
Complete Genome Sequence of Streptomyces venezuelae ATCC 15439,
Producer of the Methymycin/Pikromycin Family of Macrolide
Antibiotics, Using PacBio Technology

Jingxuan He,a Anitha Sundararajan,b Nicholas P. Devitt,b Faye D. Schilkey,b Thiruvarangan Ramaraj,b,c Charles E. Melançon IIIa,c,d

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, USAa; National Center for Genome Resources (NCGR), Santa Fe,
New Mexico, USAb; Department of Biology, University of New Mexico, Albuquerque, New Mexico, USAc; Center for Biomedical Engineering, University of New Mexico,
Albuquerque, New Mexico, USAd

Here, we report the complete genome sequence of Streptomyces venezuelae ATCC 15439, a producer of the methymycin/pikro-
mycin family of macrolide antibiotics and a model host for natural product studies, obtained exclusively using PacBio sequenc-
ing technology. The 9.03-Mbp genome harbors 8,775 genes and 11 polyketide and nonribosomal peptide natural product gene
clusters.
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Actinobacteria are well known for their ability to produce a
variety of structurally complex, often bioactive natural prod-

ucts that are useful as drugs, drug leads, and chemical probes (1,
2). Among Actinobacteria, members of the genus Streptomyces are
some of the most frequently observed species in nature, with �575
validly published species names (3) and �18,000 publicly depos-
ited 16S rRNA gene sequences reported to date. Since 2001, when
the first Streptomyces genomes, those of the model organisms S.
coelicolor A3(2) (4) and S. avermitilis MA-4680 (5), were se-
quenced, the genomes of nearly 700 Streptomyces strains have
been sequenced to at least the draft stage and made publicly avail-
able. However, among these, only 35% (245 genomes) are high-
quality (�100 scaffold) assemblies, and only 8% (56 genomes) are
complete genomes.

The full complement of genes required for the biosynthesis
of bacterial natural products are almost invariably found at
specific genomic loci called natural product biosynthetic gene
clusters (BGCs) (6), which typically range in size from ~10 kb
to �100 kb. A sufficiently high-quality (typically �100 scaf-
folds) genome assembly is an important prerequisite for ob-
taining the intact natural product BGC sequences needed for
accurate bioinformatics-guided natural product discovery (7,
8) and synthetic biology-based natural product production (9)
efforts.

There is an extensive collection of molecular genetic tools
available for use in Streptomyces, and several model Streptomy-
ces hosts, including S. coelicolor A3(2) (4, 10), S. lividans
strains, S. avermitilis MA-4680 (5, 11), S. albus J1074 (12), S.
venezuelae ATCC 10712 (13), and S. venezuelae ATCC 15439,
have been developed. S. venezuelae ATCC 15439, a producer of
the methymycin/pikromycin family of macrolide antibiotics
(14), has been a model host for studying and manipulating
deoxysugar and polyketide biosynthesis and macrolide glyco-
sylation (15), for heterologous production of natural products

(16), and recently for unnatural amino acid incorporation
(17). S. venezuelae ATCC 15439 is an advantageous model host
because it is among the fastest growing Streptomyces strains
(doubling time, ~60 min) (16), it grows in a dispersed manner
in liquid culture, and it can be transformed efficiently. The
complete nearly error-free genomes of model Streptomyces
strains have been invaluable guides in the effort to understand
and manipulate secondary metabolism.

To extend the capabilities afforded by a high-quality genome
sequence to the model host S. venezuelae ATCC 15439, we se-
quenced its genome using PacBio next-generation technology.
Genome sequencing was carried out using the Pacific Biosciences
RSII (Menlo Park, CA) sequencing platform. PacBio long reads
(two single-molecule real-time [SMRT] cells, �80� coverage)
were assembled using the Hierarchical Genome Assembly Process
2 (HGAP2) protocol from SMRT Analysis version 2.0 package
(18), resulting in the complete linear 9,034,396-bp S. venezuelae
ATCC 15439 genome.

Gene prediction and annotation were carried out using
RAST (19), incorporating the Glimmer (20) algorithm, and
identified 8,682 putative protein-coding genes, 7 rRNA oper-
ons, and 72 tRNAs. Eleven polyketide and nonribosomal pep-
tide natural product biosynthetic gene clusters, including the
nearly error-free pikromycin cluster, were identified using Dy-
namite (8) and confirmed using antiSMASH (21). The S. ven-
ezuelae ATCC 15439 genome sequence will be a valuable re-
source for the continued development of the strain as a model
host for natural product biosynthesis and synthetic biology
studies.

Nucleotide sequence accession numbers. This genome se-
quence was deposited in EMBL/GenBank under accession no.
LN881739. The version described in this paper is the first version,
LN881739.1.
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