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Background: Acute myeloid leukemia (AML) is a clonal malignant disease with poor
prognosis and a low overall survival rate. Although many studies on the treatment and
detection of AML have been conducted, the molecular mechanism of AML development
and progression has not been fully elucidated. The present study was designed
to pursuit the molecular mechanism of AML using a comprehensive bioinformatics
analysis, and build an applicable model to predict the survival probability of AML patients
in clinical use.

Methods: To simplify the complicated regulatory networks, we performed the gene
co-expression and PPI network based on WGCNA and STRING database using
modularization design. Two machine learning methods, A least absolute shrinkage and
selector operation (LASSO) algorithm and support vector machine-recursive feature
elimination (SVM-RFE), were used to filter the common hub genes by five-fold cross-
validation. The candidate hub genes were used to build the predictive model of AML
by the cox-proportional hazards analysis, and validated in The Cancer Genome Atlas
(TCGA) cohort and ohsu cohort, which were reliable in the experimental verification by
qRT-PCR and western blotting in mRNA and protein levels.

Results: Three hub genes, FLT3, CD177 and TTPAL were used to build a clinically
applicable model to predict the survival probability of AML patients and divided them
into high and low groups. To compare the survival ability of the model with the classical
clinical features, we generated the nomogram. The model displayed the most risk points
contrast to other clinical characteristics, which was compatible with the data of cox
multivariate regression.

Conclusion: This study reveal the novel molecular mechanism of AML, and construct a
clinical model significantly related to AML patient prognosis. We showed the integrated
roles of critical pathways, hub genes associated, which provide potential targets and
new research ideas for the treatment and early detection of AML.
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INTRODUCTION

AML is a devastating hematological malignancy. Differentiation
arrest and unscheduled proliferation of immature cells of
myeloid lineage are characteristic of this disease (Hansrivijit
et al., 2019). A variety of chemotherapy regimens, biological
agents, and stem cell transplantation are the main treatment
options for AML (Liu et al., 2019a,b; Zhou et al., 2019).
However, chemotherapy drug toxicity may lead to acute
and life-threatening complications. Compared with standard
chemotherapy, allogeneic stem cell transplantation is a suitable
method to reduce the risk of recurrence of AML, but also
increase the risk of serious complications. Although continuously
improved, the traditional method of treatment does not lead
to a complete cure or an ideal duration of survival for
AML in clinical practice (Manola et al., 2013). Genomics,
proteomics and bioinformatics analysis methods have been used
to develop new personalized treatment strategies, study of the
functions of related biomolecules, and collection of information
on emerging trends in genome matching of clinical data are
effective methods to improve the prognosis of patients (Wang
et al., 2015; Bret et al., 2016; Cai and Levine, 2019). Although
many studies have analyzed genome variation in AML, the
association between genome variation and molecular mechanism
of AML is still unclear. Therefore, a comprehensive study
of AML was urgent.

In this study, we aimed to explore the molecular mechanism
of AML using a comprehensive bioinformatics analysis, and
construct a clinical model to identify survival associated hub
genes of AML patients. We initially performed the function
annotation and modularization of gene differential expression;
we then filtered candidate hub genes in GEO training cohort
using machine learning algorithm with five-across validation
and validated those hub genes in TCGA and ohsu cohort. We
also hope that the results of this study can help us identify
key pathways and genes related to AML, and provide possible
targets and new research ideas for the treatment and early
detection of AML.

MATERIALS AND METHODS

Sample Collection
The bone marrow of AML samples and non-leukemia samples
were collected from 24 patients at The Second Affiliated Hospital
of Qiqihar Medical University. Two independent pathologists
made the diagnosis of AML and assessed the samples. Patients
characteristics were summarized in Supplementary Table 1.

Microarray Data Source and
Pre-processing
The gene expression profiles of AML were obtained from three
data sets, GSE6891, GSE10358 and GSE15061 of the NCBI GEO
database, which are based on the Affymetrix HT HG-U133A
and HG-U133A 2.0 Array. A total of 223 biochips from AML
patients were analyzed, including 154 AML tumor samples and
69 non-leukemia samples. The raw data of the three datasets were

downloaded from GEO, and the R package, Simpleaffy, was used
for Affymetrix quality control and data analysis (Yu et al., 2010).
Annotations were made using gene symbols from each respective
platform annotations. Then, expression data from all 223 samples
were included into a united gene expression matrix. The mean
value of gene expression was used in multiple probes sets with
a single gene symbol. Batch correction were performed before
the next analysis was conducted using combat method in sva R
package (Johnson et al., 2007; Leek et al., 2012).

Functional Analysis
The limma package was used to identify differentially expressed
genes (DEGs) (Ritchie et al., 2015), then GO and KEGG analysis
were performed using clusterProfiler (Yu et al., 2012). The
log2(fold change) > 1 and BH-adjusted p value < 0.05 were
filtered as the statistically significant. GSEA was utilized
to deeply analyze the variation in biological functional
and pathways between AML and non-leukemia samples
(Subramanian et al., 2005).

Module Analysis Using WGCNA Based
on PPI Network
To modularize the biological variation in AML, the WGCNA
package was used for the co-expression analysis of the
DEGs (Langfelder and Horvath, 2008). Then, the data was
superimposed onto the PPI database of STRING (Szklarczyk
et al., 2015). The co-expression analysis clusters were delineated
using the dynamic tree cut package with the minimum height
for each module set at 0.2 (Langfelder et al., 2008). The trend
of each module was based upon eigengene, and the members
of the module were collected through Pearson correlation from
among DEGs and their interactors. Moreover, a topological
overlapping matrix was also utilized to filter the PPI network
(Ravasz et al., 2002). Finally, individual modules were annotated
using cluster Profiler (Yu et al., 2012) and were visualized in
Cytoscape (Shannon et al., 2003).

Construction the Predictive Model of
AML
Firstly, A least absolute shrinkage and selector operation
(LASSO) algorithm and support vector machine-recursive
feature elimination (SVM-RFE) were used to filter the hub
genes by five-fold cross-validation, respectively (Tibshirani, 1996;
Huang et al., 2014). Then, we combined the result from LASSO
and SVM-RFE algorithms to filter the common hub genes.
Finally, the cox-proportional hazards analysis was performed
using glmnet R package, and picked up the risk associated
hub genes that were more than 900 times in 1000 repetition
(Friedman et al., 2010; Xu et al., 2017). X-tile 3.6.1 software
(Yale University, New Haven, CT, United States) was employed
to decide the best cutoff for AML patients categorized as low risk
and high risk. The prophetic capacity of the prognostic model
was assessed by the log-rank test and Kaplan-Meier survival
analysis in GEO training cohort, TCGA testing cohort and
Ohsu testing cohort.
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Assessment of Nomogram Performance
To predict the survival ability of 1, 3, and 5 year of AML patients,
we performed the nomogram analysis depend on the results of
multivariate analysis including age, gender, race, chemotherapy
status, radiation therapy status, gene fusion and risk type.
Moreover, the calibration plot was used to assess the proportion
of the predicted probabilities against the observed ones.

Quantitative Real-Time PCR (qRT-PCR)
qRT-PCR was used to verify the results. The total RNA of
AML samples and non-leukemia samples were extracted using
TRIzol reagent. The genes of interest were then quantified
through qRT-PCR using a One-Step qPCR Kit (Invitrogen,
United States), which was executed on a CFX ConnectTM
Real-Time System (BIO-RAD, United States), according to the
manufacturer’s instructions. The results were analyzed using
2−11CT method, with GAPDH as a reference gene (Livak and
Schmittgen, 2001). The primer sequences of the target genes are
shown in Supplementary Table 2.

Western Blotting Analysis
The tissues were lysed, and total protein was quantified using
the PierceTM Detergent Compatible Bradford Assay Kit (Thermo

Scientific). 20 µg of protein from each sample was used
for SDS-PAGE. After transferring the sample onto a PVDF
membrane, the blot was incubated with indicate antibodies.
All antibodies were purchased from CST: CD177 (ab203025,
Abcam), TTPAL (ab103740, Abcam), FLT3 (#3462, CST), and
GAPDH (#5174, CST).

Statistical Analysis
All experiments were performed in triplicate, at the least. For
analyses between two groups, the student’s t test was leveraged
for the comparison of tumor tissue with adjacent tissue. Data are
presented as mean SDs, except when indicated otherwise. A p
value < 0.05 was considered to be statistically significant.

RESULTS

Identification of Differential Expression
Genes (DEGs) and Functional Variation
We used the limma package to screen out DEGs from 154 AML
samples and 69 non-leukemia samples. The inclusion criteria of
the DEGs was an absolute log2FC > 1 and the BH-adjusted p
value < 0.01 was used as the statistical filter conditions. 1,084
DEGs, including 202 significantly upregulated genes and 882

FIGURE 1 | Functional analysis. (A) The volcano plot of the 1,084 DEGs between AML tumor samples and non-leukemia samples. Genes know to be upregulated
and downregulated are displayed with different colors. Three hub genes chosen for model construction are indicated; (B) The KEGG pathway enrichment analysis
showed that transcriptional misregulation in cancer, hematopoietic cell lineage, cell cycle, and TH1, 2, 17 cell differentiation were the most significantly affected
phases in AML; (C) The most enriched GO targets were involved in neutrophil activation, neutrophil degranulation, neutrophil activation involved in immune response,
neutrophil mediated immunity and leukocyte migration; (D) The GSEA results of AML patients and non-leukemia tissues performed on all genes at transcription level.
Three hub genes chosen for model construction are indicated.

Frontiers in Genetics | www.frontiersin.org 3 October 2020 | Volume 11 | Article 566024

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-566024 October 23, 2020 Time: 16:13 # 4

Qu et al. Machine Learning in AML Prognosis

significantly downregulated genes, were obtained. The volcano
plot of DEGs is shown in Figure 1A.

In order to further analyze DEGs, we explored the functional
variation between the two groups using the cluster Profiler
package. 107 GO terms were identified with the BH-adjusted
p value < 0.01. The GO SemSim package was used to remove
duplicate terms, keeping only one representative term, which
resulted in 49 unique GO terms (Yu et al., 2010). The results
of the GO analysis showed that the most enriched GO targets
were involved in neutrophil activation, neutrophil degranulation,
neutrophil mediated immune response and leukocyte migration
(Figure 1B). The KEGG pathway enrichment analysis showed
that transcriptional misregulation in cancer, hematopoietic cell
lineage, cell cycle, and TH1, 2, 17 cell differentiation were the
most significantly affected phases in AML (Figure 1C). These
results complemented the results of the GO enrichment analysis.
In order to further verify the relationship between the phenotype
and functionally differentiated genes, we performed GSEA
analysis on all genes at transcription level. The transcripts of AML
were found to be remarkably associated with downregulated
genes related to three pathways (Figure 1D).

Integrative Network Analysis Reveals
New Functional Modules
An integrative analysis method was used to model the dynamics
of proteome changes upon cancer progression, as previously

described (Tan et al., 2017). We applied WGCNA to all DEGs
to cluster the correlative proteins that had similar molecular
functions or biological processes (Jansen et al., 2002). Later,
these proteins were superimposed onto the PPI network to
identify the functional modules. As a result, we identified 143
modules with the number of proteins in each ranging from
2 to 25 (Figure 2A), and 122 of these modules were highly
interconnected by their members (Figure 2B). Each module was
annotated using known functional terms or signaling pathways.
We found that many modules, including module 3, 10, 15, 22, and
24 (Figure 3C), were notably enriched in hematopoietic system
related progression. In addition, module 27 was found to be
involved in RNA splicing, module 38 was involved in autophagy,
module 54 was involved in the regulation of transcription, while
module 83 was involved in translational initiation (Figure 3D).
In summary, the progression of AML involves the balanced
regulation and extensive reprogramming of mutually connected
functional modules.

Construction, Validation and Assessment
of the Predictive Model of AML
For considering the variation between AML patients and healthy
people, we aimed to estimate the predictive potential of DEGs.
After differential expression analysis, we get 1084 DEGs in AML
patients. Next, we performed two distinct machine learning
algorithms, the LASSO and SVM-RFE, to screen the most

FIGURE 2 | Expression profiling of proteome reveals co-expression clusters and functional modules in AML. (A) Distribution of 120 out of 143 modules. Each node
represents the individual module and their interactions by the module size. Edges connect modules that share PPIs. Boxed modules are further enlarged in C and D;
(B) 143 modules with the number of proteins ranging from 2 to 25 were identified; (C) Module 3, 10, 15, 22, and 24 were notably enriched in hematopoietic system
related progression showing the protein names and representative functional terms; (D) Module 27 was found to be involved in RNA splicing, module 38 was found
to be involved in autophagy, module 54 was found to be involved in the regulation of transcription, while module 83 was found to be involved in translational initiation.
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FIGURE 3 | Two algorithms were performed for hub genes selection. (A) LASSO; (B) SVM-RFE; (C) Common genes selected by two algorithms.

significant DEGs for building the prognostic model. By the
LASSO algorithm, we validated a set of 16 hub genes. And we
also chose a set of 17 hub genes using the SVM-RFE algorithm.
After integrating the hub genes from the LASSO and SVM-RFE
algorithms, we obtained 40 hub genes with 7 hub genes identified
simultaneously by the two machine learning algorithms with five-
fold cross-validation. In detail, the training set was randomly
divided into five equal portions; then, during each of the five
iterations, we first performed the LASSO and SVM-RFE as the
feature selection method on 4/5 of the training data and trained
the classifiers with the selected features. Next, we applied the
trained classifiers to the remaining 1/5 of the training data for
prediction. Finally, the predictions from all five iterations were
then combined and compared with the truth. The 7 significant
hub genes are VPREB3, CYP4F3, TTPAL, CTSE, RBP7, CD177,

and FLT3 (Figures 3A–C). Then, the cox-proportional hazards
analysis was used to stratify the AML patients in to high and
low risk subgroups. We established the predictive model by
calculating the risk score to predict the ability of survival in
GEO training cohort (Figure 4A) (risk score = normalized
expression level of FLT3 ∗ 0.261 + normalized expression level
of CD177 ∗ 0.327 - normalized expression level of TTPAL ∗
0.555). The cutoff point of high and low patients was obtained
using X-tile software. Figures 4B,C showed the predictive ability
of the prognostic model in TCGA and Ohsu testing cohort,
respectively. The results of Kaplan-Meier survival analysis were
shown in Figures 4D,E. Moreover, to identify if FLT3, CD177
and TTPAL genes influence the AML prognosis independently,
we performed survival analysis and found that these three hub
genes were involved in the prognosis of AML independently or
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FIGURE 4 | Prognostic analysis of the predictive model. (A–C) Association between the risk score (upper) and the expression of three prognostic hub genes
(bottom) is displayed in GEO training cohort, TCGA testing cohort and Ohsu testing cohort; (D–F) Kaplan-Meier survival showed OS was significantly higher in the
low-risk score subgroup than in the high-risk score subgroup in GEO training cohort, TCGA testing cohort, and Ohsu testing cohort.

in the established model. Finally, we created a nomogram to
predict the 1, 3, and 5 years overall survival for AML patients.
The model displayed the most risk points contrast to other
clinical characteristics, which was compatible with the data of cox
multivariate regression (Figure 5A). Finally, the calibration plot
was used to assess the consistency between the prediction and the
observation. As expected, the results found to be near to the ideal
curve (Figure 5B).

Experimental Verification of Candidate
Genes in mRNA and Protein Levels
In order to confirm DEGs, the total RNA of 24 paired AML
samples were isolated for qRT-PCR validation. 40 target DEGs
were selected, as shown in Figure 6. The DEGs were successfully
validated and showed a good correspondence with the results
of the transcriptome analysis, indicating precise and reliable
microarray results.

At the same time, we confirmed 3 hub genes at protein level,
FLT3 protein expression levels were all found to be upregulated
in AML, and CD177 and TTPAL were downregulated in AML,
which is consistent with the results of the qRT-PCR (Figure 7).
One of the most widely studied gene in the hematopoiesis
of AML is FLT3. FLT3 is class III receptor tyrosine kinases
that play a crucial role in hematopoiesis (Reilly, 2002). The
pathogenesis of several malignant tumors are associated with
the overexpression of FLT3 (Fassunke et al., 2010). In particular,
the FLT3 genes have been intensively studied in childhood AML
(Liang et al., 2002; Boissel et al., 2006). CD177 is mostly expressed
in neutrophils, and is upregulated in tumor tissues of patients

with colitis associated cancer (CAC). CD177 has been proven to
predict the benign prognosis of colorectal cancer (Bai et al., 2017;
Zhou et al., 2018).

DISCUSSION

AML is a clonal malignant disease with a poor prognosis and
low overall rate of survival. It originates from hematopoietic bone
marrow primordial cells. Immature leukocytes grow rapidly and
interfere with the production of normal blood cells. The median
survival time of AML patients is only 5–10 months (Hansrivijit
et al., 2019). The overall survival rate (OS) of traditional
treatment (chemotherapy and stem cell transplantation) for
AML is low, and chemotherapy is easily accompanied by
complications, while stem cell transplantations are high in cost,
with a risk of being rejected (Vaughn et al., 2019). The molecular
mechanism of AML development and progression is not fully
understood, and it is particularly important to find new targets
and strategies for individualized therapy.

In this study, we combined three datasets from Gene
Expression Omnibus (GEO) as GEO cohort, including
377 AML samples and 69 non-leukemia samples. The
combat algorithm in sva R package was used to remove
the batch effect. By GO and KEGG analyses, we found that
dysfunctions of AML patients were primarily enriched in
cytokine-cytokine receptor interaction, transcriptional mis-
regulation in cancer, chemokine signaling pathway, and
neutrophil related functions, such as neutrophil activation,
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FIGURE 5 | AML survival nomogram. (A) Nomogram for predicting the probability of 1, 3, and 5 years OS for AML patients; (B–D) Calibration plot of the nomogram
for predicting the probability of OS at 1, 3, and 5 years.

neutrophil degranulation, neutrophil mediated immunity and
so on. Moreover, traditional strategies for gene expression
analysis have focused on identifying individual genes that
exhibit differences between two or more states of interest.
Some specific pathways might be significantly affected while
changes in expression of individual genes are relatively subtle.
To address this puzzler, we performed GSEA using MSigDB
(c5.bp.v6.2.symbols.gm) as reference gene set. The results of
GSEA proved the previous conjecture and in good agreement
with GO and KEGG results.

In addition to the function annotation of gene differential
expression, we also explored the gene co-expression and
PPI network based on WGCNA and STRING database
using modularization design. Modules were generated from

hierarchical cluster tree algorithm and topological overlapping
matrix, and then functionally annotated (Ravasz et al., 2002;
Langfelder et al., 2008). In this approach, the intricate regulatory
networks were facilitated into simple and easy modules, which
were conducive to ascertain the connections of hub genes
in the biological processes. From modularization analysis, we
found that the progression of AML was related with balanced
regulation and extensive reprogramming of mutually connected
functional modules, such as leukocyte migration, T cell receptor
signaling (TCR) pathway, autophagy and RNA splicing. The
function of the autophagy in cancer, as a driver of oncogenic
transformation or inhibitor of tumor progression, remains a
controversial topic. Watson et al. found that hematopoietic
stem and progenitor cells possess elevated autophagic flux
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FIGURE 6 | (A,B) Validation of DEGs by qRT-PCR. Boxplots indicate the medians and dispersions of 40 AML and normal samples. P-values are counted by student’
t test, *p < 0.05, **p < 0.01, ***p < 0.001.

than mature hematopoietic cells, but the flux of AML cells
tends to decrease. This combined with the fact that genes
related autophagy were subject to copy number variation
(CNV) loss in AML, may imply the connection between
decreased autophagy and the progression of AML (Watson
et al., 2015). Recently, the dysfunction of gene splicing in
AML development and drug resistance have received attention.
Several recent studies have emphasized that splicing factor
mutations are important drivers of hematological malignancies
(de Necochea-Campion et al., 2016; Zhou and Chng, 2017; Tyner
et al., 2018). For example, Oncogene Wilms’ tumor gene 1 (WT1)
is a target for immunotherapy and biomarker in AML, and a
large number of isoforms of WT1 were validated. Among them,

FIGURE 7 | Detection in protein level. Western blotting detection of indicated
protein. Lysates from three pairs of AML and normal samples were subjected
to western blotting with antibody to, FLT3, CD177, TTPAL, and GAPDH.
GAPDH is a reference gene.

+5/ + KTS are the notable variant at prognosis, although the
ratio swings (Siehl et al., 2004; Lopotová et al., 2012).

Benefit from the method of machine learning, we established
a clinically applicable model to predict the survival probability
of AML patients. This model was built in GEO cohort, and
validated in TCGA and ohsu cohort. Our results showed that
AML patients could be stratified into two subgroups with high
or low risks of OS. Kaplan-Meier survival analysis was used to
value the prophetic capacity. The clinical features and accuracy
of model were assessed in the nomogram and calibration plot.
Furthermore, the three hub genes identified by machine learning
algorithms were reliable in the experimental verification by qRT-
PCR and western blotting in mRNA and protein levels. All
these suggested that the conformity strategy was feasible. In
addition, the three final hub genes discovered are all novelly
associated with cancer, especially FLT3. FLT3 is considered to be
a target of treatment for AML, and at present, the development
of clinical targets related with FLT3 is very active. FLT3 is
characterized by the presence of five immunoglobulin-like motifs
within their extracellular section. These motifs are exclusively
expressed in hematopoietic cells (Blume-Jensen and Hunter,
2001). FLT3 mutations occur as secondary events during AML
clonal evolution (Shlush et al., 2014). FLT3-ITD mutation has a
negative impact on the prognosis of AML, only a minority of
patients with FLT3-ITD mutation in leukemic blasts are cured
through chemotherapy.

Overall, we explored the molecular mechanism that influence
the occurrence and development of AML at the genome level
using an integrated method, and built a model to predict the
survival probability of AML patients in clinical use. We also hope
that the results of this study may help to identify critical pathways
and genes associated with AML and provide potential targets and
new research ideas for the treatment and early detection of AML.
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