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Abstract

BCOR (BCL6 co-repressor) represses gene transcription by interacting with BCL-6 1, 2. BCOR 

mutation is responsible for oculo-facio-cardio-dental (OFCD) syndrome, characterized by canine 

teeth with extremely long roots, congenital cataracts, craniofacial defects and congenital heart 

disease3–5. Here we show that BCOR mutation increased osteo/dentinogenic potentials of 

mesenchymal stem cells (MSCs) isolated from an OFCD patient, providing a molecular 

explanation for abnormal root growth. AP-2α was identified as a repressive target of BCOR, and 

BCOR mutation resulted in abnormal activation of AP-2α. Gain- and loss-of-function assays 

suggested that AP-2α was a key factor that mediated increased osteo/dentinogenic capacity of 

MSCs. Moreover, we found that BCOR maintained tissue homeostasis and gene silencing by 

epigenetic mechanisms. BCOR mutation increased histone H3K4/36 methylation in MSCs, 

thereby reactivating transcription of silenced target genes. In summary, by studying a rare human 

genetic disease, we unravel an epigenetic mechanism for control of human adult stem cell 

function.

Oculofacialcardiodental syndrome (OFCD) is a rare genetic disorder characterized by teeth 

with extremely long roots (radiculomegaly), and craniofacial, eye and cardiac 
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abnormalities3–7. OFCD is inherited in an X-linked dominant pattern in heterozygous 

females, and males with OFCD cannot survive due to embryonic lethality. Frequent eye 

anomalies include congenital cataracts and microphthalmia. Facial deformities include long 

narrow face, high nasal bridge, and cleft palate. Congenital cardiac abnormalities include 

septal defect and mitral valve defect. Among the many dental defects reported in OFCD 

patients, enlarged roots of canine teeth is the most consistent and typical finding3–7. The 

roots mainly consist of dentin, a bone-like mineralized tissue that serves to anchor the tooth 

in alveolar bone. After tooth eruption, root formation is well-synchronized with alveolar 

bone growth and virtually stops growing at certain ages8–11. On the contrary, in OFCD 

patients, the roots of mandibular incisors and canines can grow continuously until they reach 

the lower border of the mandible; the roots of maxillary incisors and canines can extend to 

the cortical plate of the orbit. Thus, canine radiculomegaly has been considered to be an 

important sign for OFCD diagnosis3–7.

Genetic studies have found that mutations in BCL6 co-repressor (BCOR) are responsible for 

OFCD syndrome3. The most common mutations in BCOR are truncation and frameshift 

mutations, resulting in premature termination of the protein with deletion of the C-terminal 

domain3–5. BCOR was originally identified as a co-repressor of the transcription repressor 

BCL-61. Chromosomal translocations of BCL-6 are common genomic alterations in Non-

Hodgkin’s B-cell lymphomas12. BCOR has been found to interact with histone deacetylase 

(HDAC), demethylase and H2A ubiquitin ligase, suggesting that BCOR may mediate 

repression through chromatin modification1, 13, 14. Mouse Bcor has been found to be 

expressed in tooth primordium, eye, neural tube and branchial arches which correlate with 

tissues affected in OFCD patients15. Genetic studies, through deleting Bcor in embryonic 

stem cells, suggest that Bcor plays an important role in early mouse embryonic 

development16.

Mesenchymal stem cells (MSCs) were originally isolated from bone marrow and are 

multipotent since they can differentiate into a variety of cell types including osteoblasts, 

chondrocytes, myocytes and adipocytes. Growing evidence indicates that MSCs are also 

present in non-bone marrow tissues17–21. Recently, a new population of MSCs has been 

isolated from dental and craniofacial tissues based on their stem cell properties11, 22, 23. 

These cells are multipotent, osteo/dentinogenic and capable of self-renewal. When 

transplanted into immunocompromised mice, they generated bone/dentin-like mineralized 

tissue and were capable of repairing dental and craniofacial defects11, 24. Characterization 

of MSCs from root apical papilla strongly suggests that these cells are responsible for root 

dentin formation and root growth. Since OFCD patients have enlarged and continuously 

growing root, BCOR mutation may have an intrinsic effect on the proliferation and function 

of MSCs from root apical papilla. To test our hypothesis, we isolated MSCs from the root 

apical papilla of an OFCD patient and examined their stem cell properties. While BCOR 

mutation did not affect stem cell marker expression, BCOR mutation resulted in enhanced 

osteo/dentinogenic potential of MSCs by inducing AP-2α. Mechanistically, we found that 

BCOR mutation increased histone H3 K4/36 methylation and reduced binding of BCL-6 to 

the AP-2α promoter, thereby resulting in a loss of BCL-6/BCOR repressive function. Our 

results provide a molecular explanation for the abnormal root growth of OFCD syndrome.
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MSCs were isolated from apical papilla of an OFCD patient undergoing surgical root apex 

removal due to radiculomegaly. This patient had a single nucleotide deletion, c.2613delC, 

resulting in a frameshift mutation with premature stop codon, p.F871Lfs8X4. Like many of 

the mutations found in other OFCD patients, this frameshift mutation led to the deletion of 

the BCOR C-terminus (approximately 800 amino acid deletion). MSCs isolated from the 

OFCD patient (MSC-O) proliferated at a faster rate in vitro than wild type MSCs isolated 

from a healthy human subject (MSC-WT; Fig. 1a; Supplementary Fig. S1a). Of note, the 

expression levels of BCOR mRNA in MSC-WT and MSC-O cells were similar 

(Supplementary Fig. S1b,c). Since radiculomegaly indicated that root was heavily 

mineralized, increased proliferation could not fully account for the phenotype of OFCD. 

Thus, we further examined whether BCOR mutation intrinsically affected MSC function. As 

shown in Fig. 1b, FACS profiling showed that MSC-O expressed stem cell markers of 

MSCs similar to those of MSC-WT cells11, 20, 21. Root dentin is a specialized mineralized 

tissue like bones8, 10, 11. Since OFCD patients display abnormal root formation, we tested 

whether MSC-O cells had increased osteo/dentinogenic potentials. Both MSC-O and MSC-

WT cells were treated with differentiation-inducing media containing dexamethasone, 

ascorbic acid and β-glycerophosphate as described previously11. To minimize the effect of 

cell growth on differentiation, both MSC-O and MSC-WT cells were plated in a confluent 

condition. As shown in Fig. 1c, shortly upon induction, alkaline phosphatase (ALP) activity, 

an early marker for osteo/dentinogenic differentiation, was more strongly induced in MSC-

O cells as compared with MSC-WT cells. Three weeks after induction, Alizarin Red staining 

revealed that calcium deposition or mineralization was also significantly higher in MSC-O 

cells than in MSC-WT cells (Fig. 1d). Consistently, Real-time RT-PCR found that bone/

dentin extracellular matrix genes, including OCN and SPP1, were more strongly induced in 

MSC-O cells as compared with MSC-WT cells (Fig. 1e,f). Dental sialoprotein (DSP) is an 

extracellular matrix protein highly expressed in dentin relative to other tissues8, 10, 25. We 

found that the induction of DSP was significantly higher in MSC-O cells than in MSC-WT 

cells (Fig. 1g). Finally, our in vivo transplantation also demonstrated that MSC-O cells 

generated more bone/dentin-like mineralized tissues than MSC-WT cells (Fig. 1h).

Since OFCD is an X-linked dominant syndrome in heterozygous females, the initial MSC-O 

cells from the patient may be a mixed population expressing wild type or mutant BCOR 

mRNA due to X-inactivation. Thus, it is important to determine whether enhanced osteo/

dentinogenic differentiation in passaged MSC-O cells is mainly due to cells expressing 

mutant BCOR mRNA. Total RNA from MSC-O cells was extracted and RT-RCR was 

performed using the specific primers which were from different exons and spanned the 

mutation site of BCOR. The PCR products were subcloned into a TA clone vector and 

sequenced. We found that the majority of clones (52 out of 60) expressed mutant BCOR 

(Supplementary Fig. S1d), suggesting that the mutant cells outgrew the wild-type cells in 

expanded MSC-O cell cultures. To further confirm our results, we also used shRNA to 

knock-down BCOR in MSC-WT cells. The knock-down of BCOR expression also 

significantly enhanced osteo/dentinogenic differentiation of MSC-WT cells (Supplementary 

Fig. S2). Moreover, the knock-down of BCOR in MSCs isolated from the dental pulp, also 

known as dental pulp stem cells (DPSCs)26, potently enhanced osteo/dentinogenic 

differentiation (Supplementary Fig. S3).
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To determine whether enhanced osteo/dentinogenic potentials associated with MSC-O cells 

were directly due to BCOR mutation, we tested whether the restoration of wild type BCOR 

(isoform C) in MSC-O could inhibit osteo/dentinogenic potentials of MSC-O cells. To rule 

out clonal variation, MSC-O cells were transduced with retroviruses expressing Flag-BCOR 

and control vector. As shown in Fig. 2a, using specific primers to detect Flag-BCOR, RT-

PCR confirmed that wild type BCOR was stably expressed in MSC-O (MSC-O/BCOR) 

cells, but not in control cells (MSC-O/GFP). Real-time RT-PCR showed a 5-fold increase in 

BCOR mRNA expression in MSC-O/BCOR cells compared to MSC-O/GFP cells (Fig. 2b), 

using primers which detect both endogenous BCOR and ectopic Flag-BCOR. The over-

expression of wild type BCOR significantly inhibited the proliferation of MSC-O cells (Fig. 

2c). Restoration of wild type BCOR in MSC-O cells strongly inhibited ALP activity upon 

induction of differentiation (Fig. 2d). Consistently, mineralization was potently inhibited in 

MSC-O/BCOR cells compared with MSC-O/GFP cells as determined by Alizarin Red 

staining (Fig. 2e).

Our studies suggest that BCOR mutation has intrinsic effects on MSC differentiation 

capacity. However, because BCOR mutation increases cell proliferation, the enhancement of 

osteo/dentinogenic potentials of MSCs may be an indirect effect. To resolve this crucial 

issue, we performed gene expression profiling to identify the BCOR target genes that might 

be associated with osteo/dentinogenic potentials using Affymetrix Human Genome U133 

Plus 2.0 Array. Together with this information, gain- and loss-of-function experiments 

would help to determine whether BCOR-regulated target genes were crucial for enhanced 

osteo/dentinogenic potentials, thereby providing direct evidence to verify the functional role 

of BCOR mutation in osteo/dentinogenic capacity. Importantly, microarray revealed that the 

transcription factor AP-2α was the second highest differentially expressed gene in MSC-O 

cells as compared to MSC-WT cells (Fig. 3a). Other highly expressed genes in MSC-O cells 

(>5-fold) relative to MSC-WT cells were listed in Supplementary Table 1. Previously, 

genetic studies found that AP-2α was associated with craniofacial development and the 

knock-out of AP-2α caused craniofacial and skeletal defects27, 28. RT-PCR confirmed that 

AP-2α was strongly expressed in MSC-O cells, but not in MSC-WT cells (Fig. 3b). 

Consistently, Western blot analysis found that AP-2α was highly expressed in MSC-O cells, 

but only was barely detected in MSC-WT cells (Fig. 3c). Furthermore, we found that AP-2α 

was not expressed in MSCs from three different healthy human subjects, indicating that the 

difference was unlikely due to individual variation (Fig. 3d).

To determine whether AP-2α was a key mediator for enhanced osteo/dentinogenic potentials 

resulting from BCOR mutation, we first tested whether the over-expression of AP-2α 

potentiated differentiation capacity of MSC-WT cells. To avoid clonal variation, MSC-WT 

cells were transduced with retroviruses expressing Flag-AP-2α or control vector. Western 

blot analysis confirmed that AP-2α was expressed (Fig. 3c). Over-expression of AP-2α did 

not affect MSC proliferation (Fig. 3e). As shown in Fig. 3f, g, we found that over-expression 

of AP-2α significantly enhanced ALP activity and mineralization upon induction. Real-time 

RT-PCR and Western blot analysis also revealed that the over-expression of AP-2α 

enhanced expressions of OCN, SPP1, and DSP (Fig. 3h, i, j).
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To further confirm that AP-2α was responsible for enhanced osteo/dentinogenic potentials 

of MSCs, we utilized small hairpin RNA (shRNA) to knock-down AP-2α expression in 

MSC-O cells. Western blot analysis confirmed that approximately 90% of AP-2α in MSC-O 

cells were knocked down by retroviruses expressing shRNA against AP-2α (Fig. 4a). The 

knock-down of AP-2α did not significantly change cell proliferation (Fig. 4b), but it 

significantly reduced ALP activity and mineralization in MSC-O cells (Fig. 4c,d). 

Consistently, the knock-down of AP-2α decreased expressions of OCN, SPP1 and DSP (Fig. 

4e–g). We transplanted both MSC-O cells expressing AP-2α shRNA (MSC-O/

AP-2αshRNA) and MSC-O expressing luciferase shRNA (MSC-O/LucshRNA) into nude 

mice. As shown in Fig. 4h, the knock-down of AP-2α also significantly reduced bone/

dentin-like tissue formation in vivo.

We found that over-expression of BCOR suppressed AP-2α expression in MSC-O cells, as 

determined by RT-PCR and Western blot analysis (Fig. 5a,b). Conversely, the knock-down 

of BCOR in MSC-WT cells increased AP-2α expression (Supplementary Fig. S2b). These 

results further confirm that BCOR controls AP-2α expression. We then examined whether 

BCOR was associated with the AP-2α promoter in MSC cells. A BCL6-binding site 

(TTTAGGAA), which is located 1439 bp upstream of the transcription start site, was found 

on the AP-2α promoter. Chromatin co-immunoprecipitation (ChIP) assays revealed that 

BCOR was present at the BCL6-binding site of AP-2α in MSC-WT cells, but not in MSC-O 

cells (Fig. 5c). Of note, anti-BCOR antibodies could not recognize the mutant BCOR 

proteins in MSC-O cells. As a negative control, BCOR was not detected in a region located 

in the open reading frame (ORF) of AP-2α. Interestingly, although BCL-6 was expressed at 

similar levels (Fig. 5d), BCL-6 binding to the AP-2α promoter was reduced in MSC-O cells 

compared with MSC-WT cells (Fig. 5e). Recent studies have shown that the BCOR complex 

contains polycomb group proteins and JHDM1B/FBXL10 demethylase13, 14. While the 

functional role of these molecules in the BCOR complex is not clear, their findings suggest 

that BCOR may utilize an epigenetic mechanism to direct gene silencing. Abnormal histone 

methylation due to BCOR mutation might affect BCL-6 binding to the AP-2α promoter. 

JHDM1B is a histone demethylase that has been shown to demethylate trimethylated lysine 

4 or dimethylated 36 on histone 3 (H3K4me3 or H3K36me2)29, 30. In general, methylation 

at H3K4 and H3K36 is associated with transcriptional activation 31, 32. Since the BCOR C-

terminus is required to interact with these molecules, we hypothesized that BCOR mutation 

in OFCD might impair the recruitment of JHDM1B to chromatin. However, despite our 

repeated efforts, available anti-JHDM1B antibodies did not work for our ChIP assays. To 

overcome this problem, we retrovirally expressed HA-JHDM1B in MSC-WT and MSC-O 

cells (Fig. 5f) and performed ChIP assays using anti-HA antibodies. As shown in Fig. 5g, 

HA-JHDM1B on the AP-2α promoter in MSC-WT cells was significantly higher than that in 

MSC-O cells. Moreover, we directly examined whether BCOR mutation affected H3K4/36 

methylation of the AP-2α promoter in MSCs. ChIP assays revealed that H3K36me2 on the 

AP-2α promoter in MSC-O cells was 7-fold higher than in MSC-WT cells (Fig. 5i). 

H3K4me3 on the AP-2α promoter in MSC-O cells was also significantly increased (Fig. 5j). 

To further confirm our results, we over-expressed both wild type and OFCD-mutant forms 

of BCOR (O-BCOR) in MSC-O cells (Fig. 5h). ChIP assays showed that the restoration of 

wild type-BCOR significantly reduced H3K4me3 and H3K36me2 in MSC-O cells (Fig. 5i, 
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j). On the contrary, over-expression of O-BCOR had no effects on H3K4/36 methylation in 

MSC-O cells. Of note, a recent study showed that JHDM1B is an H3K36me2-specific 

demethylase. H3K4me3 changes might be indirect33. To determine whether the BCOR/

JHDM1B complex played a role in the inhibition of MSC functions, we utilized shRNA to 

knock-down JHDM1B (Supplementary Fig. S4a) in MSC-WT cells. The depletion of 

JHDM1B resulted in the induction of AP-2α expression (Supplementary Fig. S4b). 

Moreover, the depletion of JHDM1B enhanced osteo/dentinogenic differentiation of MSC-

WT cells (Supplementary Fig. S4c–f). Finally, since the BCOR complex is associated with 

ubiquitylation of histone H2A, we performed ChIP assays to determine whether BCOR 

mutation affects ubiquintylation of H2A. ChIP assays revealed that ubiquintylation of H2A 

was significantly reduced in MSC-O cells as compared with MSC-WT cells (Supplementary 

Fig. S5).

Our studies provide a possible explanation for dental and craniofacial defects of OFCD 

patients. We showed that BCOR mutation led to the upregulation of AP-2α in MSCs and 

promoted osteo/dentinogenesis. Mechanistically, BCOR plays a critical role in development 

and maintenance of homeostasis via epigenetic modification of histone methylation. In 

normal conditions, BCOR interacts with JHDM1B and represses gene transcription by 

inhibiting H3K36/4 methylation on the target gene promoter in MSCs. In OFCD patients, 

the BCOR mutation fails to recruit JHDM1B to the target gene promoter, resulting in 

increased H3K36/4 methylation and transcription activation of silenced gene in MSCs. 

Supporting this conclusion, the depletion of JHDM1B in MSCs also induces AP-2α 

expression and enhances osteo/dentinogenic differentiation of MSCs. Based on analysis of 

our microarray results, the BCOR complex may repress a large number of genes in MSCs. 

In addition to AP-2α, it is possible that other genes may also play a role in dental and 

craniofacial defects of OFCD patients. For example, PAX3, which is associated with 

craniofacial development, is also activated in MSC-O cells. In addition to craniofacial 

defects, cataracts are the most frequent ocular phenotype of OFCD patients3, 4. 

Interestingly, transgenic mice over-expressing AP-2α developed cataracts34, further 

supporting the notion that AP-2α plays a role in the pathogenesis of OFCD. MSCs are also 

involved in cardiac development and formation. In future studies, it will be interesting to 

examine how BCOR mutation affects heart development and whether AP-2α plays a role in 

congenial heart defects associated with OFCD patients. In summary, by studying a rare 

human genetic disease, we identified the BCOR complex as a novel negative regulator of 

osteo/dentiogenic capacity of MSCs.

METHODS

Cell Cultures and Viral Infection

Tissues were obtained under approved guidelines set by the University of California San 

Francisco IRB with informed patient consent. Cells were grown in a humidified 5% CO2 

incubator at 37°C in DMEM alpha modified Eagle’s medium (Invitrogen) supplemented 

with 15% fetal bovine serum (FBS; Invitrogen). The full-length AP-2α and JHDM1B 

mRNAs from MSC-O cells were amplified by RT-PCR and subsequently subcloned into 

pQCXIP retroviral vector (BD Biosciences). pCLMFG Flag-BCOR/C IRES eGFP plasmids 
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were kindly provided by Dr. Vivian Bardwell at the University of Minnesota. Viral 

packaging was prepared as described previously35. For viral infection, MSCs were plated 

overnight and then infected with retroviruses in the presence of polybrene (6 µg/ml, Sigma-

Aldrich) for 6 hr. The target sequences for shRNA were: AP-2α, 5’-

TCCAGGAAGATCTTTAAGA-3’; BCOR, 5’-GATGGCTTCAGTGCTATAT-3’; 

JHDM1B, 5’-GAGTCAAGACGTAGAATAA-3’ and luciferase, 5’-

GTGCGTTGCTAGTACCAAC-3’. The shRNA was subcloned into a pSIREN retroviral 

vector (BD Bioscience) and retrovirus packaging was performed as described previously35.

Western blot analysis

Cells were lysed in RIPA buffer (10 mM Tris-HCL, 1 mM EDTA, 1% sodium dodecyl 

sulfate [SDS], 1% Nonidet P-40, 1: 100 proteinase inhibitor cocktail, 50 mM β-

glycerophosphate, 50 mM sodium fluoride). The samples were separated on a 10% SDS 

polyacrylamide gel and transferred to PVDF membrane by a semi-dry transfer apparatus 

(Bio-Rad). The membranes were blotted with 5% milk for 2 hr and then incubated with 

primary antibodies overnight. The immunocomplexes were incubated with horseradish 

peroxidase-conjugated anti-rabbit or anti-mouse IgG (Promega) and visualized with 

SuperSignal reagents (Pierce). Primary antibodies were purchased from the following 

commercial sources: monoclonal antibodies against AP-2α, polyclonal antibodies against 

HSP90 and TFIIB (Santa Cruz, CA, USA); monoclonal antibodies against ubiquitinated 

H2A (Millipore); polyclonal antibodies against H3K4me3 (Abcam) and H3K36me2 

(Upstate); polyclonal antibodies against dentin sialoprotein (DSP) (NIDCR/NIH, USA); 

polyclonal anti-BCL-6 antibodies (Cell Signaling); monoclonal antibodies against α-tubulin 

(Sigma-Aldrich).

ALP and Alizarin Red staining

MSCs were grown in mineralization-inducing media containing 100 µM ascorbic acid, 2 

mM β-glycerophosphate and 10 nM dexamethasone. For ALP staining, after induction, cells 

were fixed with 70% ethanol and incubated with a solution of 0.25% naphthol AS-BI 

phosphate and 0.75% Fast Blue BB dissolved in 0.1 M Tris buffer (pH 9.3). ALP activity 

assay was performed with an ALP kit according to the manufacturer’s protocol (Sigma-

Aldrich) and normalized based on protein concentrations. To assess mineralization, cells 

were induced for 2 to 3 weeks, fixed with 70% ethanol and stained with 2% Alizarin red 

(Sigma-Aldrich). To quantitatively determine calcium mineral density, Alizarin Red was 

destained with 10% cetylpyridinium chloride in 10 mM sodium phosphate for 30 minutes at 

room temperature. The concentration was determined by absorbance measurement at 562nm 

on a multiplate reader using a standard calcium curve prepared in the same solution. The 

final calcium levels in each group were normalized with the total protein concentrations 

prepared from duplicate plates20.

Reverse transcriptase-polymerase chain reaction (RT-PCR) and Real-time RT-PCR

Total RNA was isolated from MSCs using Trizol reagents (Invitrogen, Carlsbad, CA). The 

primers for AP-2α are: forward, 5’-CTCTCACCACCCGAGTGTCT-3’; reverse, 5’- 

GAGGTTGAAGTGGGTCAAGC-3’. The primers for BCOR are: forward, 
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CTCAGGAGACCACCCAGTC-3’; reverse, 5’-CCCTGAGCCACAGATACTTG-3’. The 

primers for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are: forward, 5’-

GATCATCAGCAATGCCTCCT-3’; reverse, 5’-ACCTGGTGCTCAGTGTAGCC-3’. For 

RT-PCR, 2-µg aliquots of RNAs were synthesized using random hexamers and reverse 

transcriptase according to the manufacturer’s protocol (Invitrogen).

The real-time PCR reactions were performed using the QuantiTect SYBR Green PCR kit 

(Qiagen) and Icycler iQ Multi-color Real-time PCR Detection System. The primers for 

SPP1 are: forward, 5’-ATGATGGCCGAGGTGATAGT-3’; reverse, 5’-

ACCATTCAACTCCTCGCTTT-3’. The primers for OCN are: forward, 5’-

AGCAAAGGTGCAGCCTTTGT-3’; reverse, 5’- GCGCCTGGGTCTCTTCACT-3’. The 

primers for JHDM1B are: forward, 5’-ACTTGACCATACCAATGGCGGT-3’; reverse, 5’- 

AAGCTGGTCAGGATTGCCAGAA-3’. The primers for BCOR are: forward, 5’-

CATAGTGCTTGTGGAACTCCG-3’; reverse, 5’- GGACACAGCTCTCCTGTTGC-3’. 

The primers for AP-2α are: forward, 5’- CTGCAGGGAGACGTAAAGC; reverse, 5’-

GGCTAGGTGGACAGCTTCTC-3’. The primers for 18S rRNA are: forward, 5’-

CGGCTACCACATCCAAGGAA-3’; reverse, 5’-GCTGGAATTACCGCGGCT-3’. The 

primers for GAPDH are: forward, 5’CGGCTACCACATCCAAGGAA-3’; reverse, 5’-

AGCCACATCGCTCAGACACC-3’.

Human Affymetrix microarray

Total RNAs were extracted from MSC-WT and MSC-O cells with Trizol reagents and 

cleaned with an RNeasy kit (Qiagen). 5-µg aliquots of total RNA from each sample were 

transcribed to double-stranded complementary DNA (cDNA) using SuperScript II RT 

(Invitrogen) with an oligo-dT primer and then used to generate single stranded RNAs. The 

biotin-labeled RNAs were fragmented and hybridized with an Affymetrix Human Genome 

U133 Plus 2.0 Array. The arrays were scanned with the GeneArray scanner (Affymetrix). 

The one-step Tukey's Biweight Estimate was used to calculate signal intensity. Affymetrix® 

Microarray Suite (MAS) 5.0 was used for data analysis35.

ChIP assays

The assay was performed using a ChIP assay kit (Upstate) according to the manufacturer’s 

protocol. Polyclonal antibodies against BCOR were kindly provided by Dr. Vivian Bardwell 

at the University of Minnesota. Cells were incubated with 5 mM dimethyl 3,3’ 

dithiobispropionimidate-HCl (Pierce) solution for 10 min at room temperature before 

formaldehyde treatment. For each ChIP reaction, 2× 106 cells were used. All resulting 

precipitated DNA samples were quantified with Real-time PCR. Data were expressed as the 

percentage of input DNA. The BCL-6 binding site was detected in 1439 bp upstream of the 

AP-2α transcription start site. The surrounding region of the binding site was used for 

amplification. The primer sequences for the BCL-6-binding region of the AP-2α promoter 

are: forward, 5’GTGAGGGAATGCTCCAATCT-3’; reverse, 5’-

CCTTTGATTCATCTGGGCTT. The primer sequences from ORF are: forward, 5’- 

CCTCGAAGTACAAGGTCACG-3’; reverse, 5’-GACACTCGGGTGGTGAGAG-3’. The 

primer sequences from 13kb up of AP-2α are: forward, 5’-

CCGCCCTGTCTCTGGTACTTTC-3’; reverse, 5’-AGCACCTTCTATACAGCATTCG-3’.
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Transplantation in nude mice

Approximately 4.0×106 of cells were mixed with 40 mg of hydroxyapatite/tricalcium 

phosphate (HA/TCP) ceramic particles (Zimmer) and then transplanted subcutaneously into 

the dorsal surface of 10-week-old immunocompromised beige mice as previously 

described11, 24. These procedures were performed in accordance with an approved animal 

protocol. 8 weeks after transplantation, the transplants were harvested, fixed with 10% 

formalin, decalcified with buffered 10% EDTA (pH 8.0), and then embedded in paraffin. 

Sections were deparaffinized, hydrated, and stained with H&E.

Accession numbers

The accession number for the microarray data is GSE15214.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. BCOR mutation results in enhanced osteo/dentinogenic potentials of MSCs from an 
OFCD patient
a,BCOR mutation promoted MSC proliferation. Values are mean ± s.d for triplicate samples 

from a representative experiment. Student’s t test was performed to determine statistical 

significance. *P < 0.05; **P < 0.01. b, BCOR mutation did not affect the expression of stem 

cell surface markers by flow cytometry. Cells were sorted on a FACSCalibur flow cytometer 

and analyzed using Cell Quest software (BD Bioscience). c, BCOR mutation resulted in 

enhanced ALP activity in MSCs. Values are mean ± s.d for triplicate samples from a 
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representative experiment. Student’s t test was performed to determine statistical 

significance. **P < 0.01. d, BCOR mutation resulted in enhanced mineralization in MSC-O 

cells. Values are mean ± s.d for triplicate samples from a representative experiment. 

Student’s t test was performed to determine statistical significance. **P < 0.01. e,f, BCOR 

mutation resulted in enhanced expression of OCN and SPP1 in MSC-O cells. The 

expressions of both OCN and SPP1 were examined by Real-time RT-PCR. Values are mean 

± s.d for triplicate samples from a representative experiment. Student’s t test was performed 

to determine statistical significance. **P < 0.01. g, BCOR mutation resulted in enhanced 

DSP expression in MSC-O cells. DSP expression was examined by Western blot analysis. 

HSP90 was used as an internal control. Uncropped images of the blots are shown in the 

Supplementary information. h, BCOR mutation resulted in enhanced mineralized tissue 

formation in vivo. Both MSC-O and MSC-WT cells were transplanted into SCID mice for 8 

weeks. D, bone/dentin-like tissues; HA, hydroxyapatite tricalcium carrier; CT, connective 

tissues. Scale bar, 100 µm.
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Figure 2. The restoration of wild type BCOR in MSC-O cells inhibited cell differentiation and 
proliferation
a, Over-expression of BCOR in MSC-O cells. Wild type Flag-BCOR was ectopically 

expressed in MSC-O cells as determined by RT-PCR using specific primers for Flag-BCOR. 

GAPDH was used as an internal control. b, BCOR over-expression was determined by Real-

time RT-PCR. Real-time RT-PCR was performed using primers which detected endogenous 

BCOR and ectopic Flag-BCOR. c, Over-expression of BCOR inhibited MSC-O cell 

proliferation. Values are mean ± s.d for triplicate samples from a representative experiment. 
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Student’s t test was performed to determine statistical significance. **P < 0.01. d. Over-

expression of BCOR inhibited ALP activity in MSC-O cells. Values are mean ± s.d for 

triplicate samples from a representative experiment. Student’s t test was performed to 

determine statistical significance. **P < 0.01. e, Over-expression of BCOR inhibited 

mineralization in MSC-O cells. Values are mean ± s.d for triplicate samples from a 

representative experiment. Student’s t test was performed to determine statistical 

significance. **P < 0.01.
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Figure 3. BCOR mutation increases AP-2α expression in MSC-O cells
a, Gene expression profile revealed that AP-2α was highly expressed in MSC-O cells. b, 

AP-2α was highly expressed in MSC-O cells compared with MSC-WT cells. AP-2α 

expression was determined by RT-PCR. GAPDH was used as an internal control. c, AP-2α 

was highly expressed in MSC-O cells compared with MSC-WT cells as determined by 

Western blot analysis. Uncropped images of the blots are shown in the Supplementary 

information. d, AP-2α was not detected in normal MSCs cells from three different normal 

human subjects. Uncropped images of the blots are shown in the Supplementary 
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information. e, Over-expression of AP-2α did not affect MSC proliferation. Values are mean 

± s.d for triplicate samples from a representative experiment. f, Over-expression of AP-2α 

increased ALP activity in MSC cells. Values are mean ± s.d for triplicate samples from a 

representative experiment. Student’s t test was performed to determine statistical 

significance. **P < 0.01. g, Over-expression of AP-2α increased mineralization in MSCs. 

Values are mean ± s.d for triplicate samples from a representative experiment. Student’s t 

test was performed to determine statistical significance. **P < 0.01. h, Over-expression of 

AP-2α enhanced SPP1 expression in MSCs. SPP1 was determined by Real-time RT-PCR. 

Values are mean ± s.d for triplicate samples from a representative experiment. Student’s t 

test was performed to determine statistical significance. **P < 0.01. i, Over-expression of 

AP-2α enhanced OCN expression. OCN was determined by Real-time RT-PCR. Values are 

mean ± s.d for triplicate samples from a representative experiment. Student’s t test was 

performed to determine statistical significance. **P < 0.01. j, Over-expression of AP-2α 

enhanced DSP expression in MSC cells. DSP expression was determined by Western blot 

analysis. HSP90 was used as an internal control. Uncropped images of the blots are shown 

in the Supplementary information.

Fan et al. Page 17

Nat Cell Biol. Author manuscript; available in PMC 2010 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. AP-2α is a key mediator for enhancing osteo/dentinogenic potentials of MSCs by 
BCOR mutation
a, The knock-down of AP-2α in MSC-O cells. MSC-O/Lucsh, MSC-O cells expressing 

luciferase shRNA; MSC-O/AP-2αsh, MSC-O cells expressing AP-2α shRNA. Uncropped 

images of the blots are shown in the Supplementary information. b, The depletion of AP-2α 

in MSC-O cells did not significantly affect cell proliferation. Values are mean ± s.d for 

triplicate samples from a representative experiment. c, The knock-down of AP-2α reduced 

ALP activity in MSC-O cells. Values are mean ± s.d for triplicate samples from a 
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representative experiment. Student’s t test was performed to determine statistical 

significance. **P < 0.01. d, The knock-down of AP-2α reduced mineralization in MSC-O 

cells. Values are mean ± s.d for triplicate samples from a representative experiment. 

Student’s t test was performed to determine statistical significance. **P < 0.01. e, The 

knock-down of AP-2α decreased SPP1 in MSC-O cells as determined by Real-time RT-

PCR. Values are mean ± s.d for triplicate samples from a representative experiment. 

Student’s t test was performed to determine statistical significance. *P < 0.05; **P < 0.01. f, 
The knock-down of AP-2α decreased OCN in MSC-O cells as determined by Real-time RT-

PCR. Values are mean ± s.d for triplicate samples from a representative experiment. 

Student’s t test was performed to determine statistical significance. **P < 0.01. g, The 

knock-down of AP-2;α decreased DSP expression in MSC-O cells. Uncropped images of 

the blots are shown in the Supplementary information. h, The knock-down of AP-2α 

reduced mineralized tissue formation in vivo. Both MSC-O/AP-2α shRNA and MSC-O/Luc 

shRNA cells were transplanted subcutaneously into the dorsal surface of 10-wk old 

immunocompromised beige mice. Values are mean ± s.d, n = 5. Student’s t test was 

performed to determine statistical significance. **P < 0.01. Scale bar, 100 µm.
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Figure 5. BCOR represses AP-2α transcription by epigenetic mechanisms
a, Over-expression of BCOR suppressed AP-2α expression in MSC-O cells as determined 

by RT-PCR. b, Over-expression of BCOR suppressed AP-2α expression in MSC-O cells as 

determined by Western blot analysis. Uncropped images of the blots are shown in the 

Supplementary information. c, BCOR was not detected in the AP-2α promoter in MSC-O 

cells. Chromatin and DNA complexes were immunoprecipitated with anti-BCOR antibodies. 

All error bars represent s.d. (n=3). Student’s t test was performed to determine statistical 

significance. **P < 0.01. d, BCL-6 expression in MSC-WT and MSC-O cells was examined 
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by Western blot analysis. Uncropped images of the blots are shown in the Supplementary 

information. e, BCOR mutation impaired BCL-6 binding to the AP-2α promoter. ChIP 

assays were performed with anti-BCL-6 antibodies or control IgG. The error bars represent 

s.d. (n=3). Student’s t test was performed to determine statistical significance. **P < 0.01. f, 
Over-expression of JHDM1B in MSC-WT and MSC-O cells. Cells were transduced with 

retroviruses expressing HA-JHDM1B or control empty vector. Uncropped images of the 

blots are shown in the Supplementary information. g, BCOR mutation failed to recruit 

JHDM1B to the AP-2α promoter. ChIP assays were performed with anti-HA antibodies or 

control IgG. The error bars represent s.d. (n=3). Student’s t test was performed to determine 

statistical significance. **P < 0.01. h, Over-expression of BCOR or O-BCOR in MSC-O 

cells. The error bars represent s.d. (n=3). i, BCOR mutation resulted in increased histone 

H3K36 methylation in the AP-2α promoter. ChIP assays were performed with anti-

H3K36me2 antibodies or control IgG. The error bars represent s.d. (n=3). **P < 0.01. h, 

BCOR mutation resulted in increased histone H3K4 methylation in the AP-2α promoter. 

ChIP assays were performed with anti-H3K4me3 antibodies or control IgG. The error bars 

represent s.d. (n=3). **P < 0.01.
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