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Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent and heritable psychiatric disorders.
While previous studies have focussed on mapping focal or connectivity differences at the group level, the present
study employed pattern recognition to quantify group separation between unaffected siblings, participants with
ADHD, and healthy controls on the basis of spatially distributed brain activations. This was achieved using an
fMRI-adapted version of the Stop-Signal Task in a sample of 103 unaffected siblings, 184 participants with ADHD,
and 128 healthy controls. We used activation maps derived from three task regressors as features in our analyses
employing a Gaussian process classifier. We showed that unaffected siblings could be distinguished from partici-
pants with ADHD (area under the receiver operating characteristic curve (AUC) = 0.65, p= 0.002, 95% Modified
Wald CI: 0.59–0.71 AUC) and healthy controls (AUC = 0.59, p = 0.030, 95% Modified Wald CI: 0.52–0.66 AUC),
although the latter did not survive correction for multiple comparisons. Further, participants with ADHD could be
distinguished from healthy controls (AUC = 0.64, p = 0.001, 95% Modified Wald CI: 0.58–0.70 AUC). Altogether
the present results characterise a pattern of frontolateral, superior temporal and inferior parietal expansion that is
associatedwith risk for ADHD. Unaffected siblings show differences primarily in frontolateral regions. This provides
evidence for a neural profile shared between participants with ADHD and their healthy siblings.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the most
prevalent (Polanczyk et al., 2007; Simon et al., 2009) and heritable
psychiatric disorders (Faraone and Biederman, 2005). Heritability
estimates are around 75%, and relatives of participants with ADHD
have about 25% risk to have ADHD themselves which is about four
times higher than the population rate (Biederman et al., 1990). While
unaffected siblings share some of the biological risk for disease with
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their affected siblings, they do not express this risk symptomatically.
Unaffected siblings of participants with ADHD have shown patterns of
cognitive and neural functioning intermediate to those observed in af-
fected siblings and healthy controls (Durston et al., 2006; Greven et
al., 2015; Slaats-Willemse et al., 2003) Specifically, unaffected siblings
of participants with ADHD have shown impairments in response inhibi-
tion, as evidenced in impaired performance on cognitive tasks, aswell as
brain abnormalities in structures subserving response inhibition. There-
fore, this group of individuals represents an interesting study popula-
tion in exploring disorder mechanisms and a complex group for
disorder classification as preformed in this study. Response inhibition
deficits belong to the most prevalent deficits observed in children and
adolescents with ADHD (Barkley, 1999; Castellanos et al., 2006; Hart
et al., 2014a; Slaats-Willemse et al., 2003; van Rooij et al., 2015b). To
probe deficits in response inhibition in the current study, we chose
the Stop-Signal Task functional magnetic resonance imaging (fMRI)
paradigm. This experimental paradigm has previously shown
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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reductions in task related brain (de)activations in participants with
ADHD compared to healthy controls (Hart et al., 2014a; Janssen et al.,
2015; Lipszyc and Schachar, 2010; van Rooij et al., 2015b).

In contrast to studies that examined focal or connectivity differences
between unaffected siblings and participants with ADHD (van Rooij et
al., 2015a, 2015b), we quantified group separation on the basis of spa-
tially distributed patterns of activity across the brain, which provides a
unified measure of group separation that is more representative of the
overall pattern of brain activity than any individual region. Pattern rec-
ognition is ideal for this purpose and aims to extract regularities in data,
which can be used to predict group membership (Hastie et al., 2009).
Early pattern recognition studies aimed to show that participants with
ADHD could be distinguished from healthy controls based on different
MRI modalities (Hart et al., 2014a,b; Igual et al., 2012; Lim et al., 2013;
Wang et al., 2011). These studies were usually small in size and the lit-
erature tends to show reduced classification performance with in-
creased sample size (Wolfers et al., 2015). Larger studies capture more
of the inherent heterogeneity of ADHD, in terms of its symptomatology
and pathophysiology. Therefore, those studies are more indicative for
the predictability of ADHD in clinical settings, as a heterogeneous
group of patients approach clinics to seek treatment.

In studies on unaffected siblings of schizophrenia and autism spec-
trum disorders, researchers used neural patterns to distinguish siblings
from their respective patient group and healthy controls (Fan et al.,
2008; Segovia et al., 2014; Yu et al., 2013). However, until now no pat-
tern recognition study has investigated unaffected siblings of partici-
pants with ADHD. In the present study we sought to: (i) precisely
quantify the group separation between unaffected siblings, participants
with ADHD and healthy controls in a large sample that accurately re-
flects the range of variation in the disease phenotype and (ii) map the
nature of these differences to identify response inhibition related acti-
vation patterns, that underlay the shared genetic load between unaf-
fected siblings and participants with ADHD. The present study is the
largest study employing pattern recognition to investigate unaffected
siblings of participants with ADHD, using a hallmark deficit of ADHD
as biomarker, response inhibition (Barkley, 1999; Castellanos et al.,
2006; Hart et al., 2014a; Slaats-Willemse et al., 2003; van Rooij et al.,
2015b).

2. Methods

2.1. Participants

We used data from the NeuroIMAGE project, a large longitudinal
clinical cohort consisting of individuals tested at two different sites
in The Netherlands, the Vrije Universiteit in Amsterdam and the
Donders Centre for Cognitive Neuroimaging in Nijmegen. We select-
ed all individuals who performed the Stop-Signal Task. ADHD diag-
nosis was based on K-SADS (Birmaher et al., 2010) structured
psychiatric interviews and Conners' questionnaires (Conners et al.,
1998). The total sample consisted of 184 participants with ADHD,
103 unaffected siblings, and 128 healthy controls (Table 1). This
sample is similar to the sample detailed in our previous publication
(van Rooij et al., 2015b), with the exception that the current study
excluded subjects if there was an inconsistent diagnosis based on ei-
ther K-SADS or Conners' questionnaire. Ethics approval for this study
was obtained from relevant ethics review boards, and informed con-
sent/assent was signed by parents and their children. A comprehen-
sive overview of recruitment, diagnostics, ethical approval, testing
procedures, and quality control are provided in a separate methods
publication (von Rhein et al., 2014).

2.2. Stop-Signal Task design

Response inhibitionwasmeasured using an fMRI-adapted version of
the Stop-Signal Task (van Meel et al., 2007; van Rooij et al., 2015b),
consisting of four blocks of 60 trials each. Participants were instructed
to respond as quickly and accurately as possible to a go-signal (two-
choice reaction time task) with a left or right button press on a button
box, unless the go-signal was followed by a stop-signal (25% of trials),
in which case participants were instructed to withhold their response.
Participants who did not reach 70% accuracy on the go-trials were ex-
cluded prior to analyses (N = 5). The task was adapted to the perfor-
mance of the participant, by varying the delay between go and stop-
signal (stop-signal delay), in order to achieve 50% successful inhibition
on stop-trials for all participants. The stop-signal delay was decreased
from an initial 250 ms, by 50 ms after successful inhibition, and in-
creased by 50 ms after failed inhibition. The main measure of response
inhibition performance, the stop-signal reaction time (SSRT), was calcu-
lated by averaging the delay necessary for a participant to successfully
inhibit his/her response in 50% of the stop-trials. Secondary outcome
measures were the total number of omission and commission errors
on go-trials (errors) and the intra-individual component of variation
(ICV), calculated by dividing the reaction time variance by themean re-
action time (both calculated from reaction times on correct go trials).
2.3. Acquisition of functional MRI

Data were acquired at both sites on similar 1.5 Tesla Siemens MRI
scanners (Siemens Sonata at VUmc; Siemens Avanto at Donders Centre
for Cognitive Neuroimaging) using the same Siemens 8-channel head
coil and the following protocol: The Stop-Signal Task was collected in
four runs using a T2*-weighted echo planar imaging sequence (TR =
2340 ms, TE = 40 ms, FOV = 224 × 224 mm, 37 slices, voxel size =
3.5 × 3.5 × 3.5 mm, 94 volumes per run). To assist accurate normaliza-
tion, participants were also scanned using a high resolution MPRAGE
T1-weighted sequence (TR = 2730 ms, TE = 2.95 ms, TI = 1000 ms,
flip angle = 7°, voxel size = 1 × 1 × 1 mm, matrix size = 256 × 256,
FOV = 256 mm, 176 slices).
2.4. Processing of fMRI data

Functional MRI data were processed using FSL (FMRIB's Software Li-
brary, www.fmrib.ox.ac.uk/fsl; fMRI Expert Analysis Tool, version 6.0;
Jenkinson et al., 2012; Smith et al., 2004;Woolrich et al., 2009). Prepro-
cessing included removal of the first four volumes of each run, within-
run motion correction to the middle volume, slice-timing correction,
and spatial smoothing with a 6 mm Gaussian kernel, before residual
motion correctionwas applied using ICA–AROMA. ICA-AROMA is an ad-
vancedmotion correction tool that has been shown to outperformother
motion correction procedures (Pruim et al., 2015a,b). The data from
each run were registered to the participant's T1 anatomical image
using linear, boundary-based registration implemented in FSL-FLIRT.
For each participant a general linear model was fit, including successful
stop, failed stop and successful go trials as regressors in addition to error
trials, signal from cerebral spinal fluid andwhitematter, whichwere in-
cluded as nuisance covariates. Task regressors were convolved with a
double-gamma hemodynamic response function and data were high
pass filtered with a cutoff of 0.01 Hz prior to estimation. The resulting
single-subject regression coefficient images (‘beta maps’) were trans-
formed to participant-level anatomical space (3 mm isotropic resolu-
tion) and combined across runs using a fixed effects model, using FSL-
FEAT. This resulted in three participant-level activation maps, (1) suc-
cessful stop, (2) failed stop, and (3) successful go, which were trans-
formed to a neutral ‘midspace’, a procedure which neutralizes
potential registration biases due to structural group and gender differ-
ences. The reader is referred to a prior publication for further details of
the processing procedures (van Rooij et al., 2015b), where the only dif-
ference in the presentmanuscriptwas the addition of the advancedmo-
tion correction using ICA-AROMA.

http://www.fmrib.ox.ac.uk/fsl;
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Table 1
Demographic and clinical characteristics of complete sample.

Participants with ADHD Unaffected siblings Healthy controls Sig.

N 184 103 128
Males 128 41 60
Females 56 62 68

Mean SD Mean SD Mean SD
ADHD symptomsa 12.94 2.90 0.75 1.28 0.36 0.90 ADHD N siblings = controls
Age 17.24 3.27 17.12 4.06 16.36 3.24 ADHD = siblings = controls
Age range 8 ↔ 25 7 ↔ 27 9 ↔ 23
Estimated IQb 95.13 16.84 102.20 15.79 106.03 14.17 ADHD b siblings = controls
IQ range 55 ↔ 138 65 ↔ 144 58 ↔ 141

Mean SD Mean SD Mean SD
SSRT (ms) 270.3 61.91 252.52 49.32 258.83 52.65 ADHD N siblings = controls
ICV (ms) 0.211 0.052 0.18 0.047 0.17 0.041 ADHD N siblings = controls
Errors (n) 6.45 7.89 4.05 5.29 3.45 4.31 ADHD N siblings = controls
Current medication 107 4 0
Comorbid ODDc 34 24 1
Comorbid CDc 4 7 0
Comorbid RDc 27 12 0

Note: ADHD=Attention-deficit/hyperactivity disorder; ODD=Oppositional defiant disorder; CD=Conduct disorder; RD=Reading disability; SSRT= Stop-signal reaction time; ICV=
Intra-individual component of variation; Errors= Number of errors on go-trials; Sig. = Nominal significant differences are listed in this column if this column is empty no significant dif-
ferences could be reported.

a ADHD diagnosis was based on K-SADS structured psychiatric interviews and Conners' questionnaires (Conners et al., 1998).
b Estimated IQwas based on the block-design and vocabulary subtests of theWechsler Intelligence Scale for Children (WISC) orWechsler Adult Intelligence Scale (WAIS-III; Wechsler,

2012).
c ODD, CD, and RD diagnosis was based on K-SADS structured psychiatric interviews (Kaufman et al., 1997).
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2.5. Quantifying and mapping group separation with Gaussian process
classifiers

Gaussian process classifiers (Rasmussen and Williams, 2006) were
used to distinguish participants with ADHD from their unaffected sib-
lings and healthy controls. Gaussian processes are best described as a
distribution over functions, where inference proceeds by first comput-
ing the posterior distribution over functions according to the rules of
probability. This is referred to as conditioning the prior distribution on
the data. In the classification case, the posterior process is then passed
through a sigmoid response function that maps the output to the unit
interval, thereby providing a valid probability score for each prediction.
These quantify predictive confidence and provide the primary advan-
tage of Gaussian process classifiers over alternative approaches. Further
details surrounding this approach have been published previously
(Marquand et al., 2010). First, we estimated group separation on the
basis of neuroimaging biomarkers. For this, we trained GPC models to
make predictions based on the activation maps corresponding to the
three task regressors, described in the fMRI processing section. The
total number of features in these classifications was 224,781. Second,
we estimated group separation on the basis of behavioural data,
which provides a reference for the classifier above. For this, we trained
a GPCmodel on the basis of data from the behavioural task. Specifically,
we used the number of errors during the task, the ICV as well as the
SSRT as features (see above). Each classifier was embedded within
a leave-one-participant-out cross-validation procedure, and the
measure of generalizability was the area under the receiver-operating
characteristic curve (AUC). This measure has the advantage that it is
not sensitive to a particular choice of decision threshold. Statistical
significance was assessed by permutation testing for the AUC, taking
into account the family structure within the sample. Specifically,
instead of permuting the labels individually, we permuted the labels
that belong to participants from the same family together. In that way,
we ensured that the family structure was preserved, when the labels
were shuffled.

Multiple-comparison correction for the AUCswas performedwith the
Bonferroni-Holm method (Holm, 2010) and 95% confidence intervals
were reported and based on the modified Wald-method (Kottas et al.,
2014). Note that these confidence intervals should be considered illustra-
tive only. The primary measures we use to assess statistical significance
are p-values derived from the permutation testing procedures described
above, which fully account for the family structure in the data.

A common approach to illustrate the importance of each brain re-
gion to the classification is to visualize the classifier weights directly
(Mourao-Miranda et al., 2005). However, the classifier weights are in-
fluenced by both the signal and noise in the data, which complicates in-
terpretation. Therefore, forward maps (Haufe et al., 2014) were
computed that provide a better indication of the differential activation
pattern underlying the group separation. Most commonly, these maps
are reported without applying a threshold, but it is clearly desirable to
localise the most important differences. Therefore, we present a novel
approach to thresholding forward maps based on fitting a mixture
model. To achieve this, we fit a Gaussian-Gamma mixture to the
image histograms that provide an explicit model for the null distribu-
tion plus positive and negative activations (Beckmann and Smith,
2004). For this, we used the implementation in the FSL-MELODIC
software.1 After fitting this model, these maps can then be thresholded
in two ways: (i) by an alternative hypothesis testing (AHT) procedure
where voxels are declared significant if they have a probability
pAHT N 0.5 of belonging to one of the alternative distributions
(Beckmann and Smith, 2004) or (ii) by controlling the false discovery
rate (FDR) against the explicitly modelled null distribution (Efron,
2004; Efron et al., 2001). Here this was done at the norminal rate of
pFDR b 0.05. In our data, both approaches lead to similar conclusions
(see Supplementary Fig. 1). All figures were visualized in Caret (Van
Essen et al., 2001).

Sensitivity analyses were performed to increase the confidence in
the analyses described above. Since the total sample showed a slight
class imbalance with respect to gender and scan-site and in order to re-
duce nuisance variance, the samplewas perfectlymatched for gender as
well as scan-site and optimally on age.We used optimal matching algo-
rithms implemented in the R-packageMatchIt to simultaneouslymatch
age across all groups (Ho et al., 2011; for information on the matched
sample see Supplementary Table 1). The matched sample contained
74 participants per group. The analyses were performed in MATLAB
using customized scripts from the PRoNTo toolbox (Schrouff et al.,
2013).

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
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3. Results

3.1. Descriptive statistics: Stop-Signal Task

Unaffected siblings showed shorter stop-signal reaction times and
lower error rates than the participants with ADHD (Table 1, Wald
χ2 = 7.941, p b 0.005 and Wald χ2 = 10.701, p b 0.001, respectively),
but did not differ from healthy controls in their reaction times and
error rates (Table 1, Wald χ2 = 0.743, p = 0.389 and Wald
χ2 = −0.5954, p = 0.343, respectively). The intra-individual compo-
nent of variation was lower in unaffected siblings as compared to the
participants with ADHD (Table 1, Wald χ2 = 20.213, p b 0.001), and
slightly higher than in healthy controls (Wald χ2 = 4.057, p = 0.044).
These results are similar to those reported in an earlier study with an
overlapping sample (van Rooij et al., 2015b). The addition of age, gen-
der, IQ, medication status, or comorbid diagnoses to the model did not
influence the reported group differences.

3.2. Quantifying and mapping group separation

The accuracies for discriminating groups are summarised in Fig. 1.
Briefly, unaffected siblings could be distinguished from the participants
with ADHDon the basis of successful stop activationmaps (AUC=0.65,
p b 0.002, 95% ModifiedWald CI: 0.59–0.71 AUC) and participants with
ADHD could be distinguished from healthy controls on the basis of the
same activation maps included as features to the classifications
(AUC = 0.64, p b 0.001, 95% Modified Wald CI: 0.58–0.70 AUC). We
also found nominally significant discrimination of unaffected siblings
from healthy controls based on successful stop activation maps
(AUC = 0.59, p b 0.030, 95% Modified Wald CI: 0.52–0.66 AUC) as
well as nominally significant discrimination between participants with
ADHD and healthy controls based on failed stop activation maps
(AUC = 0.60, p b 0.019, 95% Modified Wald CI: 0.54–0.66 AUC, Fig. 1;
for balanced accuracy, sensitivity and specificity measures in the com-
plete and matched sample see Supplementary Table 2).

Fig. 2 shows the forward maps for the successful stop activation
maps for each group distinction without applying a threshold. In
Fig. 1.Depicted are the results for all predictions in the complete andmatched sample, the x-ax
of 0.5 indicates no discrimination; ** indicates that the prediction remains significant after
comparison correction.
Supplementary Fig. 1, the same maps are shown without a threshold
in the first column, with a threshold of pAHT N 0.5 in the second and
pFDR b 0.05 in the third. The classifier discriminating participants with
ADHD from healthy controls showed a frontolateral, superior temporal
and inferior parietal pattern with positive coefficients favouring ADHD.
The pattern that separated unaffected siblings from participants with
ADHD showed high coefficients in frontolateral and inferior parietal
areas favouring ADHD, but was for the remainder wide-spread in com-
parison. The nominally significant unaffected sibling versus healthy
controls distinction, showed a pattern with high coefficients primarily
in inferior frontolateral areas favouring unaffected siblings. In Supple-
mentary Fig. 2 we show the fit of the mixture models to the three for-
ward maps. The sensitivity analyses for which we perfectly matched
the sample on gender and scan site and optimally on age showed a sim-
ilar pattern of results as those described above, with exception of the
successful-stop difference between ADHD and their unaffected siblings,
all predictions improved in the matched sample (Fig. 1).

For the classifier trained to separate groups on the basis of the be-
havioural data, we showed that unaffected siblings could be distin-
guished from participants with ADHD (AUC = 0.66, p b 0.001) but not
from healthy controls (AUC = 0.51, p N 0.05), based on behavioural
scores described earlier. Participants with ADHD could be distinguished
from healthy controls (AUC = 0.71, p b 0.001).

4. Discussion

In this study we showed that: (i) unaffected siblings of participants
with ADHD could be distinguished from healthy controls and from par-
ticipants with ADHD. Further, (ii) participants with ADHD could be reli-
ably distinguished from controls. (iii) The predictions on behavioural
data were approximately equally accurate, except for the distinction of
unaffected siblings from healthy controls, which was not possible with
behavioural data. The pattern of difference between participants with
ADHD and healthy controls was characterised by positive bilateral
frontolateral, superior temporal and inferior parietal coefficients
favouring ADHD and frontolateral coefficients favouring unaffected sib-
lings in comparison with healthy controls. This provides evidence for a
is corresponds to the area under the receiver-operating characteristic curve (AUC). An area
Bonferroni-Holm correction; * indicates that predictions are significant before multiple



Fig. 2. Forwardmaps of significant predictions based on successful stop activationmaps. I)
Unaffected siblings versus healthy controls show a frontolateral pattern with positive
coefficients favouring siblings. II) Unaffected siblings versus participants with ADHD
show a widespread pattern with positive coefficients favouring ADHD predictions. III)
Participants with ADHD versus healthy controls show a relatively clear frontolateral,
interior-parietal and superior-temporal pattern with positive coefficients favouring
ADHD predictions. The left images correspond to the left hemisphere, the right images
to the right hemisphere.
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neural profile shared between participants with ADHD and their
healthy siblings.

The pattern of difference reported here, partially overlaps with re-
gions in frontal and parietal areas reported in earlier studies of our
NeuroImage sample (van Rooij et al., 2015a,b). Looking at the
thresholded forward maps (Supplementary Fig. 1), we see frontolateral
areas with positive coefficients favouring participants with ADHD as
well as unaffected siblings when contrasted with healthy controls. In
comparison to our previous studies that examined focal or connectivity
differences, we extend these findings by precisely quantifying group
separations based on task activation maps and show that the pattern
of difference that distinguishes the groups is characterized by a wide-
spread profile.

The diagnostic accuracy we report is moderate in relation to earlier
studies aiming to separate participants with ADHD from controls
using small samples (Wolfers et al., 2015) but is comparable to studies
that have employed large samples that capturemore of the heterogene-
ity in the ADHD phenotype (Sabuncu and Konukoglu, 2014). The pat-
tern recognition approach we employed allowed us to quantify the
degree of separation between groups and therefore also the degree to
which shared familial risk factors present in patients and unaffected
siblings are expressed in patterns of brain activity. In line with earlier
studies that identified patterns of shared risk between siblings of
participants with autism and schizophrenia (Fan et al., 2008; Segovia
et al., 2014; Yu et al., 2013), we could distinguish unaffected siblings
from participants with ADHD and, although to a lesser degree, from
healthy controls. The patterns associated with these distinctions
showed an overlap, with the pattern associated with the distinction of
participantswith ADHD fromhealthy controls, primarily in frontolateral
regions. Interestingly, a distinction based on behavioural data was not
possible between unaffected siblings and healthy controls, indicating
that unaffected siblings are not behaviourally different from healthy
controls in response inhibition. However, they show a different neural
pattern, which may be linked to compensatory brain processes in
these unaffected individuals compared to their affected siblings.

As mentioned in the introduction, ADHD has mostly been classified
in considerably smaller studies (Hart et al., 2014a,b; Igual et al., 2012;
Johnston et al., 2014; Lim et al., 2013; Peng et al., 2013; The ADHD
Consortium, 2012;Wang et al., 2011, 2013; Zhu et al., 2008). In a classi-
cal analytic setting, p-values derived frommeasures of central tendency
(e.g. a t-test) have an explicit dependency on the sample size, so the sig-
nificance necessarily increaseswith increasing sample size, even though
the effect sizemay not. In contrast, the predictive accuracy is a measure
of class overlap that is governed by the distributions of the different
classes and is largely independent of sample size, if properly assessed
(e.g. using cross-validation). Therefore, the estimate of class overlap be-
comes more precise with increased sample size. This is important be-
cause the present study is the largest task-based fMRI study
employing pattern recognition in ADHD and therefore may represent
a benchmark for what is possible in terms of accuracies in representa-
tive cohorts of heterogeneous disorders. This heterogeneitymay, for ex-
ample, stem from sampling subjects at different ages and at different
points on their developmental trajectory. Our results suggest that –
like all psychiatric disorders – the heterogeneity of the ADHD pheno-
type presents a major challenge for identifying disease mechanisms
and for finding biomarkers that predict diagnosis and disease course.
For example, previous research shows that only a subset of participants
with ADHD display behavioural alterations in response inhibition
(Mostert et al., 2015a,b). Different participants with ADHD may have
different symptom profiles and different underlying biological causes
(Faraone et al., 2015). Therefore, finding methods to parse heterogene-
ity is a major research initiative. Clusteringmethods are most common-
ly used for this purpose and aim to partition patients into subgroups
(Fair et al., 2012; Mostert et al., 2015b; van Hulst et al., 2014), but alter-
nativemethods such as normativemodelling (Marquand et al., 2016a,b)
may also be beneficial for understanding heterogeneity underlying psy-
chiatric disorders.

In summary, the present results describe a pattern of frontolateral,
superior temporal and inferior parietal expansion that is associated
with risk for ADHD. Unaffected siblings show differences primarily in
frontolateral regions. This provides evidence for a neural profile shared
between participants with ADHD and their healthy siblings. In the fu-
ture, pattern recognition techniques can be employed to break down
heterogeneity in those groups. This may allow us to better understand
brain mechanisms that protect participants who share familiar risk
but are unaffected.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2016.06.020.

Financial disclosures

Barbara Franke has received a speaker fee fromMerz. Jan K Buitelaar
has been in the past 3 years a consultant to/member of advisory board
of/and/or speaker for Janssen Cilag BV, Eli Lilly, Shire, Lundbeck, Roche
and Servier. He is not an employee of any of these companies, and not
a stock shareholder of any of these companies. He has no other financial
or material support, including expert testimony, patents, and royalties.
Pieter Hoekstra has been a member of the advisory board of Shire. The
other authors do not report conflicts of interest. None of these, or any

doi:10.1016/j.nicl.2016.06.020
doi:10.1016/j.nicl.2016.06.020


232 T. Wolfers et al. / NeuroImage: Clinical 12 (2016) 227–233
of the funding agencies have had any influence on the content of this
manuscript.

Acknowledgements

The research leading to these results has received funding from the
European Community's Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 602450 (IMAGEMEND). In addition,
the study was supported by grants from the Netherlands Organization
for Scientific Research (NWO), i.e. a Vici grant to Franke (grant 016-
130-669), Brain & Cognition grants 433-09-242 and 056-13-015 to
Buitelaar, and the Gravitation Programme Language in Interaction
(grant 024.001.006). The research of Franke and Buitelaar also receives
funding from the FP7 Programme under grant agreement no. 602805
(AGGRESSOTYPE), no. 603016 (MATRICS) and no. 278948 (TACTICS),
from the European Community's Horizon 2020 Programme (H2020/
2014–2020) under grant agreements no. 643051 (MiND) and no.
642996 (BRAINVIEW), and from a grant for the ENIGMA Center for
world-wide Medicine Imaging and Genomics from the National Insti-
tute of Health's BD2K Initiative (grant U54 EB020403). AndreMarquand
gratefully acknowledges support from the Language in Interaction con-
sortium, funded by the NWO under the Gravitation Programme.

References

Barkley, R.A., 1999. Response inhibition in attention-deficit hyperactivity disorder. Ment.
Retard. Dev. Disabil. Res. Rev. 5, 177–184. http://dx.doi.org/10.1002/(SICI)1098-
2779(1999)5:3b177::AID-MRDD3N3.0.CO;2-G.

Beckmann, C.F., Smith, S.M., 2004. Probabilistic independent component analysis for func-
tional magnetic resonance imaging. IEEE Trans. Med. Imaging 23, 137–152.

Biederman, J., Faraone, S.V., Keenan, K., Knee, D., Tsuang, M.T., 1990. Family-genetic and
psychosocial risk factors in DSM-III attention deficit disorder. J. Am. Acad. Child
Adolesc. Psychiatry 29, 526–533. http://dx.doi.org/10.1097/00004583-199007000-
00004.

Birmaher, B., Ehmann, M., Axelson, D.A., Goldstein, B.I., Monk, K., Kalas, C., Kupfer, D., Gill,
M.K., Leibenluft, E., Bridge, J., Guyer, A., Egger, H.L., Brent, D.A., 2010. Schedule for af-
fective disorders and schizophrenia for school-age children (K-SADS-PL) for the as-
sessment of preschool children — a preliminary psychometric study. Psychiatry
(Abingdon) 43, 680–686. http://dx.doi.org/10.1016/j.jpsychires.2008.10.003.
Schedule.

Castellanos, F.X., Sonuga-Barke, E.J.S., Milham,M.P., Tannock, R., 2006. Characterizing cog-
nition in ADHD: beyond executive dysfunction. Trends Cogn. Sci. 10, 117–123. http://
dx.doi.org/10.1016/j.tics.2006.01.011.

Conners, K.C., Sitarenios, G., Parker, J.D.A., Epstein, J.N., 1998. The revised Conners' Parent
Rating Scale (CPRS-R): factor structure, reliability, and criterion validity. J. Abnorm.
Child Psychol. 26, 257–268. http://dx.doi.org/10.1023/A:1022602400621.

Durston, S., Mulder, M., Casey, B.J., Ziermans, T., van Engeland, H., 2006. Activation in ven-
tral prefrontal cortex is sensitive to genetic vulnerability for attention-deficit hyper-
activity disorder. Biol. Psychiatry 60, 1062–1070. http://dx.doi.org/10.1016/j.
biopsych.2005.12.020.

Efron, B., 2004. Large-scale simultaneous hypothesis testing: the choice of a null hypoth-
esis. J. Am. Stat. Assoc. 99, 96–104. http://dx.doi.org/10.1198/016214504000000089.

Efron, B., Tibshirani, R., Storey, J.D., Tusher, V., 2001. Empirical Bayes analysis of a micro-
array experiment. J. Am. Stat. Assoc. 96, 1151–1160. http://dx.doi.org/10.1198/
016214501753382129.

Fair, D.A., Bathula, D., Nikolas, M.A., Nigg, J.T., 2012. Distinct neuropsychological sub-
groups in typically developing youth inform heterogeneity in children with ADHD.
Proc. Natl. Acad. Sci. U. S. A. 109, 6769–6774. http://dx.doi.org/10.1073/pnas.
1115365109.

Fan, Y., Gur, R.E., Gur, R.C., Wu, X., Shen, D., Calkins, M.E., Davatzikos, C., 2008. Unaffected
familymembers and schizophrenia patients share brain structure patterns: a high-di-
mensional pattern classification study. Biol. Psychiatry 63, 118–124. http://dx.doi.
org/10.1016/j.biopsych.2007.03.015.

Faraone, S.V., Biederman, J., 2005. What is the prevalence of adult ADHD? Results of a
population screen of 966 adults. J. Atten. Disord. 9, 384–391. http://dx.doi.org/10.
1177/1087054705281478.

Faraone, S.V., Asherson, P., Banaschewski, T., Biederman, J., Buitelaar, J.K., Ramos-Quiroga, J.A.,
Rohde, L.A., Sonuga-Barke, E.J.S., Tannock, R., Franke, B., 2015. Attention-deficit/hyperac-
tivity disorder. Nat. Rev. Dis. Prim. 1, 15020. http://dx.doi.org/10.1038/nrdp.2015.20.

Greven, C.U., Bralten, J., Mennes, M., O'Dwyer, L., van Hulzen, K.J.E., Rommelse, N.,
Schweren, L.J.S., Hoekstra, P.J., Hartman, C.A., Heslenfeld, D., Oosterlaan, J., Faraone,
S.V., Franke, B., Zwiers, M.P., Arias-Vasquez, A., Buitelaar, J.K., 2015. Developmentally
stable whole-brain volume reductions and developmentally sensitive caudate and
putamen volume alterations in those with attention-deficit/hyperactivity disorder
and their unaffected siblings. JAMA Psychiatry 72, 490–499. http://dx.doi.org/10.
1001/jamapsychiatry.2014.3162.

Hart, H., Chantiluke, K., Cubillo, A.I., Smith, A.B., Simmons, A., Brammer, M.J., Marquand,
A.F., Rubia, K., 2014a. Pattern classification of response inhibition in ADHD: toward
the development of neurobiological markers for ADHD. Hum. Brain Mapp. 35,
3083–3094. http://dx.doi.org/10.1002/hbm.22386.

Hart, H., Marquand, A.F., Smith, A., Cubillo, A., Simmons, A., Brammer, M., Rubia, K., 2014b.
Predictive neurofunctional markers of attention-deficit/hyperactivity disorder based
on pattern classification of temporal processing. J. Am. Acad. Child Adolesc. Psychiatry
53, 569–578. http://dx.doi.org/10.1016/j.jaac.2013.12.024.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning. second ed.
Springer http://dx.doi.org/10.1007/b94608.

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., Bießmann, F.,
2014. On the interpretation of weight vectors of linear models in multivariate neuro-
imaging. NeuroImage 87, 96–110. http://dx.doi.org/10.1016/j.neuroimage.2013.10.
067.

Ho, D.E., Imai, K., King, G., Stuart, E.A., 2011. MatchIt : nonparametric preprocessing for
parametric causal inference. J. Stat. Softw. 42, 1–28.

Holm, S., 2010. A simple sequentially rejective multiple test procedure. Statistics (Ber) 6,
65–70.

Igual, L., Soliva, J.C., Escalera, S., Gimeno, R., Vilarroya, O., Radeva, P., 2012. Automatic brain
caudate nuclei segmentation and classification in diagnostic of attention-deficit/hy-
peractivity disorder. Comput. Med. Imaging Graph. 36, 591–600. http://dx.doi.org/
10.1016/j.compmedimag.2012.08.002.

Janssen, T.W.P., Heslenfeld, D.J., Mourik, R.V., Logan, G.D., Oosterlaan, J., 2015. Neural cor-
relates of response inhibition in children with attention-deficit/hyperactivity disor-
der: a controlled version of the Stop-Signal Task. Psychiatry Res. Neuroimaging 233,
1–7. http://dx.doi.org/10.1016/j.pscychresns.2015.07.007.

Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M., 2012. Fsl.
Neuroimage 62, 782–790. http://dx.doi.org/10.1016/j.neuroimage.2011.09.015.

Johnston, B.A., Mwangi, B., Matthews, K., Coghill, D., Konrad, K., Steele, J.D., 2014.
Brainstem abnormalities in attention deficit hyperactivity disorder support high ac-
curacy individual diagnostic classification. Hum. Brain Mapp. 35, 5179–5189. http://
dx.doi.org/10.1002/hbm.22542.

Kaufman, C., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., Williamson, D., Ryan, N.,
1997. Schedule for Affective Disorders and Schizophrenia for School-Age Children-
Present and Lifetime Version (K-SADS-PL): Initial Reliability and Validity Data. J Am
Acad Child Adolesc Psychiatry 36, 980–988. http://dx.doi.org/10.1007/s13398-014-
0173-7.2.

Kottas, M., Kuss, O., Zapf, A., 2014. A modified Wald interval for the area under the ROC
curve (AUC) in diagnostic case-control studies. BMC Med. Res. Methodol. 14, 26.
http://dx.doi.org/10.1186/1471-2288-14-26.

Lim, L., Marquand, A., Cubillo, A.A., Smith, A.B., Chantiluke, K., Simmons, A., Mehta, M.,
Rubia, K., 2013. Disorder-specific predictive classification of adolescents with atten-
tion deficit hyperactivity disorder (ADHD) relative to autism using structural mag-
netic resonance imaging. PLoS One 8, e63660. http://dx.doi.org/10.1371/journal.
pone.0063660.

Lipszyc, J., Schachar, R., 2010. Inhibitory control and psychopathology: a meta-analysis of
studies using the stop signal task. J. Int. Neuropsychol. Soc. 16, 1064–1076. http://dx.
doi.org/10.1017/S1355617710000895.

Marquand, A., Howard, M., Brammer, M., Chu, C., Coen, S., Mourão-Miranda, J., 2010.
Quantitative prediction of subjective pain intensity from whole-brain fMRI data
using Gaussian processes. NeuroImage 49, 2178–2189. http://dx.doi.org/10.1016/j.
neuroimage.2009.10.072.

Marquand, A.F., Rezek, I., Buitelaar, J., Beckmann, C.F., 2016a. Understanding heterogene-
ity in clinical cohorts using normative models: beyond case control studies. Biol. Psy-
chiatry http://dx.doi.org/10.1016/j.biopsych.2015.12.023.

Marquand, A.F., Wolfers, T., Mennes, M., Buitelaar, J., Beckmann, C.F., 2016b. Beyond
lumping and splitting: a review of computational approaches for stratifying psychiat-
ric disorders. Biol. Psychiatry Cogn. Neurosci. Neuroimaging http://dx.doi.org/10.
1016/j.bpsc.2016.04.002.

Mostert, J.C., Hoogman, M., Onnink, A.M.H., van Rooij, D., von Rhein, D., van Hulzen, K.J.E.,
Dammers, J., Kan, C.C., Buitelaar, J.K., Norris, D.G., Franke, B., 2015a. Similar subgroups
based on cognitive performance parse heterogeneity in adults with ADHD and healthy
controls. J. Atten. Disord. 1–12. http://dx.doi.org/10.1177/1087054715602332.

Mostert, J.C., Onnink, A.M.H., Klein, M., Dammers, J., Harneit, A., Schulten, T., van Hulzen,
K.J.E., Kan, C.C., Slaats-Willemse, D., Buitelaar, J.K., Franke, B., Hoogman, M., 2015b.
Cognitive heterogeneity in adult attention deficit/hyperactivity disorder: a systematic
analysis of neuropsychological measurements. Eur. Neuropsychopharmacol. 25,
2062–2074. http://dx.doi.org/10.1016/j.euroneuro.2015.08.010.

Mourão-Miranda, J., Bokde, a.L.W., Born, C., Hampel, H., Stetter, M., 2005. Classifying brain
states and determining the discriminating activation patterns: Support Vector Ma-
chine on functional MRI data. Neuroimage 28, 980–995. http://dx.doi.org/10.1016/j.
neuroimage.2005.06.070.

Peng, X., Lin, P., Zhang, T., Wang, J., 2013. Extreme learning machine-based classification
of ADHD using brain structural MRI data. PLoS One 8 http://dx.doi.org/10.1371/
journal.pone.0079476.

Polanczyk, G., de Lima, M.S., Horta, B.L., Biederman, J., Rohde, L.A., 2007. The worldwide
prevalence of ADHD: a systematic review and metaregression analysis. Am.
J. Psychiatry 164, 942–948. http://dx.doi.org/10.1176/appi.ajp.164.6.942.

Pruim, R.H.R., Mennes, M., Buitelaar, J.K., Beckmann, C.F., 2015a. Evaluation of ICA-AROMA
and alternative strategies for motion artifact removal in resting state fMRI.
NeuroImage 112, 278–287. http://dx.doi.org/10.1016/j.neuroimage.2015.02.063.

Pruim, R.H.R., Mennes, M., van Rooij, D., Llera Arenas, A., Buitelaar, J.K., Beckmann, C.F.,
2015b. ICA-AROMA: a robust ICA-based strategy for removing motion artifact from
fMRI data. NeuroImage 112, 267–277. http://dx.doi.org/10.1016/j.neuroimage.2015.
02.064.

Rasmussen, C.E., Williams, C.K.I., 2006. Model selection and adaptation of
hyperparameters. Gaussian Process. Mach. Learn. Adaptive Comput. Mach. Learn.
Ser. 105–128.

http://dx.doi.org/10.1002/(SICI)1098-2779(1999)5:3<177::AID-MRDD3>3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1098-2779(1999)5:3<177::AID-MRDD3>3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1098-2779(1999)5:3<177::AID-MRDD3>3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1098-2779(1999)5:3<177::AID-MRDD3>3.0.CO;2-G
http://refhub.elsevier.com/S2213-1582(16)30118-8/rf0010
http://refhub.elsevier.com/S2213-1582(16)30118-8/rf0010
http://dx.doi.org/10.1097/00004583-199007000-00004
http://dx.doi.org/10.1097/00004583-199007000-00004
http://dx.doi.org/10.1016/j.jpsychires.2008.10.003.Schedule
http://dx.doi.org/10.1016/j.jpsychires.2008.10.003.Schedule
http://dx.doi.org/10.1016/j.tics.2006.01.011
http://dx.doi.org/10.1023/A:1022602400621
http://dx.doi.org/10.1016/j.biopsych.2005.12.020
http://dx.doi.org/10.1016/j.biopsych.2005.12.020
http://dx.doi.org/10.1198/016214504000000089
http://dx.doi.org/10.1198/016214501753382129
http://dx.doi.org/10.1198/016214501753382129
http://dx.doi.org/10.1073/pnas.1115365109
http://dx.doi.org/10.1073/pnas.1115365109
http://dx.doi.org/10.1016/j.biopsych.2007.03.015
http://dx.doi.org/10.1177/1087054705281478
http://dx.doi.org/10.1177/1087054705281478
http://dx.doi.org/10.1038/nrdp.2015.20
http://dx.doi.org/10.1001/jamapsychiatry.2014.3162
http://dx.doi.org/10.1001/jamapsychiatry.2014.3162
http://dx.doi.org/10.1002/hbm.22386
http://dx.doi.org/10.1016/j.jaac.2013.12.024
http://dx.doi.org/10.1007/b94608
http://dx.doi.org/10.1016/j.neuroimage.2013.10.067
http://dx.doi.org/10.1016/j.neuroimage.2013.10.067
http://refhub.elsevier.com/S2213-1582(16)30118-8/rf0095
http://refhub.elsevier.com/S2213-1582(16)30118-8/rf0095
http://refhub.elsevier.com/S2213-1582(16)30118-8/rf0100
http://refhub.elsevier.com/S2213-1582(16)30118-8/rf0100
http://dx.doi.org/10.1016/j.compmedimag.2012.08.002
http://dx.doi.org/10.1016/j.pscychresns.2015.07.007
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1002/hbm.22542
http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://dx.doi.org/10.1186/1471-2288-14-26
http://dx.doi.org/10.1371/journal.pone.0063660
http://dx.doi.org/10.1371/journal.pone.0063660
http://dx.doi.org/10.1017/S1355617710000895
http://dx.doi.org/10.1016/j.neuroimage.2009.10.072
http://dx.doi.org/10.1016/j.neuroimage.2009.10.072
http://dx.doi.org/10.1016/j.biopsych.2015.12.023
http://dx.doi.org/10.1016/j.bpsc.2016.04.002
http://dx.doi.org/10.1016/j.bpsc.2016.04.002
http://dx.doi.org/10.1177/1087054715602332
http://dx.doi.org/10.1016/j.euroneuro.2015.08.010
http://dx.doi.org/10.1016/j.neuroimage.2005.06.070
http://dx.doi.org/10.1016/j.neuroimage.2005.06.070
http://dx.doi.org/10.1371/journal.pone.0079476
http://dx.doi.org/10.1371/journal.pone.0079476
http://dx.doi.org/10.1176/appi.ajp.164.6.942
http://dx.doi.org/10.1016/j.neuroimage.2015.02.063
http://dx.doi.org/10.1016/j.neuroimage.2015.02.064
http://dx.doi.org/10.1016/j.neuroimage.2015.02.064
http://refhub.elsevier.com/S2213-1582(16)30118-8/rf0185
http://refhub.elsevier.com/S2213-1582(16)30118-8/rf0185
http://refhub.elsevier.com/S2213-1582(16)30118-8/rf0185


233T. Wolfers et al. / NeuroImage: Clinical 12 (2016) 227–233
Sabuncu, M.R., Konukoglu, E., 2014. Clinical prediction from structural brain MRI scans: a
large-scale empirical study. Neuroinformatics 13, 31–46. http://dx.doi.org/10.1007/
s12021-014-9238-1.

Schrouff, J., Rosa, M.J., Rondina, J.M., Marquand, A.F., Chu, C., Ashburner, J., Phillips, C.,
Richiardi, J., Mourão-Miranda, J., 2013. PRoNTo: pattern recognition for neuroimaging
toolbox. Neuroinformatics 11, 319–337. http://dx.doi.org/10.1007/s12021-013-
9178-1.

Segovia, F., Holt, R., Spencer, M., Górriz, J.M., Ramírez, J., Puntonet, C.G., Phillips, C., Chura,
L., Baron-Cohen, S., Suckling, J., 2014. Identifying endophenotypes of autism: a multi-
variate approach. Front. Comput. Neurosci. 8, 1–8. http://dx.doi.org/10.3389/fncom.
2014.00060.

Simon, V., Czobor, P., Balint, S., Meszaros, A., Bitter, I., 2009. Prevalence and correlates of
adult attention-deficit hyperactivity disorder: meta-analysis. Br. J. Psychiatry 194,
204–211. http://dx.doi.org/10.1192/bjp.bp.107.048827.

Slaats-Willemse, D., Swaab-Barneveld, H., de Sonneville, L., van der Meulen, E., Buitelaar,
J., 2003. Deficient response inhibition as a cognitive endophenotype of ADHD. J. Am.
Acad. Child Adolesc. Psychiatry 42, 1242–1248. http://dx.doi.org/10.1097/00004583-
200310000-00016.

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg,
H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J.,
Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M., 2004. Advances in
functional and structural MR image analysis and implementation as FSL. NeuroImage
23, 208–219. http://dx.doi.org/10.1016/j.neuroimage.2004.07.051.

The ADHD Consortium, 2012. The ADHD-200 Consortium: a model to advance the trans-
lational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci. 6.
http://dx.doi.org/10.3389/fnsys.2012.00062.

Van Essen, D.C., Drury, H.a., Dickson, J., Harwell, J., Hanlon, D., Anderson, C.H., 2001. An in-
tegrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. In-
form. Assoc. 8, 443–459. http://dx.doi.org/10.1136/jamia.2001.0080443.

van Hulst, B.M., de Zeeuw, P., Durston, S., 2014. Distinct neuropsychological profiles with-
in ADHD: a latent class analysis of cognitive control, reward sensitivity and timing.
Psychol. Med. 1–11 http://dx.doi.org/10.1017/S0033291714001792.

van Meel, C.S., Heslenfeld, D.J., Oosterlaan, J., Sergeant, J.A., 2007. Adaptive control deficits
in attention-deficit/hyperactivity disorder (ADHD): the role of error processing. Psy-
chiatry Res. 151, 211–220. http://dx.doi.org/10.1016/j.psychres.2006.05.011.

van Rooij, D., Hartman, C.A., Mennes, M., Oosterlaan, J., Franke, B., Rommelse, N.,
Heslenfeld, D., Faraone, S.V., Buitelaar, J.K., Hoekstra, P.J., 2015a. Altered neural con-
nectivity during response inhibition in adolescents with attention-deficit/hyperactiv-
ity disorder and their unaffected siblings. NeuroImage Clin. 7, 325–335. http://dx.doi.
org/10.1016/j.nicl.2015.01.004.
van Rooij, D., Hoekstra, P.J., Mennes, M., von Rhein, D., Thissen, A.J.A.M., Heslenfeld, D.,
Zwiers, M.P., Faraone, S.V., Oosterlaan, J., Franke, B., Rommelse, N., Buitelaar, J.K.,
Hartman, C.A., 2015b. Distinguishing adolescents with ADHD from their unaffected
siblings and healthy comparison subjects by neural activation patterns during re-
sponse inhibition. Am. J. Psychiatry http://dx.doi.org/10.1176/appi.ajp.2014.
13121635 (appi.ajp.2014.1).

von Rhein, D., Mennes, M., van Ewijk, H., Groenman, A.P., Zwiers, M.P., Oosterlaan, J.,
Heslenfeld, D., Franke, B., Hoekstra, P.J., Faraone, S.V., Hartman, C., Buitelaar, J.,
2014. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI
study in children with attention-deficit/hyperactivity disorder. Design and descrip-
tives. Eur. Child Adolesc. Psychiatry http://dx.doi.org/10.1007/s00787-014-0573-4.

Wang, X., Jiao, Y., Lu, Z., 2011. Discriminative analysis of resting-state brain functional
connectivity patterns of attention-deficit hyperactivity disorder using kernel princi-
pal component analysis. Eighth International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD). IEEE, pp. 1938–1941 http://dx.doi.org/10.1109/FSKD.
2011.6019911.

Wang, X., Jiao, Y., Tang, T., Wang, H., Lu, Z., 2013. Altered regional homogeneity patterns in
adults with attention-deficit hyperactivity disorder. Eur. J. Radiol. 82, 1552–1557.
http://dx.doi.org/10.1016/j.ejrad.2013.04.009.

Wechsler, D., 2002. WAIS-III Nederlandstalige bewerking. The Psychological Corporation,
London, Technische handleiding.

Wolfers, T., Buitelaar, J.K., Beckmann, C.F., Franke, B., Marquand, A.F., 2015. From estimat-
ing activation locality to predicting disorder: a review of pattern recognition for neu-
roimaging-based psychiatric diagnostics. Neurosci. Biobehav. Rev. 57, 328–349.
http://dx.doi.org/10.1016/j.neubiorev.2015.08.001.

Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann,
C., Jenkinson, M., Smith, S.M., 2009. Bayesian analysis of neuroimaging data in FSL.
NeuroImage 45, S173–S186. http://dx.doi.org/10.1016/j.neuroimage.2008.10.055.

Yu, Y., Shen, H., Zhang, H., Zeng, L.-L., Xue, Z., Hu, D., 2013. Functional connectivity-based
signatures of schizophrenia revealed by multiclass pattern analysis of resting-state
fMRI from schizophrenic patients and their healthy siblings. Biomed. Eng. Online 12
http://dx.doi.org/10.1186/1475-925X-12-10.

Zhu, C.-Z., Zang, Y.-F., Cao, Q.-J., Yan, C.-G., He, Y., Jiang, T.-Z., Sui, M.-Q., Wang, Y.-F., 2008.
Fisher discriminative analysis of resting-state brain function for attention-deficit/hy-
peractivity disorder. NeuroImage 40, 110–120. http://dx.doi.org/10.1016/j.
neuroimage.2007.11.029.

http://dx.doi.org/10.1007/s12021-014-9238-1
http://dx.doi.org/10.1007/s12021-014-9238-1
http://dx.doi.org/10.1007/s12021-013-9178-1
http://dx.doi.org/10.1007/s12021-013-9178-1
http://dx.doi.org/10.3389/fncom.2014.00060
http://dx.doi.org/10.3389/fncom.2014.00060
http://dx.doi.org/10.1192/bjp.bp.107.048827
http://dx.doi.org/10.1097/00004583-200310000-00016
http://dx.doi.org/10.1097/00004583-200310000-00016
http://dx.doi.org/10.1016/j.neuroimage.2004.07.051
http://dx.doi.org/10.3389/fnsys.2012.00062
http://dx.doi.org/10.1136/jamia.2001.0080443
http://dx.doi.org/10.1017/S0033291714001792
http://dx.doi.org/10.1016/j.psychres.2006.05.011
http://dx.doi.org/10.1016/j.nicl.2015.01.004
http://dx.doi.org/10.1176/appi.ajp.2014.13121635
http://dx.doi.org/10.1176/appi.ajp.2014.13121635
http://dx.doi.org/10.1007/s00787-014-0573-4
http://dx.doi.org/10.1109/FSKD.2011.6019911
http://dx.doi.org/10.1109/FSKD.2011.6019911
http://dx.doi.org/10.1016/j.ejrad.2013.04.009
http://refhub.elsevier.com/S2213-1582(16)30118-8/rf9200
http://refhub.elsevier.com/S2213-1582(16)30118-8/rf9200
http://dx.doi.org/10.1016/j.neubiorev.2015.08.001
http://dx.doi.org/10.1016/j.neuroimage.2008.10.055
http://dx.doi.org/10.1186/1475-925X-12-10
http://dx.doi.org/10.1016/j.neuroimage.2007.11.029
http://dx.doi.org/10.1016/j.neuroimage.2007.11.029

	Quantifying patterns of brain activity: Distinguishing unaffected siblings from participants with ADHD and healthy individuals
	1. Introduction
	2. Methods
	2.1. Participants
	2.2. Stop-Signal Task design
	2.3. Acquisition of functional MRI
	2.4. Processing of fMRI data
	2.5. Quantifying and mapping group separation with Gaussian process classifiers

	3. Results
	3.1. Descriptive statistics: Stop-Signal Task
	3.2. Quantifying and mapping group separation

	4. Discussion
	Financial disclosures
	Acknowledgements
	References


