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Abstract

Background: It is important to understand the roles of C-type lectins in the immune system due to their ubiquity
and diverse range of functions in animal cells. It has been observed that currently confirmed C-type lectins share a
highly conserved domain known as the C-type carbohydrate recognition domain (CRD). Using the sequence profile
of the CRD, an increasing number of putative C-type lectins have been identified. Hence, it is highly needed to
develop a systematic framework that enables us to elucidate their carbohydrate (glycan) recognition function, and
discover their physiological and pathological roles.

Results: Presented herein is an integrated workflow for characterizing the sequence and structural features of
novel C-type lectins. Our workflow utilizes web-based queries and available software suites to annotate features
that can be found on the C-type lectin, given its amino acid sequence. At the same time, it incorporates modeling
and analysis of glycans - a major class of ligands that interact with C-type lectins. Thereafter, the results are
analyzed together with context-specific knowledge to filter off unlikely predictions. This allows researchers to
design their subsequent experiments to confirm the functions of the C-type lectins in a systematic manner.

Conclusions: The efficacy and usefulness of our proposed immunoinformatics workflow was demonstrated by
applying our integrated workflow to a novel C-type lectin -CLEC17A - and we report some of its possible functions
that warrants further validation through wet-lab experiments.

Background
C-type lectins are Ca2+-depending sugar-binding proteins
that are involved in several immune-related and other
physiological functions. They are ubiquitous in the ani-
mal kingdom, and exist mostly as membrane receptors.
Indeed, C-type lectins play an important role in pathogen
recognition and cell-cell interaction through specific
binding with glycans (sugars) found on the surfaces of
target cells and glycosylated molecules [1]. The impor-
tance of understanding C-type lectins and finding their
interacting partners (both glycans as well as other mole-
cules) is exemplified by applications in immuno- and vac-
cination-therapies, where lectins expressed on cells such

as Dendritic cells (DCs) can be targeted by their natural
ligands or antibodies that are directed against them. Such
ligands are usually conjugated with antigens, which can
be presented to T-cells upon ligand binding, leading to
subsequent T-cell maturation and development of immu-
nity towards the antigen [2]. C-type lectins also have
extensive applications in protein engineering, where
mutations can be made to specific sites to modify their
specificity towards certain ligands. Such modifications
can be made only when we have a better understanding
of their structural and functional characteristics [3].
Presently, 17 groups within the C-type lectin superfamily

have been recognized [4], with more C-type lectins being
constantly discovered based on the presence of a conserved
115-130 amino acid domain along their sequences - the C-
type carbohydrate recognition domain (CRD). However,
for most of the recently identified C-type lectins, their
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interactions with carbohydrates, intracellular functions and
molecular mechanisms still remain unclear. Thus it is
highly needed to characterize these proteins in order to
uncover their possible physiological and pathological roles
in the immune system. On a similar note, it is also impera-
tive to develop techniques in glycoinformatics, so as to
aid the elucidation and analysis of protein-glycan interac-
tions - one of the key processes in the mammalian immune
system [5].
To this end, we propose an integrative analysis work-

flow that utilizes various techniques and algorithms to
systematically discover and annotate the putative func-
tions of novel C-type lectins. Our workflow starts with
the amino acid sequences to predict the primary func-
tional units, i.e. domains and motifs. It is followed by
homology modeling to determine the molecular struc-
tures of the C-type lectins. In tandem with this step is
the generation of glycan conformer libraries, with the
glycan composition being obtained from various sources
and possibly specified in different formats. Finally, com-
putational virtual screening is performed to identify
potential protein-glycan interactions.

Methods
Integrative workflow for sequence and functional analysis
of C-type lectins
It is possible to predict the putative functions of novel
C-type lectins by analyzing their amino acid sequences
and structures. This is due to the accepted view that pro-
tein functions can be ‘inherited through homology’ [6]. In
general, a peptide is composed of independently function-
ing smaller units, i.e. domains. Together with the advent
of computational methods to identify these domains along
a protein sequence, and the growing collection of known
domains and their associated functions, e.g. Pfam [7],
PROSITE [8], SMART [9], and InterProScan [10], it
becomes evident that the first steps to analyze an
unknown C-type lectin is to search its sequence for con-
served domains. These domains indicate the possible func-
tions, interactions and cellular locations of the C-type
lectin, and also the secondary and tertiary structures it
may assume.
Aside from sequence-based analysis, one can also study

C-type lectins through their molecular structures, which
can be either obtained through computational prediction
[11], or determined by x-ray crystallography. Such physi-
cochemical approaches can aid in understanding the
molecular mechanisms of their functions at the atomic
level. For instance, van Liempt et al. [12] analyzed the
molecular structures of the C-type lectins DC-SIGN and
L-SIGN, and identified the residues that were responsible
for the differences in their carbohydrate binding profiles.
Glazer et al. [13] further improved the prediction of

potential Ca2+ binding sites by incorporating molecular
dynamics to the protein structures. Going forward, dock-
ing studies and in silico screening can be performed
against virtual libraries of glycans [14]. This is already an
integral part of the industrial drug discovery process for
other proteins [15].
Herein, we proposed an analysis workflow where the

various approaches for predicting the structures and func-
tions of proteins are systematically integrated to character-
ize a novel C-type lectin, given its sequence information.
Figure 1 illustrates the schematic workflow, which oper-
ates in a bottom-up manner, starting from sequence-based
analysis, and subsequently predicting the molecular struc-
ture. Parallel to this step is the generation of conformers
(molecular structures) for glycans based on the identity of
their monosaccharide subunits and linkages. Finally the C-
type lectin model can then be screened against the in silico
glycan library to elucidate possible interactions.

Sequence-based analysis
There is a plethora of different sequence analysis algo-
rithms that can identify domains and motifs within a pro-
tein sequence. For instance, PROSITE scans a query
protein sequence against an internal database of sequence
signature patterns which were curated from literature. In
addition, for each pattern, there is a miniprofile to refine
the hits, as well as post-processing of the matches with
some contextual information to improve accuracy [8]. On
the other hand, Pfam stores its database of protein
domains as hidden Markov models (HMMs) and uses the
HMMER3 algorithm to determine the presence of the
domains within a query protein sequence [7]. As such, the
first step for analysis will be to leverage these existing plat-
forms in order to gather as much information as possible,
given a C-type lectin amino acid sequence.
Most of the domain/motif prediction algorithms have

been implemented and their services are accessible
through form-based interfaces over any web browsers.
Table 1 shows a non-exhaustive list of available algorithms
for sequence-based analyses on the given C-type lectin
sequences. Thus we have prototyped an in-housed web-
based interface to automate the querying of the various
servers, e.g. Pfam, SMART, via hypertext transfer protocol
(HTTP) requests, thereby allowing us to quickly access
various sequence-based algorithms using their most
updated profile databases. Details of how the queries are
sent and the results are visualized can be found in Addi-
tional File 1. It should also be noted that by delegating the
analyses of C-type lectin sequences to the various web ser-
vers, downloading and installing their prediction programs
locally, e.g. NetOGlyc 3.1 [16] and NetNGlyc 1.0, become
optional, thus alleviating some of the issues caused by
incompatible operating systems or shell environments.
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Molecular modeling
The next step in our workflow is to construct the molecu-
lar structure of the C-type lectin. Here, homology model-
ing can be employed to predict its structure. Generally,
homology modeling of C-type lectins follows a series of
steps - (i) template selection, (ii) structural alignment, (iii)
model construction and constraint satisfaction, and (iv)
refinement. For template selection, the sequence of the C-
type lectin is first queried against the set of non-redundant
proteins in the PDB database using the BLASTp algorithm

[17]. Proteins with moderate levels of sequence identity,
typically more than 30% of the aligned regions [18], are
then chosen as templates for modeling.
Note that there can be multiple templates, especially

when they are aligned to different regions of the query
protein. In addition, it is not always the case where the
entire C-type lectin can be modeled. As the CRD is the
most highly conserved region of C-type lectins, its
homologs can usually be found in the PDB database.
Upon selection of the templates, the query sequence

Figure 1 Analysis workflow. A schematic illustration of the integrated workflow. The left side of the panel summarizes the steps for the
sequence and structural characterization of novel C-type lectins at various levels. The right side shows equivalent analyses for glycans that is
needed in order to construct a virtual library amenable for virtual screening.

Table 1 List of servers and algorithms

SN Server (URL) Type of features

1 Pfam (http://pfam.sanger.ac.uk) Domains

2 Prosite (http://expasy.org/prosite) Domains, motifs

3 SMART (http://smart.embl-heidelberg.de) Domains, motifs

4 TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM) Transmembrane helix

5 NetNGlyc (http://www.cbs.dtu.dk/services/NetNGlyc) N-linked Glycosylation

6 NetOGlyc (http://www.cbs.dtu.dk/services/NetOGlyc) O-linked Glycosylation

7 Phospho.ELM (http://phospho.elm.eu.org) Phosphorylation Sites

8 ELM (http://elm.eu.org) Eukaryotic linear motifs

The table shows a non-exhaustive list of web servers that can be queried to predict various sequence-based features.
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and the templates are re-aligned based on a more strin-
gent set of criteria which include fractional side chain
accessibility and secondary structure type. Finally, using
the template structures, the model is constructed by
initially copying the coordinates of the backbone atoms
(C, Ca, N and O) of aligned residues. It is followed by
filling the gaps (i.e. loop and gap modeling), adding side
chain residues to the backbone amino acids, and adjust-
ing the model to make sure that spatial constraints are
not violated [19]. Depending on the level of alignment
between the query C-type lectin and template sequences,
an additional refinement step via molecular dynamics
simulation may be required. In our workflow, all four
steps are performed using the software suite Discovery
Studio 2.5 by Accelrys, Inc [20]. This part of the work-
flow is not yet automated due to the manual intervention
for the selection of templates during the model construc-
tion. There are, however, some existing works that have
attempted to simplify molecular modeling into a one-
step process [21,22] and these may be incorporated into
our workflow later on.
As there is no crystal structure available for most of the

novel C-type lectins, the predicted structures can only be
validated using algorithms that assess their correctness
based on physicochemical properties such as planarity,
chirality and bond length deviations [23] of the residues.
PROCHECK [24] is one of the software packages perform-
ing this function. In our case, we use the Profiles-3D
methology [25] for structure validation. In addition, for
each structure being constructed, its Ramachandran dia-
gram is also plotted and analyzed to detect significant vio-
lations of the psi-phi angles between the amino acid
residues [26]. We select the best scoring model that has
no gross physicochemical violations for further analysis
and classification. Having obtained the molecular model of
the C-type lectins, we can then perform docking studies to
identify their putative binding partners.

Glycan conformer generation
For docking simulations, the structures of both the recep-
tors and ligands must be known. In our current setting, C-
type lectins are the receptors for glycan molecules. Having
obtained their structures through homology modeling, we
now require the glycan structures. Despite the availability
of small ligand databases such as ZINC [27], they are not
specific to glycans, thus making it difficult to search for
the relevant models. Moreover, with the huge diversity of
natural and synthetic glycans, it is technically challenging
to resolve their structures and store them in databases.
For this part within the workflow, we have developed an

alternative approach. Instead of storing known glycan
structures, we generate them ‘on-the-fly’. Starting from a
linear representation of the glycan structures (in either the
modified condensed IUPAC or Glycodigit [28] formats),

we rewrite them into a more generic form -SMILES
(simplified molecular input line entry specification) [29] -
and utilize readily available software (Balloon [30]) to
generate the different structures amenable for docking stu-
dies. We have implemented this process as a web-based
application and it is available at the link (http://bioinfo1.
bti.a-star.edu.sg/glycan/). Following the approach (as sum-
marized in Figure 2), we constructed an in silico library on
the basis of the glycan arrays developed by the Consortium
of Functional Glycomics [31,32]. Currently we have 509
structures out of the 511 glycans on the glycan array with
a coverage of 99.6%.

Virtual screening
The final step in the functional classification of C-type lec-
tins in our workflow is to screen for plausible interactions
with the glycan library through computational docking
studies. We use LigandFit, an algorithm that locates possi-
ble binding sites by analyzing cavities in the protein struc-
ture before trying to dock each glycan from our virtual
library [33]. The output from this virtual screening is a list
of glycans that have plausible poses in any of the predicted
binding sites.

Results and discussion
Sequence Analysis of CLEC17A
We applied our workflow on CLEC17A [Uniprot:
Q6ZS10], a receptor that is expressed on dividing B cells
in germinal centers [34]. CLEC17A was first identified and
given the symbol by the HUGO Gene Nomenclature
Committee. However, much remains to be done to eluci-
date its function and role in the immune system. Here we
attempt to add to the knowledge on CLEC17A by running
its amino acid sequence through our analysis workflow.
The relevant sequence-based features are summarized in
Figure 3. The full list of predicted features is provided in
Additional file 2.
From the results, CLEC17A is a Type II transmembrane

protein. As a C-type lectin, it is predicted to have a high
specificity towards mannose and Ca2+ due to the presence
of the EPN motif (position 341) and WND motif (position
359) respectively. Within the extracellular region, there are
two predicted N-linked glycosylated sites (positions 215
and 237), which may play a physiological role in the trans-
port and localization of CLEC17A to the cell surface [35].
We used some of these results to complement the experi-
mental investigation and analysis of N-linked glycosylation
sites on CLEC17A (See Additional File 3)
For the cytoplasmic region, there are several domains

and motifs of interest. In particular, a number of SH2 and
SH3 recognition domains can be found within a proline-
rich region. The same SH2 binding motifs are also pre-
dicted to be phosphorylated by proline-directed kinases. A
possible candidate would be the mitogen-activated protein
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kinase (MAPK). This adds to the confidence that SH2
containing proteins such as the adaptor protein Grb2 and
Src family proteins can dock to the cytoplasmic tail of
CLEC17A. Another possible intracellular signaling
mechanism can be inferred by the presence of hemi-
ITAM motifs (YxxL). This motif, which is also present in
Dectin-1, can recruit and activate the Syk family kinases
[36]. Incidentally, Syk also has SH2 domains, supporting
the hypothesis that it interacts with CLEC17A.
Casein kinase II (CKII) is predicted to be another kinase

that may phosphorylate CLEC17A based on its recognition
motif ([ST]xx[DE]). Following the consensus between Pro-
site and ELM, the possible phosphorylation sites were
shortlisted to positions 16, 42, and 68. Furthermore, these
regions are enriched with glutamic acid, providing the

acidic context for CKII phosphorylation [37]. Other poten-
tial kinases for CLEC17A include protein kinase C (PKC)
at position 107 and glycogen synthase kinase-3 (GSK3) at
position 146, the latter being less reliable as the specificity
of GSK3 has not been confirmed. Of note is the presence
of TNF receptor-associated factor 2 (TRAF2) binding
motif ([PSAT]x[QE]E) [38]. Although TRAF2 is com-
monly associated with the tumor necrosis factor receptor
(TNFR) superfamily, it has been suggested by Geijtenbeek
and Gringhuis [39] that the activation of nuclear factor
NF-�B by Dectin-1 may involve the recruitment and acti-
vation of TRAF2-TRAF6 complex. Since there are some
similarities in the cytoplasmic motifs found in Dectin-1
and CLEC17A, it is possible that this interaction is present
in CLEC17A intracellular signaling as well. Nevertheless,

Figure 2 Construction of in silico library. The glycans from the array are listed out (in the modified condensed IUPAC format) and submitted
to our glycan modeling server for generating conformers that are amenable for docking studies.

Figure 3 Features of CLEC17A. Summary of the relevant features found along the sequence of CLEC17A.
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confirmation of these features awaits experimental
verification.
There are several other regulatory motifs that were

found by the prediction servers. However, the biological
context for their functions were not present in CLEC17A,
and hence were not considered further. For instance, the
C-terminal binding protein (CtBP) interacting motif (posi-
tion 121) occurs mostly in DNA-interacting proteins and
transcription factors. Since CLEC17A is a transmembrane
receptor, this motif is discarded as a false positive.

Structure prediction and docking studies of CLEC17A
The molecular structure of CLEC17A was predicted by
comparative homology modeling using the following pro-
teins as templates - (i) CD209 antigen-like protein 1 [PDB
Id: 1XPH], (ii) Collectin placenta 1 [PDB Id: 2OX9], and
(iii) mDC-SIGN1B Type I isoform [PDB Id: 1SL4]. How-
ever, these templates can only be aligned to the CRD
domain of CLEC17A (from 194 to 378) and hence the
structure can only be constructed within this region. The
sequence identity and similarity of the CRD between
CLEC17A and its template sequences was 29.7% and
53.1% respectively. The final model was created using the
MODELLER algorithm [19]. Five models were created,
and they were sorted by probability density function (PDF)
total energy scores. Thereafter the model with the lowest
score was chosen, and its loop regions were further refined
using MODELLER’s DOPE-based loop modeling protocol
[40]. The final structure is depicted in Figure 4A. The pre-
dicted result was validated by Profiles-3D [25], showing
that the model structure is acceptable based on the verify
scores. The Ramachandran diagram was also plotted to
determine the proportion of residues that violate the psi-
phi angle constraints (Figure 4B). Most residues are within
allowable or marginal regions, while only a few (0.9%) fall
within the disallowed region, indicating a high level of cor-
rectness for the structure.
We analyzed the cavities on the surface of the CLEC17A

model, resulting in four putative binding sites, two of
which can be considered for virtual screening against the
in silico glycan library (Figure 5A). The other two sites
were deemed improbable as they are solvent inaccessible
cavities. To further validate our assumption, we docked
the structures of mannose-a and fucose-a to the four
binding sites using the LibDock protocol [41]. Of the four
sites, only the two surface binding sites returned plausible
solutions (poses).
Next, we moved on to the virtual screening of the two

surface binding sites against the glycan library using the
following docking protocols - (i) CDocker, (ii) LibDock
and (iii) LigandFit. In order to render the poses from the
different protocols comparable, we re-scored them using
a set of standard scoring functions -LigScore1,2 [42], Pie-
cewise linear potential (PLP1,2) [43], Jain [44], and

potential of mean force (PMF) [45]. A consensus score is
then generated for each ligand. Finally, the ligand poses
are sorted according to the consensus score, and the top
25% unique ligands for each binding site are selected for
further analysis.
As an initial analysis of the global glycan binding pro-

file of CLEC17A, we looked at the terminating monosac-
charides of the dockable glycans: it has been suggested in
Taylor and Drickamer [46] that the binding specificities
of C-type lectins may be due to their interaction with the
terminal sugar. Hence, for each type of terminal mono-
saccharide, we obtained the list of corresponding glycans
from the library and computed the proportion that docks
to CLEC17A (Figure 5C). The results suggested that
CLEC17A, in addition to its specificity towards mannose,
may also bind glycans terminating with sugars such as
fucose-b, N-glycolylneuraminic acid-a, N-acetylglucosa-
mine-a and N-acetylgalactosamine-b. Note that as this is
an initial analysis, a more thorough approach might be
required to confirm the possible interactions between
CLEC17A and the glycans, as well as the amino acid resi-
dues responsible for forming the bonds.

Conclusions
In this work, we have collected various methods for
analyzing the putative structures and functions of novel C-
type lectins and incorporated some of them into an inte-
grative workflow for studying such lectins in a bottom-up
manner. Sequence-based motifs and domains are first
identified using an integrative metaserver. The structure of
the given lectin is then constructed by homology model-
ing, and its putative functions are assessed through virtual
screening against an in silico library of glycans that are
found in mammalian cells. Having such a workflow in
place will significantly increase the speed and efficiency of
identifying the putative roles and functions of novel C-
type lectins for further experimental validation. We
applied our workflow to elucidate the putative functions of
a novel human C-type lectin -CLEC17A, and characterized
it as a N-linked glycosylated transmembrane protein with
high specificity towards mannose and fucose. Preliminary
screening studies have also shown that CLEC17A possibly
binds glycans that terminate with a few other monosac-
charides such as N-glycolylneuraminic acid and N-acetyl-
glucosamine. Additionally, the presence of motifs that
bind to SH2 and SH3 domains, as well as the hemi-ITAM
motifs suggests that CLEC17A is involved in intracellular
signaling which could lead to the production of cytokines
such as interleukins.
With the development of more algorithms to predict

sequence and structural features on C-type lectins, sev-
eral more possible cellular functions of lectins may be
revealed. However, the algorithms will have varying sen-
sitivity and specificity. Although not all of them have
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Figure 4 Predicted structure of CLEC17A. (A) Homology modeling of CLEC17A and the score of its structure calculated by Profiles-3D. (B)
Ramachandran plot of the psi-phi angles between all amino acid residues of the predicted. Most of the residues fall within allowed regions
(95.7%), a small percentage of residues are within the marginal regions (3.4%), and only 3 residues are located in the disallowed region (0.9%).

Figure 5 Virtual screening of CLEC17A against the in silico glycan library. (A) Binding sites on CLEC17A that were screened against the
glycan library. (B) Structure of a glycan terminating with mannose bound to site 2 on CLEC17A. (C) Proportion of the glycans in the library
terminating with the respective monosaccharides, and having plausible poses on binding sites 1 and 2.
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been integrated into the workflow yet, we have demon-
strated that integrating and interpreting the results
together are invaluable in both filtering out improbable
predictions and aiding the design of future experiments
for validation. With all the collated results, future work
will include probabilistic approaches for accepting or
rejecting prediction results.
Moreover, some parts of our workflow still require

human supervision. At present, there are some works
that aim to achieve the complete automation of homol-
ogy modeling [21,22], and these can be integrated within
our workflow to make it as an entirely automated process
in the future. Incorporating the workflow with systems-
level analysis such as pathway information will also shed
more light not only on the features of the novel C-type
lectins, but also their molecular mechanisms and func-
tions from a network-centric point of view. In addition,
we are currently developing an in-house database system
to store information on C-type lectins and their interact-
ing partners, and it will be designed to allow direct entry
of information from the prediction results generated via
the workflow.

Additional material

Additional file 1: XML schema definition (XSD) for the query results.

Additional file 2: The full list of predicted domains and motifs on
CLEC17A.

Additional file 3: Additional background, as well as materials and
methods for the experimental investigation of predicted N-
glycosylation sites.
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