Medieval city center which is densely built, mainly characterized by stones and bricks as 
prevailing built materials, and not fully accessible by vehicles; (2) modern urban neighborhoods developed in 
proximity of the main train station and the main infrastructures connecting the historical city to its surround-
ings, that are similarly characterized by mid-rise buildings but wider roads, a higher amount of pollutants and 
anthropogenic heat sources, and prevailing asphalt and concrete as built materials; (3) suburbs that are outer 

Table 3.  Monitoring days and their abbreviation.

Monitoring day Time of the day Start-time End-time Abbreviation

23/01/2020 Day-time 12:34 13:27 day 1

13/02/2020 Night-time 17:49 19:02 day 2

Figure 2.  Pathway of monitoring campaigns, made via GPS Visualizer online application (https:// www. gpsvi 
suali zer. com/).

Table 4.  Clustered areas’ details.

Clustered area Coverage in progressive distnace in m Abbreviation

Suburbs 0–4600 Suburbs-1

Train 4600–7900 Train-1

Center 7900–14,100 Center

Train 14,100–15,300 Train-2

Suburbs 15,300-end Suburbs-2

https://www.gpsvisualizer.com/
https://www.gpsvisualizer.com/
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from the center, sparsely built, and with a higher amount of greenery. Further details of each area with respect to 
the monitoring path can be found in Table 4. Moreover, the monitoring path was devised so as to be accessible 
by the equipped van and to be completed in less than one hour in order to minimize the environmental data 
elapsed time-dependency and thus to focus on spatial  variability56. However, due to vehicular traffic, the day-2 
monitoring transect exceeded the one-hour duration by 10 min.

Concerning mobile monitoring, a vehicle’s speed of 10 km/h is recommended by  Oke36, while according to 
Taha et al.56 measurements of air temperature at vehicle speed lower than 10 km/h should be discarded. Other 
mobile monitoring studies, however, reported vehicle speeds above 30 km/h47,55,57,59. Here, in order to maintain 
the lowest possible speed within the city area and get a substantial spatial resolution, vehicle speed was main-
tained around 20 km/h and hence measurements were taken approximately every 50 m.

Results and discussion
Boundary conditions. At first, data derived from a stable weather station built on the roof of the University 
of  Perugia68 were retrieved for defining the boundary conditions of each monitoring campaign in terms of air 
temperature and shortwave radiation. As it can be seen in Fig. 3, profiles of air temperature are rather similar for 
both days. The daily-mean air temperature values are 4.5 ◦C and 7.4 ◦C concerning day-1 and day-2, respectively. 
Furthermore, the mean air temperature values during the time-frame of the monitoring campaigns are 9.4◦C 
and 9.3◦C concerning day-1 and day-2, respectively, whilst the corresponding standard deviations are 0.4◦C and 
0.5◦C , respectively. Similarly, the daily-mean value of incoming shortwave radiation is 110W/m2 concerning 
day-1, whilst the corresponding maximum value is 492W/m2 . The mean value of incoming shortwave radiation 
during the day-time monitoring campaign of day-1 is 485W/m2 and the corresponding standard deviation is 
8W/m2.

Intra‑urban profiles of the microclimatic variables. A representation of intra-urban variations of 
some of the collected variables can be seen in Fig. 4 where air temperature (images a and d), CO2 (images b and 
e), and PM10 (images c and f) profiles across the followed monitoring paths are depicted with respect to day-1 
and day-2. Moreover, further information is given by varying dot size with respect to the desired variable. Here, 
the size of each illustrated circle-point varies with respect to the corresponding specific humidity (SH) and wind 
speed (WS) values concerning the air temperature and air pollutant images, respectively. Through this repre-
sentation, some elementary conclusions can be made, e.g. that high-temperature values occur simultaneously 
with high values of specific humidity. Also, localized hot-spots with respect to each variable can be identified. 
For instance, within the monitoring duration of day-1, the highest values of temperature were recorded on the 
peripheral area of the city center and within the suburbs-2 area. On the night hours of day-2, the higher air 
temperature values were recorded also in the area of the railway station and in the center. Similarly, the highest 
values of CO2 and PM10 concentration were recorded mainly at both railway and its neighboring areas, espe-
cially on day-1. During the monitoring hours of day-2, the atmosphere within the investigated area was rather 
clear in terms of PM10 concentration.

A more precise picture of the variable profiles can be observed through the illustration of the corresponding 
time-series. In Fig. 5 the temperature profiles during the two monitoring campaigns are illustrated. A temperature 
gradient ( �Tmax ≈ 1.5◦C ) can be seen between Train-1 and Center areas within day-1. An adverse but more 
steady gradient can be seen within day-2.

The temperature substantially dropped ( �Tmax ≈ −1.5◦C ) while entering the Center area of the city and 
substantially increased when approaching Train-2 area ( �Tmax ≈ 1◦C ). During both days, a steep drop and 
increase of temperature can be spotted within the last meters of the Center area. This trend is more evident 
within day-1 and is attributed to a substantial tree coverage within the specific street crossed in that area. Unlike 
relative humidity, absolute humidity, do not depend on temperature. However, here, a rather stable profile of 

Figure 3.  (a) 24 h air temperature profile for both day-1 and day-2, (b) 24 h solar global radiation profile for 
both day-1 and day-2.
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absolute humidity can be observed during both day-1 (Standard deviation = 0.2 g/m3 ) and day-2 (Standard 
deviation = 0.1 g/m3 ), mainly due to the absence of water areas or large green areas. A similar profile is observed 
for specific humidity profile with standard deviation that also do not overpass 0.2 gv/kga and 0.1 gv/kga during 
day-1 and day-2, respectively (Fig. 6). Dewpoint temperature (DT) is an alternative way of capturing humidity 
and comfort and it is regarded as a more accurate metric since it is an absolute measurement. Moreover, it is also 
used to evaluate moisture, especially during spring and summer periods. During day-1 a significant gradient 
( �DTmax ≈ 0.5◦C ) towards higher values can be seen as the station was moving from the Center area to the 
Train-2 one. A rather adverse profile is observed during day-2. Dewpoint temperature decreased as entering into 
Center area ( �DTmax ≈ −0.6◦C ) and remained almost stable ( �DTmax ≈ 4.8◦C ) up to the end of the campaign.

Figure 7 shows the concentration levels of CO2 and PM10, i.e. two key metrics of air pollution within an urban 
microclimate. Concerning CO2 , no substantial variations were recorded during both day-1 (Standard Deviation 
= 27.4 ppm) and day-2 (Standard Deviation = 12.3 ppm) time monitoring campaigns. However, on day-1, a small 
drop ( �CO2max ≈ −70 ppm ) of CO2 concentration can be noticed within Center area. At the same day and point 
a small reduction ( �PM102max ≈ −30 ppm ) can be observed also for PM10 concentration. This drop is likely 
due to the physical characteristics of the specific spot. It is an open-air spot and hence wind could locally remove 

Figure 4.  Day-time/Night-time monitoring. (a) Day 1—air temperature ( Tair ) versus specific humidity (SH), 
(b) day 1—CO2 concentration versus wind speed (WS), (c) day 1—PM10 concentration versus wind speed 
(WS), (d) day 2—air temperature ( Tair ) versus specific humidity (SH), (e) day 2—CO2 concentration versus 
wind speed (WS), (f) day 2—PM10 concentration versus wind speed (WS). Tair is in ◦C , SH is in gv/kga , CO2 
and PM10 in ppm, and WS in m/s2.
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Figure 5.  Air temperature and absolute humidity for (a) day 1, (b) day 2 monitoring. Vertical dotted lines stand 
for the boundaries in-between suburban (first and fifth section), train (second and forth section) and center area 
of the city.

Figure 6.  Dew-point temperature and relative humidity (a) day 1, (b) day 2 monitoring. Vertical dotted lines 
stand for the boundaries in-between suburban (first and fifth section), train (second and forth section) and 
center area of the city.

Figure 7.  CO2 and PM10 concentration (a) day 1, (b) day 2 monitoring. Vertical dotted lines stand for the 
boundaries in-between suburban (first and fifth section), train (second and forth section) and center area of the 
city.
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pollutants. Also, a localized and short-term decrease in vehicular traffic might have occurred. Concerning PM10 
during day-2, no significant variations were observed (Standard Deviation = 2.7 ppm).

Short-wave radiation regulates urban microclimate during the day-time, whilst illuminance is a good indicator 
of anthropogenic action during the later hours of the day when sunlight is absent. Therefore, in Fig. 8 the profiles 
of shortwave radiation and illuminance are presented for day-1 and day-2, respectively. The results presented in 
this figure represent the average value of the data retrieved from the five sensors for both short-wave radiation 
and illuminance. Globally speaking, both solar radiation and illuminance are depending on the climatic zone of 
the investigated area, the time of the year, and the overall urban infrastructure. Of course, illuminance is a rather 
sensitive variable affected by various boundary conditions and hence its values significantly fluctuate around the 
mean value ( Evmax = 347 lux and Evmin = 229 lux). Nevertheless, several peaks can be seen within Train-1, 2, and 
Center areas where the most anthropogenic activities take place (Fig. 8b). Similar fluctuations were found also 
concerning shortwave radiation (Fig. 8a). Overall, shortwave radiation follows a somehow similar profile with 
air temperature. For example, an increase ( �SRmax ≈ 100w/m2 ) can be seen as entering the Train-1 zone, while 
a steep drop up to 205w/m2 can be seen within the Center area when the station turned to a well-shaded street. 
The highest values were measured within the substantially unshaded areas of Suburbs-1 and 2.

Day-1 and 2 were specifically chosen for the presented monitoring campaigns due to their relatively stable 
boundary conditions. As a result, wind speed deviations were rather small (Fig. 9), i.e. the wind speed standard 
deviations were 2.1m/s2 and 1.8m/s2 for day-1 and day-2 respectively. Two peaks can be observed as entering 
and leaving from the Center area owing to the corresponding open-air location, while inside the historic walls 
where the streets are substantially narrower wind speed was lower. Wind direction was in general towards North 
either North–East (0◦–90◦ ) or North–West (270◦–360◦ ). It should be noted that the highest values of wind speed 
occurred most of the time together with North–East wind.

Figure 10 presents the deviation of air temperature and absolute humidity with respect to the corresponding 
mean value. Significant deviations have been found concerning air temperature within both monitoring cam-
paigns. For instance, during day-1 deviations ranged from − 1.1 to 1.3 ◦C . The peak negative deviation from the 

Figure 8.  Solar-wave radiation and illuminance (a) day 1, (b) day 2 monitoring. Vertical dotted lines stand for 
the boundaries in-between suburban (first and fifth section), train (second and forth section) and center area of 
the city.

Figure 9.  Wind speed and direction (a) day 1, (b) day 2 monitoring. Vertical dotted lines stand for the 
boundaries in-between suburban (first and fifth section), train (second and forth section) and center area of the 
city.
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mean value, i.e. 9.9 ◦C , was recorded as approaching the Train-1 area while the first positive peak deviation was 
recorded within the Center area. Even higher positive peak deviation values were recorded within Suburbs-2 
area owing to their unshaded and open-air environment. A rather adverse profile can be observed during day-2. 
The corresponding deviations ranged from − 1.0 to 0.8◦C . However, the global positive peak deviation was found 
for the Train-1 area while the global negative peak was found for the Center area. On the other hand, absolute 
humidity deviations as compared to the average value were found rather low.

In Fig. 11, a cluster analysis of the monitoring path can be seen with respect to different areas of the city. 
During day-1, the highest values of air temperature (Fig. 11a) were recorded within the suburbs 2 area. The 
air temperature was slightly lower within Train 2 and Center areas. However, concerning the latter area, the 
distribution was wider since this area comprises both narrow streets and open places. On the other hand, 
during day-2, the lowest air temperature values were recorded in Center area and the highest in the Suburbs 
1 (Fig. 11b). Concerning CO2 , during day-1, the higher concentration values were recorded within the Train 
and Center areas (Fig. 11c), while during the day-2, except for Suburbs 1 area, all areas were found with rather 
similar concentration values (Fig. 11d). Concerning PM10, during day-1, the concentration within the Center 
area was found slightly lower as compared to the rest areas (Fig. 11e), while during day-2, a rather inverse profile 
was recorded Fig. 11f). In Fig. 12 the directional profiles of shortwave radiation (day-1) and illuminance (day-2) 
are presented at different spots within the monitoring path. As it can be seen, especially for the shortwave radia-
tion, the direction of the incident radiation varies among different spots within the city, due to the varied urban 
morphology, e.g. open-air areas in the suburbs and narrow streets within the center area. On the other hand, 

Figure 10.  Deviations from the mean value. (a) day 1—air temperature and absolute humidity, (b) day 2—air 
temperature and absolute humidity. Vertical dotted lines stand for the boundaries in-between suburban (first 
and fifth section), train (second and forth section) and center area of the city.

Figure 11.  Cluster analysis of air temperature and air pollutants.
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illuminance levels during night-time transect did not vary substantially in terms of incident light direction but 
in terms of absolute value.

Statistical analysis of the experimental data. Descriptive statistics. Figure 13 illustrates the proba-
bility density and the central tendency of the monitored variables during the campaigns. Air temperature within 
day-1 is distributed approximately from 8 to 12 ◦C with a mean value equal to 9.9◦C , while on day-2 air tempera-
ture is distributed from 10 to 13.4◦C with a mean value equal to 12.1◦C . Temperature values were slightly higher 
during the night-time monitoring campaign due to the imminent ending of the winter period. On the contrary, 
absolute humidity values of day-2 were lower than the ones of day-1 with corresponding mean values equal to 
6.9 g/m3 and 6.3 g/m3 respectively. The distributions of air pollutants, i.e. CO2 and PM10, can be seen on Fig. 13. 
The widest distribution, as well as the highest values concerning both CO2 and PM10, occurred on day-1, most 
likely due to higher vehicular traffic and other human-induced activities that take place more frequently during 
the daytime. The corresponding mean values are 484 ppm and 56 ppm concerning CO2 and PM10 respectively. 
During day-2 CO2 concentration is distributed within 413–477 ppm with a mean value equal to 443 ppm while 
PM10 concentration varies within 2–21 ppm with a mean value equal to 9 ppm. Shortwave radiation values dur-
ing day-1 followed a rather wide distribution owing to urban morphology variations. In fact, shortwave radia-
tion is distributed from 11 to 496W/m2 with a mean value equal to 196W/m2 . A slightly narrower distribution 
is observed concerning illuminance during day-2, with values varying from 229 to 347 lux and a mean value 
equal to 274 lux.

Correlation analysis. A Pearson’s correlation analysis, was performed for investigating possible primary linear 
relationships among the measured microclimate variables. The corresponding results are illustrated in Fig. 14. 
The diagonal of each matrix comprises variable histograms with kernel density estimations and the correspond-
ing rug plots. On the part above the diagonal, the correlation coefficients are reported, whilst on the part below 
the diagonal the corresponding scatter plots with local regression (loess) fitted lines and covariance ellipses for 
displaying the strength of the relationship can be  seen69,70.

During the day-time monitoring campaign, the most significant relationship was positive and found for air 
temperature and absolute humidity, i.e. r = .69, p < .001. Other moderate relationships were found for altitude and 
PM10 (r = .46, p < .001) and air temperature and PM10). Likewise, primary relationships within the measured 
variables were moderate to low during night-time monitoring. A negative primary relationship was observed 
concerning altitude and air temperature (r = − .66, p < .001) on day-2. In addition, during the same day, a posi-
tive relationship can be seen for altitude and PM10 (r = .38, p < .001).

Multiple linear regression analysis. Multiple linear regression was employed to further investigate the rela-
tionship between air temperature, i.e. dependent variable, and the other measured microclimate parameters, 
i.e. independent explanatory variables. Air temperature is chosen as the dependent variable since is the main 
parameter that directly demonstrates the thermal environment of a typical urban environment. Moreover, data-

Figure 12.  Directional representation of shortwave radiation ( W/m2—left column) and illuminance (lux—
right column). The monitoring path map was made via GPS Visualizer online application (https:// www. gpsvi 
suali zer. com/).

https://www.gpsvisualizer.com/
https://www.gpsvisualizer.com/
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sets of both day-1 and day-2 meet the main assumptions of linear regression, i.e. multivariate normality, no 
multicollinearity, and homoscedasticity. The standardized residuals of the regression, i.e. the errors between 
observed and predicted values, are normally distributed (Fig. 15a,b). There is no evidence of significant multi-
collinearity since Variance Inflation Factors (VIF) of all explanatory variable are less than 4 and rather close to 1 
(Tables 5 and 6) and the correlations among all independent variables have correlation coefficients less than .80 
(Fig. 15). In addition, as it can be seen in Fig. 15c,d, the variance of the standardized residuals across the inde-
pendent variables and the Loess-locally fit regression red-line that approximates zero, show now clear patterns 
across all levels of the independent variables.

Concerning both day-1 and day-2, the p-value of model’s F-statistic is < 2.2e−16, which is statistically sig-
nificant, i.e. at least one explanatory variable is significantly related to the air temperature. Concerning day-1, a 
significant relationship with p < .001 is found between air temperature and each of absolute humidity, PM10, CO2 
and short-wave radiation (SR), whilst a significant relationship with p = .003 is found between air temperature 
and altitude (h). Concerning day-2, a significant relationship with p < .001 is found between air temperature 
and each of absolute humidity, PM10, CO2 , short-wave radiation (SR), and altitude (h), whilst a significant 
relationship with p = .001 is found between air temperature and wind speed (WS). The values of the adjusted 
R-squared suggest that the models explain a 68% and 58% of the variance of air temperature, concerning day-1 
and day-2, respectively.

Conclusions
The current study reports on the application of advanced mobile monitoring techniques within a historical 
lively city of central Italy. Locating hot-spots with respect to each microclimate parameter, as well as identifying 
possible relationships among them is not trivial. Each city is characterized by its specific peculiarities. Perugia, 

Figure 13.  Probability density and boxplot of the measured variables within (a) day 1, (b) day 2.



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9732  | https://doi.org/10.1038/s41598-021-88344-y

www.nature.com/scientificreports/

the city chosen for the present study, is characterized by a diverse morphology. It comprises a city center with 
narrow and shaded streets with limited vehicular traffic, a more recent neighborhood developed around the main 
train station with substantial anthropogenic action, and several mostly residential suburban areas with open-air 

Figure 14.  Correlation coefficients for day-1 and day-2. One star (‘*’) and two stars (‘**’) denote that the 
corresponding variable is significant at 5% and 1% level, respectively. Absence of star denotes no significant 
variable.
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Figure 15.  Residual analysis: (a) Histogram of frequency for day-1, (b) Residuals versus fits plot for day-1, (c) 
Histogram of frequency for day-2, (d) Residuals versus fits plot for day-2.

Table 5.  Outcomes of the multiple linear regression—day-1. SR is Short-wave radiation, h is altitude, WS is 
wind speed and AH is absolute humidity.

Confidence intervals

Estimate Std. Error t value p-value 2.5 % 97.5 % VIF

(Intercept) 0.661 0.807 0.819 0.413 − 0.926 2.248 –

SR 0.002 0.000 5.478 8.76e−08 0.001 0.002 1.336

h − 0.002 0.001 − 3.007 0.003 − 0.003 − 0.001 1.823

CO2 − 0.006 0.001 − 6.431 4.65e−10 − 0.008 − 0.004 1.182

PM10 − 0.032 0.004 − 7.089 8.84e−12 − 0.041 − 0.023 1.550

WS − 0.009 0.012 − 0.726 0.468 − 0.033 0.015 1.095

AH 2.314 0.112 20.716 < 2e−16 2.094 2.534 1.010

F-statistic: 112.1

p-value < 2.2e−16

Adjusted R-squared 0.679

Table 6.  Outcomes of the multiple linear regression—day-2. Ev is illuminance, h is altitude, WS is wind speed 
and AH is absolute humidity.

Confidence Intervals

Estimate Std. error t value p-value 2.5 % 97.5 % VIF

(Intercept) 13.079 1.119 11.687 < 2e−16 10.879 15.279 –

h − 0.007 0.000 − 21.098 < 2e−16 − 0.007 − 0.005 1.223

CO2 − 0.007 0.001 − 5.163 3.73e−07 − 0.009 − 0.004 1.071

PM10 0.043 0.007 6.224 1.15e−09 0.029 0.056 1.239

WS − 0.031 0.009 − 3.249 0.001 0.056 − 0.012 1.009

AH 0.735 0.129 5.679 2.50e−08 0.481 0.989 1.089

Ev − 0.003 0.001 − 2.450 0.015 − 0.004 − 0.001 1.091

F-statistic: 97.89

p-value <2.2e−16

Adjusted R-squared 0.577
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streets, and greenery. Here, a novel mobile monitoring station is implemented for monitoring the main micro-
meteorological variables that affect climate and environment with high spatial granularity for both microscale, 
i.e. neighborhood-scale, and mesoscale, i.e. city-scale. The developed station can be easily adjusted to different 
type of vehicles such public transportation, electric cars or other dedicated monitoring vehicles. The main stimu-
lus of its development was to gauge and map intra-urban deviations of the main variables determining urban 
microclimate, also imputable to anthropogenic actions. In this view, the scale of the analysis here reported is the 
neighborhood scale. Nevertheless, the system’s potentiality in retrieving analysis at higher-granularity is pointed 
out as well. Following an observational mobile-transect methodology, the station can access and monitor almost 
all areas accessible by car. Unlike mobile monitoring techniques implemented to date on a macro-scale within 
urban areas, the presented technique succeeds the detailed monitoring of scalar, vector, and directionally depend-
ent variables. A start-up assessment was carried out in winter conditions, a period under-reported in particular 
in terms of mobile monitoring, and UHI studies. Results showed that determinants of urban microclimate and 
hence the quality of the urban environment can substantially vary within the very same urban context and with 
time (Table 7). Moreover, the direction of the incident shortwave radiation varied substantially among different 
spots of the monitoring path during the day-time transect. A directional dependency was found also for the 
illuminance levels during night-time transect. Overall, the outcomes of the study may represent a key missing 
piece for a state-of-the-art characterization of urban environmental quality. A more accurate discussion upon 
spatial accuracy achievable through the monitoring system according to its technical specifics and the data col-
lection procedure is going to be provided in future research pushing forward a finer intra-urban microclimate 
variability description. Furthermore, future studies, aiming to extensively monitor and characterize specific 
urban environments, with respect also to temporal variations, should comprise a large number of transects dur-
ing various hours of the day. Special focus should be given on the development of standards concerning elapsed 
time-correction of the data due to weather boundaries variation with respect to the duration of the transects, as 
well as on the seasonal comparison of parameters’ profiles and accurate calibration of the sensors prior to the 
monitoring campaigns. Further evaluation of urban environments under the framework of a wide monitoring 
network comprising also satellite and stable weather station data or other mobile stations, e.g. bicycle and wear-
able sensing techniques, can contribute towards effective data-driven decision-making policies with respect to 
risk and urban resilience planning.
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