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Abstract

Abnormal fronto-parietal activation has been suggested as a neural underpinning of

the working memory (WM) deficits in major depressive disorder (MDD). However,

the potential interaction within the frontoparietal network during WM processing in

MDD remains unclear. This study aimed to examine the role of abnormal functional

interactions within frontoparietal network in the neuropathological mechanisms of

WM deficits in MDD. A total of 40 MDD patients and 47 demographic matched

healthy controls (HCs) were included. Functional magnetic resonance imaging and

behavioral data were collected during numeric n-back tasks. The psychophysiological

interaction and dynamic causal modelling methods were applied to investigate the

connectivity within the frontoparietal network in MDD during n-back tasks. The psy-

chophysiological interaction analysis revealed that MDD patients showed increased

functional connectivity between the right inferior parietal lobule (IPL) and the right

dorsolateral prefrontal cortex (dlPFC) compared with HCs during the 2-back task.

The dynamic causal modelling analysis revealed that MDD patients had significantly

increased forward modulation connectivity from the right IPL to the right dlPFC than

HCs during the 2-back task. Partial correlation was used to calculate the relationship

between connective parameters and psychological variables in the MDD group,

which showed that the effective connectivity from right IPL to right dlPFC was corre-

lated negatively with the sensitivity index d’ of WM performances and positively

with the depressive severity in MDD group. In conclusion, the abnormal functional

and effective connectivity between frontal and parietal regions might contribute to

explain the neuropathological mechanism of working memory deficits in major

depressive disorder.
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1 | INTRODUCTION

Major depressive disorder (MDD) is a prevalent and disabling psychiatric

disease associated with high incidence and mortality (Huang et al., 2019;

Spellman & Liston, 2020). Cognitive deficits have been recognized as

one of the important features of MDD, such as impaired working mem-

ory (WM) or attention and reduced executive functioning (Ahern &

Semkovska, 2017; Knight & Baune, 2018). As WM is the basis for many

cognitive processes and day-to-day activities (Wager & Smith, 2003), the

difficulties in updating the contents of WM might hinder the removal of

negative information and contribute to disturbances in emotion regula-

tion, which facilitates perseverative thinking (e.g., rumination) and

increases the risk for depression onset and recurrence (Joormann &

Quinn, 2014; Le, Borghi, Kujawa, Klein, & Leung, 2017; Yüksel

et al., 2018). Therefore, understanding the WM deficits in MDD is of

paramount importance for clarifying the pathogenesis of MDD.

Numerous functional magnetic resonance imaging (fMRI) studies

with n-back and Sternberg task have explored the neural mechanism

of WM processing in MDD and revealed abnormal task-related brain

activation in frontal regions (namely, orbital, medial, dorsolateral and

ventrolateral prefrontal cortex as well as the anterior cingulate cortex),

parietal cortex, parts of the temporal regions, and insula in MDD

(Gärtner et al., 2018; Sankar, Adams, Costafreda, Marangell, &

Fu, 2017; Smith et al., 2018; Wang et al., 2015; Yüksel et al., 2018).

Some studies also found altered modulation at cortical regions which

were involved in higher-order executive functions during WM

processing in MDD, especially in the dorsolateral prefrontal cortex

(dlPFC) and parietal cortex (Gao et al., 2020; Smith et al., 2018; Tan

et al., 2020). The dlPFC plays an important role in encoding, manipu-

lating information, and setting attentional priorities (D'Esposito,

Postle, & Rypma, 2000; Geiger et al., 2018), while the parietal cortex

is associated with storing, retrieving information, and maintaining

attentional focus (Guerin & Miller, 2011; Hakun & Ravizza, 2016).

Therefore, the abnormal fronto-parietal activation found in previous

task-based studies might be the neural underpinnings of WM deficits

in MDD (Kerestes et al., 2012; Mannie, Harmer, Cowen, &

Norbury, 2010; Tan et al., 2020). However, the assessment of regional

brain engagement in frontal and parietal regions cannot sufficiently

capture the dynamic brain activities within frontoparietal network

during WM task. Previous studies have suggested that the functional

interaction of frontal and parietal regions is critical for successful WM

processing (Infante et al., 2017; Jung et al., 2018; Schmidt et al., 2014;

Vilgis, Chen, Silk, Cunnington, & Vance, 2014), while the specific

mechanism by which abnormal interaction within the frontoparietal

network contributing to the deficits in WM in MDD remains unclear.

Resting state fMRI studies have reported reduced functional con-

nectivity between prefrontal and parietal regions in MDD (Balaev,

Orlov, Petrushevsky, & Martynova, 2018; Kaiser, Andrews-Hanna,

Wager, & Pizzagalli, 2015; Müller, Cieslik, Laird, Fox, & Eickhoff, 2013),

but do not specify the abnormalities that emerge during stimulus

processing in MDD (Biswal, Yetkin, Haughton, & Hyde, 1995). Explor-

ing functional interaction within brain regions during WM task will help

to understand the relationship between task requirements and brain

neurophysiological responses (Geiger et al., 2018; Nielsen et al., 2017).

At present, psychophysiological interactions (PPIs) and dynamic causal

modeling (DCM) are two valid and mutually complementary methods

to analyze the task-related functional interaction among brain regions.

The PPIs method is data-driven and allows for exploration of context-

dependent connectivity between brain regions in an experimental task

(Friston et al., 1997; Nimarko et al., 2020), while the DCM is model-

driven and enables the estimation of effective connectivity through

which one neural system exerts influence on another, which provides

information about the connectivity directionality or causality across

potentially disrupted neural networks (Friston, Harrison, &

Penny, 2003; Oliva et al., 2020). Therefore, in this study, both data-

driven (functional connectivity) and model-driven (effective connectiv-

ity) approaches would be used to explore the neuropathological mech-

anism of WM deficits in MDD patients.

As far as we know, there have been only a few studies investigat-

ing functional connectivity during WM task in MDD. Garrett

et al. (2011) found enhanced functional connectivity between right

temporoparietal junction and left dlPFC during WM task in psychotic

MDD. Le et al. (2017) demonstrated increased functional connectivity

between left middle frontal gyrus and visual cortical (right para-

hippocampal place area) during WM updating processing in MDD. To

date, however, there are no DCM studies attempting to explore

potential alteration of effective connectivity in the context of WM in

MDD patients. While a few fMRI studies have used DCM to examine

the effective connectivity during attentive or emotional task in MDD

patients, and found disturbed effective connectivity within fronto-

cingulate (Schlösser et al., 2008), visuo-attentional network (Desseilles

et al., 2011), fronto-temporal (Goulden et al., 2012), and amygdala-

anterior cingulate cortex (Musgrove et al., 2015). Meanwhile,

researchers have struggled to explore effective connectivity within

frontoparietal network during memory tasks in healthy individuals,

and got some inconsistent results. Ma et al. (2012) found increased

effective connectivity from posterior parietal cortex to inferior frontal

cortex in higher digit load task. Dima, Jogia, and Frangou (2014) also

found increased forward (from parietal cortex to dlPFC) modulation

and greater right hemisphere contribution as memory load increased

during a n-back task. However, Heinzel, Lorenz, Duong, Rapp, and

Deserno (2017) revealed increased load-dependent modulation from

dlPFC to parietal cortex as memory load increased during a n-back

task in younger adults. The above studies suggested that frontoparietal

network is a crucial component of the WM processing, and it is neces-

sary to explore the effective connectivity within frontoparietal network

in MDD during WM task. Up to now, however, no relevant researches

have focused on the effective connectivity within frontoparietal net-

work during WM processing in MDD.

Therefore, this study aimed to investigate the role of abnormal

functional interaction within frontoparietal network in the neuropath-

ological mechanisms of WM deficits in MDD. Both data-driven PPI

and model-driven DCM methods were combined to examine the con-

nectivity of frontoparietal network during WM processing, and the
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associations between connective parameters and WM performances

of MDD patients were also assessed.

2 | METHODS AND MATERIALS

2.1 | Participants

MDD patients were recruited from the outpatients of the Second

Xiangya Hospital, Central South University, Changsha, China. Gender-

, age-, and education- matched healthy controls (HCs) were recruited

from the surrounding community by posters and advertisements. The

study protocol was approved by the ethics committee of Second

Xiangya Hospital, Central South University. Each participant was

aware of the study's purpose and provided an informed consent form.

The diagnosis of MDD was conducted by two experienced psy-

chiatrists using the Structured Clinical Interview for Diagnostic and

Statistical Manual of Mental Disorders, fourth edition (DSM-IV). The

exclusion criteria for MDD group were comorbidity with other psychi-

atric disorders (e.g., schizophrenia, schizoaffective, bipolar disorder,

substance abuse or substance dependence), history of neurological

disease (e.g., seizure disorder), history of brain injury, current physical

diseases (e.g., severe diabetes), or any contraindications to MRI. The

exclusion criteria for HC group were any history of psychiatric disor-

ders (e.g., MDD, schizophrenia, schizoaffective, bipolar disorder, sub-

stance abuse or substance dependence), history of neurological

disease (e.g., seizure disorder), history of brain injury, current physical

diseases (e.g., severe diabetes), or any contraindications to MRI.

Finally, a total of 45 MDD patients and 50 HCs were recruited. Five

patients in the MDD group were taking selective serotonin re-uptake

inhibitors as antidepressant medication.

2.2 | Psychometric instruments

2.2.1 | Structured clinical interview for DSM-
IV (SCID)

As a semi-structured interview, the SCID has been the “gold stan-

dard” to diagnose or screen mental diseases in DSM-IV by using its

standardized clinician-directed queries of relevant symptomatic

domains (First & Gibbon, 2004). In this study, the SCID was applied to

diagnose MDD and exclude other mental disorders, such as bipolar

disorder and schizophrenia. Good inter-rater reliability of the Chinese

SCID was evidenced in this study, with all intraclass correlation coeffi-

cients above .75.

2.2.2 | Center for Epidemiological Studies
Depression Scale (CES-D)

The 20-item CES-D was used to assess participants' depression levels

(Radloff, 1977). Each item is scored on a 4-point Likert scale, ranging

from 1 (never) to 4 (very often), and the total score of CES-D is from

20 to 80. The Chinese version of CES-D has shown good psychomet-

ric properties (Wang et al., 2013).

2.2.3 | State-trait anxiety inventory (STAI)

The STAI is a self-report questionnaire (Spielberger, 1983), includ-

ing state anxiety inventory (SAI) and trait anxiety inventory (TAI).

Each inventory includes 20 items, and each item is scored on a

4-point Likert scale (1 = never, 4 = always). In the current study,

only the SAI was adopted, whose total score is from 20 to 80. The

Chinese version of SAI has shown acceptable reliability and valid-

ity (Shek, 1993).

2.3 | Working memory task

A modified version of the numeric n-back WM task was con-

ducted similarly to a previous study (Liu et al., 2017), see

Figure 1. Stimuli were projected on a computer screen using E-

prime 2.0, and participants were required to match the target

stimulus using a four-button response box. This task included two

conditions: 0-back condition, in which participants were

instructed to press a key in response to the number (1–4) pres-

ented; 2-back condition, in which participants needed to press

the button corresponding to number (1–4) displayed in two trials

before the current one. There were 8 blocks per condition. Each

block contained 16 trials with a number presentation for 500 ms

and interstimulus interval of 1,500 ms. When participants com-

pleted each block, they were allowed to rest for 16 s, looking at a

fixed cross in the center of the screen. And this resting period

was regarded as baseline (Wu et al., 2014). The total duration of

the experiment was 12 min 56 s.

2.4 | Image data acquisition and processing

2.4.1 | Image data acquisition

The MRI images were acquired on a 3.0 T Siemens Magnetom Skyra

scanner. A high-resolution T1-weighted structural scan with a three-

dimensional spoiled gradient recalled sequence was used to exclude

structural abnormalities and for spatial normalization for each partici-

pant. The T1 parameters were as follows: repetition time

(TR) = 1900 ms, echo time (TE) = 2.01 ms, flip angle = 9�, matrix =

256 � 256, voxel size = 1 � 1 � 1 mm3, field of view (FOV) = 256 �
256 mm, slice thickness = 1.0 mm. When participants were per-

forming the n-back task, functional images were acquired with an

echo-planar imaging sequence (slice = 32, TR = 2000 ms, TE =

28 ms, flip angle = 90�, matrix = 64 � 64, voxel size = 3.3 �
3.3 � 4.0 mm3, FOV = 210 � 210, slice thickness = mm, slice

gap = 4.0 mm).
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2.4.2 | Image data preprocessing

All fMRI image preprocessing was conducted in the Data Processing

Assistant for Resting-State fMRI (DPARSF, Chao-Gan & Yu-

Feng, 2010). Preprocessing included slice timing correction, realign-

ment and motion correction by a maximum head movement with

three translation and three rotation parameters, spatial normalization

with the standard space template of Montreal Neurologic Institute

(resampling into 3 � 3 � 3 mm3 voxels), and smoothing with an 8-mm

full-width half maximum Gaussian kernel. Data from five MDD and

three HC participants were excluded due to poor image quality or

excessive head movements. The excluded five MDD patients were

not taking medication. The final analysis included 40 MDD patients

and 47 HCs. To reduce residual motion for the connectivity analyses,

this study calculated the mean framewise displacements (FD) of each

participant and compared group differences in head movement

(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), which showed

that MDD group and HC group did not differ in mean FD (indepen-

dent two-sample t test: t = �0.77, p = .45).

For within-subject statistical analysis, individual contrast images

for 0-back versus baseline and 2-back versus baseline were computed,

respectively. The 2-back > 0-back contrast was also calculated to

identify regions activated by the WM load across participants (family-

wise error correction, p < .05). This contrast was done across partici-

pants to generate the same coordinates for the MDD and HC groups,

which improve the precision for the subsequent group comparisons of

functional connectivity and effective connectivity (Nielsen

et al., 2017).”

2.4.3 | Psychophysiological interaction analyses

Implemented in statistical parametric mapping software package

(SPM12; http://www.fil.ion.ucl.ac.uk/spm/), the PPI analyses were

performed to measure the correlations of time series of volumes of

interest (VOIs) with other brain regions. The study found that

significant WM load (2-back >0-back contrast) across all participants

existed in right inferior parietal lobule (IPL) and right dlPFC. Therefore,

these two regions were selected as VOIs for further functional con-

nectivity analyses. Given that these two regions surpassing our

threshold were located in the right hemisphere, previous studies also

supported that right hemisphere dominance was correlated with

increasing WM load (Dima et al., 2014; Schmidt et al., 2014), we

focused our analysis in right hemisphere only. For each individual, the

time series of VOIs were extracted from peak coordinates of the right

dlPFC (x = 27, y = 6, z = 54) and right IPL (x = 54, y = �36, z = 42)

at uncorrected threshold p < .001. Each VOI was extracted from the

sphere of 6 mm radius around the local maxima. The design matrix of

PPI consisted of three main regressors: the physiological variable that

represents the time series from the VOIs (e.g., right dlPFC, and right

IPL), the psychological variable which represents the task conditions

(e.g., 2-back and 0-back), and the PPI variable. Fisher's z transforma-

tion was used to transform the resulting contrast into a z-score for

subsequent group level analyses. Functional connectivity between

each seed and other brain areas was analyzed separately. A cluster-

level false discovery rate correction p < .05 with a voxel-level thresh-

old of p < .001 was used.

2.4.4 | Dynamic causal modeling analyses

The DCM in SPM12 was used to analyze the effect of WM task on

effective connectivity among modeled brain regions, and explore

whether the connectivity strengths of modulations could distinguish

the MDD patients from HCs. More specifically, DCM for fMRI was

used to analyze input-state-output neural states across a network of

brain regions (Friston et al., 2003). Inputs correspond to external stim-

ulus functions, states include neuronal and neurophysiological vari-

ables needed to form outputs, while outputs correspond to

hemodynamic responses in fMRI studies. Inputs can produce

responses in two ways. First, inputs elicit response directly, through

influencing on specific anatomical nodes. For example, sensory input

F IGURE 1 The paradigm of n-back task. For 0-back, the task required a simple button press in response to the number displayed. For 2-back,
participants pressed the key corresponding to the number presented two trials before the current one
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could be modeled as causing direct responses in early visual or audi-

tory cortices. Second, inputs exert their effect vicariously, through a

modulation of the coupling among nodes. In DCM, the endogenous

coupling between two regions in the absence of task stimulus is ter-

med as intrinsic connections, while the impact of experimental condi-

tions on coupling among nodes is regarded as modulations. Generally,

the direct influence of experimental stimuli on specific regions can be

modeled as driving input. In this study, the visual n-back task firstly

activated the visual cortex (VC), therefore the VC was modeled as the

driving input region.

Volumes of interest selection and time series extraction

The VOIs were selected for the following rationale: (a) the current

results found significant effects of WM load in frontal and parietal

areas; (b) previous neuroimaging studies found that the abnormal

fronto-parietal activation might be the neural underpinnings of WM

deficits in MDD (Kerestes et al., 2012; Mannie et al., 2010; Tan

et al., 2020); (c) previous DCM studies of WM tasks in HCs found that

frontoparietal network is a crucial component of WM processing

(Dima et al., 2014; Ma et al., 2012; Schmidt et al., 2014); (d) the VC

was activated in the n-back tasks. Based on these criteria, right IPL,

right dlPFC, and primary VC were selected as the VOIs for DCM ana-

lyses in this study.

The coordinates of right IPL and right dlPFC were defined by the

significant activation clusters, which were obtained by effect of

2-back > 0-back contrast across all participants. For DCM analyses,

the VOI extraction of the right IPL and right dlPFC were the same as

PPI analyses. The peak coordinate of VC (x = 18, y = �78, z = 9) was

specified by visual contrast (2-back and 0-back to baseline) in the task

and combined with an anatomical mask of Brodmann area 17. The

VOIs were surrounded with 6 mm eigenvariate spheres by the MNI

coordinates of selected peak.”

Model space

The modulatory direction of task condition affecting the frontoparietal

connectivity was divided into three model families: forward (from right

IPL to right dlPFC), backward (from right dlPFC to right IPL), or bidirec-

tional. Each model family contained 16 candidate models according to

modulatory among the right dlPFC, right IPL and VC of bidirectional

and unidirectional experimental. Therefore, there were 48 dynamic

causal models for each participant (Figure 2). We assessed model

parameters using a one-state, bilinear, deterministic DCM.

Bayesian model selection and averaging

To compare models, we performed Bayesian model selection with a

random-model effects approach, producing expected model probabili-

ties and exceedance probabilities (EPs) for each model. The EPs, rep-

resenting the probability that one model is more likely than the

others, were used to choose the best model family.

For statistical comparison of the model parameters, Bayesian

model averaging (BMA) was conducted to obtain averages of DCM

parameter estimates across the entire model space, weighted by pos-

terior model probabilities for each model (Penny et al., 2010). Models

with higher posterior probability devoted more to estimation of the

marginal posterior. The posterior distribution was extracted from

the averaged DCM parameters to evaluate group differences in intrin-

sic connections and modulation parameters. The results were

reported at a Bonferroni-corrected threshold for six modulatory

parameters and an uncorrected threshold of p < .05.

2.5 | Statistical analysis

In SPSS 25 software (SPSS Inc., Chicago, IL), Chi-squared tests and

two-sample t-tests were used to compare the differences in demo-

graphic and clinical characteristics between MDD patients and HCs.

Cohen's d and η2 was used to calculate the effect size.

Behavioral variables were calculated by 2 (group: MDD

vs. HC) � 2 (WM load: 2-back vs. 0-back) repeated-measures ANOVA

followed by post hoc Bonferroni correction, with group as a between-

subject factor and task load as a within subject factor. According to

the signal detection theory, the sensitivity index d0 could be applied

to present the WM performances objectively (Macmillan &

Kaplan, 1985), with a higher value indicating a higher level of accuracy

in the n-back task. First, hits and false alarms for each condition of

WM task were measured for each subject. Second, probabilities

of hits and false alarms were transformed into z-scores using the

inverse cumulative distribution function in MATLAB (icdf). Then, sen-

sitivity index d0 was computed using the following equation from

Wickens (2002): d0 = z(probabilityhits)–z(probabilityfalse alarms).

In terms of fMRI data, one-sample t tests were applied to analyze

the differences within group, and two-sample t tests were used to

compare differences between the two groups with age, gender, years

of education, and SAI scores as covariate variables in SPM12. Partial

correlation was conducted to analyze the relationship between con-

nective parameter showing significant group differences and the WM

performances after controlling for age, gender, years of education,

CES-D scores, and SAI scores in the MDD group. Partial correlation

was also conducted between connective parameter showing signifi-

cant group differences and the depressive severity in the MDD group

with age, gender, years of education, and SAI scores being controlled.

3 | RESULTS

3.1 | Demographic, clinical characteristics, and task
performances

The final analysis included 40 MDD patients and 47 HCs. As shown in

Table 1, there were no group differences in gender, age, and years of

education. The MDD group had significantly higher scores of CES-D

(t = 15.46, p < .001) and SAI (t = 12.96, p < .001) than the HC group.

Among the MDD group, five of them were taking antidepressant

medication. After removing these five medicated patients, the drug-

naïve MDD group and the HC group were still matched in gender,

age, and years (see Table S1).
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WM performances for HC and MDD groups under each condition

were shown in Table 2. On mean reaction time, significant group dif-

ference (MDD > HC, F(1,85) = 10.62, p = .002, η2 = 0.11), significant

main effect of WM load (2-back >0-back, F(1,85) = 34.08, p < .001,

η2 = 0.29) were observed, while no significant group � WM load

interaction (F(1,85) = 3.65, p = .06) was found. On accuracy, significant

group difference (MDD < HC, F(1,85) = 12.76, p = .001, η2 = .13), sig-

nificant main effect of WM load (2-back < 0-back, F(1,85) = 81.84,

p < .001, η2 = 0.49), and significant group � WM load interaction

(F(1,85) = 11.54, p = .001, η2 = 0.12) were observed. Post hoc analysis

showed that MDD group had lower accuracy than HC group during

2-back task (F(1,85) = 15.27, p < .001, η2 = 0.15), while no significant

group difference during 0-back task was found; both MDD

(F(1,85) = 71.66, p < .001, η2 = 0.46) and HC groups (F(1,85) = 17.36,

p < .001, η2 = 0.17) had lower accuracies in 2-back compared to

0-back. On sensitivity index d0 , significant group difference

(MDD < HC, F(1,85) = 5.00, p = .028, η2 = 0.06), significant main effect

of WM load (2-back < 0-back, F(1,85) = 86.39, p < .001, η2 = 0.50)

were observed, while no significant group � WM load interaction

(F(1,85) = 3.24, p = .075) was found.

3.2 | Brain activation during the n-back task

The task analysis showed a significant activation of WM load (2-bac-

k > 0-back) in the right dlPFC and right IPL, a significant deactivation of

WM load (2-back < 0-back) in the left medial frontal gyrus, right posterior

cingulate gyrus, and left angular gyrus (Table 3, Figure 3). However, no

significant group differences in activation were observed (p > .05).

3.3 | Functional connectivity during working
memory task

With right IPL as a seed region, the MDD patients showed signifi-

cantly increased functional connectivity between the right IPL and

F IGURE 2 Examples of
model space of the DCM analysis
(forward model shown here). The
top row shows the three model
families defining the partitions of
the model space. The four bottom
rows show the 16-model
subspace generated by including
all possible modulations (forward

model shown here). DCM,
dynamic causal modeling; dlPFC,
dorsolateral prefrontal cortex;
IPL, inferior parietal lobule; WM,
working memory; VC, visual
cortex
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right dlPFC compared with HCs during the 2-back task (Table 4,

Figure 3). With right dlPFC as a seed region, no significant group dif-

ferences of functional connectivity were found during the 2-back con-

dition. For the 0-back task, no significant group differences of

functional connectivity were found with right IPL and right dlPFC as

seeds.

3.4 | Effective connectivity during working
memory task

As shown in Figure 4, in all participants, the comparison of model evi-

dence among the three families (backward, forward, or bidirectional

modulation of frontoparietal connections) during 2-back task revealed

that the forward family (EP = 0.73) was superior the other two fami-

lies. Bayesian model selection for each group separately during 2-back

task showed that in the HC group, the forward family (EP = 0.78)

outperformed the others. In the MDD group, however, the backward

family (EP = 0.64) explained the data best. Due to the different results

between the two groups in selecting the model family, BMA infer-

ences over all 48 model spaces were conducted to prevent bias of

model selection.

In the HC group, the 2-back task modulatory connectivity from right

IPL to right dlPFC was significant and negative. In the MDD group, the

2-back modulation connectivities from right IPL to right dlPFC and from

VC to right IPL were both significant and positive. The modulation from

the right IPL to the right dlPFC showed a significant group difference

(t = �3.06, df = 85, p = .003; Bonferroni corrected), and MDD patients

displayed significantly increased modulation than HCs during 2-back task

(Table 5, Figure 5). No significant group differences of effective connec-

tivity were found during 0-back task.

The differences between the drug-naïve MDD group and HC

group in WM performances, brain activation, functional connectivity,

and effective connectivity during n-back task were similar to the

TABLE 1 Comparison of the demographic and clinical characteristics between HC and MDD group

Characteristic HC group (N = 47) MDD group (N = 40) х2/t p jCohen's dj
Age (years) 20.98 ± 2.34 19.98 ± 4.70 1.23 .23 –

Sex (male/female) 19/28 12/28 1.02 .31 –

Education (years) 14.1 ± 1.71 13.2 ± 2.41 1.98 .052 –

FD (mm) 0.13 ± 0.06 0.14 ± 0.07 �0.77 .45 –

CES-D 32.91 ± 8.37 62.30 ± 9.35 �15.46 <.001 3.31

SAI 37.91 ± 7.57 61.23 ± 9.20 �12.96 <.001 2.77

Abbreviations: CES-D, Center for Epidemiological Studies Depression Scales; jCohen's dj, absolute value of Cohen's d; jCohen's dj > 0.8, large effect size;

FD, framewise displacements; HC, healthy controls; MDD, major depressive disorder; SAI, state anxiety inventory.

TABLE 2 WM performances for n-
back tasks in HC and MDD groups

HC group (n = 47) MDD group (n = 40)

0-back 2-back 0-back 2-back

Reaction time (ms) 355.53 ± 79.85 415.38 ± 98.78 371.52 ± 97.50 489.55 ± 106.53

Accuracy (%) 93.60 ± 0.07 84.53 ± 0.10 91.77 ± 0.09 71.80 ± 0.19

Sensitivity index d0 3.59 ± 1.29 2.23 ± 0.91 3.43 ± 1.52 1.42 ± 1.49

Note: Sensitivity index d0 = z(probabilityhits)–z(probabilityfalse alarms).

Abbreviations: HC, healthy control; MDD, major depressive disorder.

TABLE 3 Brain activations in WM
load during the n-back task across all
participants Region BA Side

MNI coordinates

k tx y z

2-back > 0-back

Dorsolateral prefrontal cortex 9 R 27 6 54 1,581 9.38

Inferior parietal lobule 40 R 54 �36 42 931 7.33

2-back < 0-back

Medial frontal gyrus 10 L �12 45 45 1,003 �9.29

Posterior cingulate gyrus 31 R 6 �48 18 503 �8.12

Angular gyrus 39 L �51 �66 30 139 �6.25

Abbreviations: BA, Brodmann area; k, cluster extent; L, left; MNI, Montreal Neurological Institute;

R, right; WM, working memory.
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results comparing the MDD group (including drug-naïve and medi-

cated MDD patients) with HC group.

3.5 | Partial correlations between connective
parameters and psychological variables

A negative correlation was found between sensitivity index d0 and

effective connectivity from right IPL to right dlPFC during 2-back task

in the MDD group after controlling for age, gender, years of educa-

tion, CES-D scores and SAI scores (r = �.352, p = .038). To dissoci-

ate attentional and perceptual processes, sensitivity index d0 and

effective connectivity from right IPL to right dlPFC in the 2-back

versus 0-back were calculated, respectively. In the MDD group,

there was a negative correlation between cognitive performance

assessed with the sensitivity index d02-back versus 0-back and effective

connectivity2-back versus 0-back from right IPL to right dlPFC (r = �
.395, p = .019), with age, gender, years of education, CES-D

scores, and SAI scores being controlled. No other significant corre-

lations between connective parameters and behavioral variables

were found.

A positive correlation was found between depressive severity

and effective connectivity from right IPL to right dlPFC during 2-back

task in the MDD group (r = .569, p < .001), with age, gender, years of

education, and SAI scores being controlled.

4 | DISCUSSION

To our knowledge, this is the first study combining PPI and DCM of

task-related fMRI signals to explore the connectivity characteristics

of frontoparietal network during WM task in MDD patients. Our PPI

F IGURE 3 Brain activation and functional connectivity during n back task. (a) Frontoparietal activation during working memory load
(displayed at PFWE < 0.05 for the 2-back > 0-back contrast). (b) Significant group differences in PPIs of the right IPL with right dlPFC in the
2-back task (MDD patients > HCs). dlPFC, dorsolateral prefrontal cortex; IPL, inferior parietal lobule; MDD, major depressive disorder; PPL,
psychophysiological interactions

TABLE 4 Comparison of PPIs of right
IPL between HC and MDD groups during
2-back taskRegion BA Side

MNI coordinates

k tx y z

MDD > HC

Dorsolateral prefrontal cortex

46 R 45 45 3 91 4.36

Abbreviations: BA, Brodmann area; HC, healthy control; IPL, inferior parietal lobule; k, cluster extent; L,

left; MDD, major depressive disorder; MNI, Montreal Neurological Institute; PPIs, psychophysiological

interactions; R, right.

F IGURE 4 Family-wise Bayesian model selection within all
participants, as well as HC and MDD group separately. HC, healthy
controls; MDD, major depressive disorder
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analyses revealed that MDD patients showed increased functional

connectivity between right IPL and right dlPFC compared with HCs

during the 2-back task. DCM analyses found that MDD patients had

increased forward connectivity from right IPL to right dlPFC com-

pared with HCs during the 2-back task. The connective strength from

right IPL to right dlPFC correlated negatively with sensitivity index d0

of WM performances, and positively with depressive severity in MDD

group. All these findings advance our understanding of the neural

brain architecture of WM in MDD.

The MDD group showed significantly higher functional connec-

tivity between right IPL and right dlPFC and increased modulation

from right IPL to right dlPFC compared with HC group during the

2-back task. The result of higher functional connectivity between right

IPL and right dlPFC in MDD patients is in agreement with previous

finding, suggesting that increased functional connectivity between IPL

and dlPFC may serve as a neuroimaging marker for cognitive deficit in

MDD (Shen et al., 2015). Increased effective connectivity in MDD

patients could indicate an enlarged ability to modulate prefrontal brain

TABLE 5 Comparison of dynamic
causal modeling connection between HC
and MDD groups during 2-back task Connection type

HC group MDD group Group comparison

Mean SD Mean SD t p

Intrinsic connections

IPL to dlPFC 0.158** 0.227 0.134** 0.175 0.527 .600

IPL to VC 0.052* 0.151 0.047* 0.136 0.173 .863

dlPFC to IPL 0.119** 0.215 0.148** 0.174 �0.667 .507

dlPFC to VC �0.015 0.170 0.001 0.174 �0.426 .671

VC to IPL 0.040 0.230 0.059 0.225 �0.394 .694

VC to dlPFC 0.031 0.262 �0.017 0.214 0.919 .361

Modulatory connections

IPL to dlPFC �0.213* 0.692 0.206* 0.564 �3.060 .003**

IPL to VC 0.010 0.356 0.067 0.427 �0.673 .503

dlPFC to IPL 0.025 0.329 0.020 0.417 0.064 .949

dlPFC to VC 0.015 0.461 0.054 0.680 �0.320 .750

VC to IPL �0.011 0.893 0.235* 0.700 �1.409 .163

VC to dlPFC 0.124 1.045 �0.071 0.721 0.996 .322

Note: Intrinsic connections: the endogenous coupling between two regions in the absence of task

stimulus; Modulatory connections: the impact of 2-back task on the intrinsic connectivity.

Abbreviations: dlPFC, dorsolateral prefrontal cortex; HC, healthy controls; IPL, inferior parietal lobule;

MDD, major depressive disorder; VC, visual cortex.
*Significant at p < .05 (uncorrected for multiple comparisons).
**Significant at p < .05 (Bonferroni corrected for multiple comparisons).

F IGURE 5 Parameter estimates from Bayesian model averaging over the entire model space (i.e., 48 models). (a) The modulatory connectivity
from right IPL to right dlPFC was significant and negative in HC group. (b) The modulation connectivity from right IPL to right dlPFC and from VC
to right IPL was significant and positive in MDD group. (c) The modulation from right IPL to right dlPFC showed a significant group difference.
Modulatory parameters with p > .05 are omitted. *Significant at p < .05 (uncorrected for multiple comparisons). **Significant at p < .05
(Bonferroni corrected for multiple comparisons). dlPFC, dorsolateral prefrontal cortex; HC, healthy controls; IPL, inferior parietal lobule; MDD,
major depressive disorder; VC, visual cortex
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activity by ascending parietal afferents during the 2-back task. Our

finding of increased modulation from right IPL to right dlPFC during

the 2-back task in MDD pointed out the crucial role of parietal areas

in driving functional integration in the frontoparietal network during

WM task in MDD. Generally, the IPL is activated when attention is

focused on external stimuli (Igelström & Graziano, 2017). IPL is also

involved in visual–spatial processing during n-back task (Duma

et al., 2019), and the dlPFC is relevant for central executive system of

WM (Watters, Carpenter, Harris, Korgaonkar, & Williams, 2019).

Meanwhile, the connections from the parietal to prefrontal cortex

(bottom-up) likely contribute to the encoding of incoming stimuli

(Ma et al., 2012; Schmidt et al., 2014), while the connections from the

prefrontal to parietal cortex (top-down) may mediate the updating of

rules (Gazzaley, Rissman, & D'Esposito, 2004; Sauseng, Klimesch,

Schabus, & Doppelmayr, 2005). Thus, the result of increased effective

connectivity from right IPL to right dlPFC in this study might suggest

that MDD patients have less efficient communication from the parie-

tal to prefrontal cortex, and their bottom-up stimulus encoding might

be deficit. Stimulus encoding abnormalities could influence recruit-

ment of attentional resources when novel information being pres-

ented, and disrupt ongoing memory information (Bays, Gorgoraptis,

Wee, Marshall, & Husain, 2011). It has been proposed that inefficient

encoding leads to poor or imprecise internal representations of the

information being stored in WM, which is partly responsible for WM

deficit in MDD patients (Li et al., 2018; Murphy et al., 2019).

Previous studies have suggested abnormal effective connectivity

within frontoparietal network is associated with functional impairment

of WM in patients with affective disorder and individuals with psy-

chotic experiences (Dima, Roberts, & Frangou, 2016; Fonville

et al., 2015), and the microstructure of frontoparietal network can pre-

dict theWM performance (Burzynska et al., 2011). In the current study,

MDD patients exhibited impaired WM performances with delayed

reaction time, reduced accuracy, and reduced sensitivity index d0 during

the 2-back task. And the correlations between effective connectivity

and psychological variables demonstrated that the stronger effective

connectivity from right IPL to right dlPFC was associated with the

poorer WM performances. As previous studies suggested that ineffi-

cient encoding might be partly responsible for WM deficit in MDD

patients (Li et al., 2018; Murphy et al., 2019), our results provided fur-

ther evidences that abnormal functional interactions within frontoparietal

network could damage bottom-up stimuli encoding in MDD. In a word,

our findings provided experimental clues to clarify the potential neuropath-

ological mechanism of the abnormal effective connectivity within

frontoparietal network in theWM deficits in MDD.

This study did not observe functional interaction within

frontoparietal network at low load condition. Both the frontal and

parietal regions are known to be involved in WM load-dependent net-

work and executive control network (Höller-Wallscheid, Thier, Pom-

per, & Lindner, 2017; Tan et al., 2020). Increased complexity of n-

back task requires more maintenance and manipulation of material

and high amounts of cognitive processes, which is not necessary in a

simpler condition (Gao et al., 2020). Therefore, the absence of

abnormal functional interaction within frontoparietal network during

the 0-back condition might suggest that MDD patients function nor-

mally on the low-level cognitive task, while the increased functional

interactions within frontoparietal network during 2-back task might

demonstrate that MDD patients have more difficulties to recruit these

attentional control mechanisms in higher-order cognitive task.

Although previous studies investigated the functional connectivity

between prefrontal and parietal cortex on the basis of temporal corre-

lations, they could not indicate the direction and causal characteristic

(Cao et al., 2020; Pan et al., 2020; Ye et al., 2012). Not only exploring

the association between functional interaction and WM performances,

depressive severity in MDD group, this study but also identified the

direction of impaired parietal and prefrontal regions in MDD patients

during WM task by integrating both data-driven (functional connectiv-

ity) and model-driven (effective connectivity) approaches.

Several potential limitations in this study should be mentioned.

Firstly, we cannot entirely exclude the influence of medication.

Although our major results did not change significantly after excluding

the medicated patients, a sample with greater homogeneity

(e.g., drug-naïve MDD patients) is still needed in future research to

examine the replication of the findings in the present study. Secondly,

different components of WM processes were not distinguished in our

block-design WM task paradigm, while MDD patients showed differ-

ent impairment characteristics during encoding, retrieval, and informa-

tion manipulation (Wang et al., 2015). Future researches are needed

to figure out the specific impaired subprocesses related to altered

modulation in MDD. Thirdly, a relatively limited set of nodes in DCM

analyses was included in the tested model space, which hindered to

draw other conclusions, such as the contribution of connections

among other brain regions to the impaired WM processing. Several

previous DCM studies found altered effective connectivity within

prefrontal-striatal, dlPFC-dorsal anterior cingulate cortex, posterior

parietal cortex-anterior cingulate cortex in healthy individuals during

the WM processing (Dima et al., 2014; Geiger et al., 2018; Ma

et al., 2012), which seeds might be included in further studies to

explore whether the results found in healthy individuals be present in

MDD patients during WM processing. Finally, only task-related fMRI

data were analyzed in this study, while multimodal-imaging investiga-

tions including both structural and functional MRI data might provide

the better explanatory power of underlying neural bases of WM abili-

ties in MDD, which should be conducted in the future.

5 | CONCLUSIONS

This study showed abnormal functional connectivity and effective

connectivity among frontal and parietal regions during WM task in

patients with MDD. Furthermore, impaired neural coupling strength

from right IPL to right dlPFC indicated worse WM performances in

high load WM task and severer depressive symptomatology. These

findings provide new insights and evidences to elucidate the potential

neuropathologic mechanism of impaired WM in patients with MDD.
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