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Abstract
In this paper, we propose and implement a hybrid model combining two-directional two-

dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural

Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical vari-

ables are selected as the input features, and a sliding window is used to obtain the input

data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract

its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to fore-

cast the next day's stock price or movement. The proposed model is used on the Shanghai

stock market index, and the experiments show that the model achieves a good level of fit-

ness. The proposed model is then compared with one that uses the traditional dimension re-

duction method principal component analysis (PCA) and independent component analysis

(ICA). The empirical results show that the proposed model outperforms the PCA-based

model, as well as alternative models based on ICA and on the multilayer perceptron.

Introduction
In recent years, it is an important issue in investment/financial decision-making and is current-
ly receiving considerable attention from the research community [1]. The stock market is quite
attractive if its behavior can be predicted; however, forecasting the stock market index is re-
garded as a difficult task due to its random walk characteristic. According to the Efficient Mar-
ket Hypothesis [2], changes in stock market prices are determined by new information, but
because the new information is unpredictable, the stock market price is also unpredictable.
Some researchers argue that the stock market can be predicted over the short term, as reported
in studies by Los [3] and Haugen [4]. China’s stock market is now the second largest in Asia
following only Japan. Guo [5] indicated that the Chinese stock market has been gradually
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acting as the barometer of the economy since 2002. The Shanghai stock market opened in
1991, which plays an important role in Chinese economic development, so an increasing num-
ber of forecasting models are being developed to predict Shanghai stock market trends. These
earlier studies have been reported in Cao et al. [6], Yang et al. [7], Zhang et al. [8], Dai et al.[9]
and Ye et al. [10].

Over the past two decades, many models based on soft computing have been proposed
[11–16]. In the most existing prediction approaches, there have been numerous studies using
RBFNN for stock price prediction. RBFNN was first used to solve the interpolation problem of
fitting a curve exactly through a set of points [17]. Versace et al. [18] used a mixture of
RBFNNs to evaluate the performance of a heterogeneous mixture of neural network algorithms
for predicting the exchange-traded fund DIA (AMEX ticker: DIA). Wang et al. [19] obtained
the fractal dimension of the Shanghai stock market through a function approximation algo-
rithm based on the RBFNN. Sun et al. [20] proposed a financial index forecasting model based
on a modified RBFNN to find the important points of the stock index. A large number of suc-
cessful applications have shown that RBFNN can be useful techniques for stock price forecast-
ing due to their ability to approximate any continuous function with arbitrary precision. Since
RBFNN has fast convergence, but a powerful nonlinear problem-solving ability. It motivates
this study of utilizing RBFNNN for stock price prediction.

When using RBFNN for stock prices forecasting, the observed original values of prediction
variables are usually directly used to build prediction models. One of the key problems is the
inherent noise of original values affecting the prediction performance. Many studies on time
series analysis have suggested that raw data preprocessing is useful and necessary for improving
system performance and model generalization to unseen data. For stock market forecasting, as
new data is obtained, if the predictive model can be refined to account for it, then the model
should be better adapted for the new data, and its predictive accuracy should be improved.
Thus, especially for predicting the stock market, with its inherent volatility, the predictive
model should be dynamically learned on-line. In this learning context, the dimensionality of
the raw data play an important role in improving the performance and reducing the computa-
tional complexity needed to learn the predictive model. In this case, many hybrid system meth-
ods were proposed to improve the performance of stock market forecasting systems [21–23].
These existing methods usually contain two stages, the first stage is feature extraction to re-
move the noise, the second stage is a predictor to forecast the stock price.

Atsalakis et al. [22] have pointed out that not all articles provide details of data preprocess-
ing, or indeed whether any preprocesses are used. This indicates that more attention should be
paid to the preprocessing methods used in stock market forecasting. In particular, more effec-
tive dimension reduction methods should be introduced to improve the performance of the
forecasting model. Common approaches include data normalization, indicator reduction, and
PCA [24], a very popular subspace analysis method which is successfully applied in many do-
mains for dimension reduction. Ajithet et al. [23] used PCA to preprocess the raw data for
stock market forecasting, but did not give details. Huang et al. [25] proposed a model based on
PCA and BPNN to forecast the trends of the future’s price, and tested actual instances to vali-
date that the performance of PCA+BPNN was preferable to that of a standard neural network.
Ravi et al. [26] proposed and implemented a fusion model by combining PCA and RBFNN to
build a bank performance prediction system. Tsai [27] use PCA as a feature selection method
of stock prediction. Another well-known approach is ICA. Huang et al. [28] proposed a fore-
casting model that combined ICA and RBFNN to predict the trend in the real exchange rate.
Huang [29], Guo [30] and Yeh [31] proposed a hybrid model by combining ICA and SVR in
conducting time series prediction tasks. In these methods, PCA or ICA were used as prepro-
cessing tool before building a stock prediction model.
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PCA or ICA is suitable when the format of raw data is a vector with lower dimension. How-
ever, this condition is often not satisfied with the stock prediction. In multivariable prediction
systems, there is a strong correlation between the variables, and the initial format of the raw
data is a tensor. As feature extraction tools, both PCA and ICA need to transform the tensor
into a vector, which contains two drawbacks. One is it requires prohibitive computational com-
plexity, the other is PCA and ICA break the correlation residing in the raw data. In this study, a
tensor subspace method, (2D)2PCA [32] based denoising scheme is proposed and integrated
with RBFNN for building a stock price forecasting model (called (2D)2PCA+RBFNNmodel).
In this work, first, a sliding window and 36 technique variables were used to obtain a multidi-
mensional representation of the forecasting variable. Second, (2D)2PCA was applied to extract
features from the predictor variables. Third, the features were used as the inputs of RBFNN.
We attach importance to the influence of dimension reduction on the performance of the fore-
casting system. The proposed (2D)2PCA+RBFNN model use (2D)2PCA to remove the noise
from the input raw data, the feature will contain less noise information and serve as the input
of the RBFNN to predict the value or movement of the next day’s closing price. Compare with
PCA and ICA, (2D)2PCA, as demonstrated in this paper, provides both computationally effi-
cient preprocessing and more powerful feature extraction, leading to more accurate
forecasting.

In previous studies, different stock markets have been modeled. Some scholars have focused
on stocks, while others paid more attention to the stock market index, which represents the
movement average of many individual stocks. Compared with a single stock, the stock market
index remains relatively stable in reflecting overall market movement. The Shanghai stock
market index collected from the China stock market is used to illustrate the proposed two-
stage model. The prediction performance of the proposed approach is compared with other al-
ternative approaches: the integration of PCA with RBFNN (called PCA+RBFNN), ICA with
RBFNN (called ICA+RBFNN), PCA with BPNN (called PCA+BPNN) and ICA with BPNN
(called ICA+BPNN). The model comparison shows that the proposed approach gets a better
performance than the other alternative models.

The rest of this paper is structured as follows. In Section 2, we give a brief overview of
(2D)2PCA and RBFNN. The proposed model is presented in Section 3. In Section 4, experi-
ments are conducted to evaluate the performance of the proposed model. The conclusion is
given in Section 5.

Research Methodology
In this section, we briefly review the basic concepts about the underlying technologies used in
the study.

PCA
PCA is a well-known dimension reduction method used in pattern recognition and signal pro-
cessing. Given N samples A = {A1,A2,���,AN} with the i-th sample Ai being anm×nmatrix, one
transforms Ai into a 1D vector xi column by column or row by row, where xi is anmn×1 col-
umn vector. The total scatter matrix of all samples is defined as follows:

C ¼ 1

N

XN
i¼1

ðxi � �xÞðxi � �xÞT ¼ XXT ð1Þ

Here, �x is the mean of xi. The principal vector of PCA is the eigenvector corresponding to the
maximum eigenvalue of C. Generally, it is not enough to have only one optimal projection
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vector, so the discriminant vector vd is composed of the orthogonal eigenvectors of C corre-
sponding to the first d largest eigenvalues. The resulting feature vector for xi is yi obtained by
projecting xi into the subspace vd, i.e.

yi ¼ vdxi; i ¼ 1; 2; � � � ;N ð2Þ

Setting a threshold θ,d can be selected as the smallest number of dimensions satisfying the
following:

Xd

i¼1

li

XN
i¼1

li

� y ð3Þ

From the above, we can see that there are some disadvantages of PCA. First, the sample is
transformed from a 2D to a long 1D vector, which breaks the spatial structure of the original
matrix. Retaining this 2D structure may be critically important, when transforming the data to
extract features. Second, and perhaps more importantly, due to the high dimension, it may be
difficult to accurately evaluate the covariance matrix C, given a finite training set. Finally, the
processing time taken by PCA may be prohibitive. To overcome these problems, Yang et al.
[33] proposed Two-dimensional Principal Component Analysis (2DPCA) which was success-
fully used in face recognition.

(2D)2PCA
Given the N sample matrix A = {A1,A2,���,AN}, Ai anm×nmatrix, the covariance matrix can be
defined as follows:

St ¼
1

N

XN
i¼1

ðAi � �AÞðAi � �AÞT ð4Þ

In (Eq 4), �A ¼ 1
N

XN
i¼1

Ai is the mean of all samples. One can compute the eigenvalue λi and

eigenvector vi of St. Accordingly the projecting subspace Vd is composed of the orthogonal ei-
genvectors v1,v2,���,vd of St corresponding to the first d largest eigenvalues. The feature matrix
of 2DPCA is yi ¼ AT

i Vd obtained by projecting Ai into the subspace Vd and the size of yi is n×d.
In the 2DPCA algorithm, the size of the covariance matrix St ism×m, much smaller than

that of PCA. For this reason, the computational complexity of 2DPCA is far less than that of
PCA. At the same time, because the covariance matrix is built up by Ai, the information of the
spatial structure is retained in the processing. However, the main disadvantage of 2DPCA is
that the feature values are often much larger than those of PCA. Furthermore, some studies in-
dicate that 2DPCA is essentially working in the column direction of the matrix, i.e., it extracts
the features of the matrix only in the column direction; the information in the column direc-
tion is uncorrelated, but the information in the row direction is still correlated after the trans-
formation. Zhang et al (2005) proposed a Two-directional Two-dimensional method called
(2D)2PCA to address this problem.

Suppose the projection matrix Vd has been obtained. Project them×nmatrix Ai into Vd to
yield an n×d feature matrixyi ¼ AT

i Vd . Then yi is transposed to yieldyTi . After that, regard y
T
i as

the new training sample on which to carry out 2DPCA again (called alternatve 2DPCA), yield-
ing the feature matrix zi, If p eigenvectors are selected in alternative 2DPCA to form the

A Stock Market Forecasting Model Combining 2DPCA and RBFNN

PLOSONE | DOI:10.1371/journal.pone.0122385 April 7, 2015 4 / 19



projecting subspaceWp, the (2D)
2PCA algorithm can be described as follows:

zi ¼ VT
d AiWp ð5Þ

The size of zi is d×p, since d<<m and p<<n, the dimension of this matrix is reduced signif-
icantly, compared with alternative transformations. From Formula (5) we can see that the
main idea of (2D)2PCA is that the original matrix Ai is projected into a 2DPCA subspace to ex-
tract the row direction feature yi, then transposed to yieldyTi , and the alternative 2DPCA is uti-
lized to extract the column direction feature. Thus, the feature matrix zi contains both the row
direction and the column direction feature information from the original matrix. The feature
set obtained from 2DPCA is generally much higher dimensional than that of (2D)2PCA. So
from the standpoint of dimension reduction, the performance of 2DPCA is much worse than
that of (2D)2PCA. For on-line stock forecasting systems, if 2DPCA (rather than (2D)2PCA) is
used as a tool to preprocess raw data, then the training complexity of the model will be drasti-
cally increased. For more details please refer to [32].

RBFNN
The idea of RBFNN [30] derives from the theory of function approximation. The RBFNN has
a three-layered structure: the input layer, the hidden layer and the output layer. The input layer
collects and feeds the input data to each node of the hidden layer. The hidden nodes implement
a set of radial basis functions which are often chosen to be Gaussian functions. The output
layer implements a weighted linear summation function to sum the outputs of the hidden layer
to yield the prediction value (which may be thresholded, if a binary decision is sought). The
RBFNN architecture is shown in Fig 1.

In Fig 1, x and f(x) are the input and output of the RBFNN network respectively.Wi is the
output weight between hidden unit i and the output unit. F(x) is the transformation function
of the hidden layer, which is defined by activation functions with a local field of response at the
output. When the Gaussian function is used, the common form of f(x) for an RBFNN is as fol-
lows:

f ðxÞ ¼
XN
i¼1

Wiexp �kx � cik
2s2

� �
ð6Þ

Here, σ is the width of the Gaussian, ci is the data center of the basis function. The network

Fig 1. The architecture of RBFNN. x = [x1,x2,���,xn] is n-dimensional input vector,Ci(i = 1,2,���,N) is the center
of transformation functionΦ(x),W = [W1,W2,���,WN] is the weight between the hidden layer and output layer.

doi:10.1371/journal.pone.0122385.g001
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training is divided into two steps: first the weights from the input to the hidden layer are deter-
mined; then the weights from the hidden layer to the output layer.

Proposed Forecasting Model

The input and output of the system
In this study, we have two goals: one is to predict the t+1 day’s closing price by using the N
days’ data preceding day t+1, and the other is to demonstrate the accuracy of the model in pre-
dicting the stock price movement. The Shanghai stock index is used for testing the proposed
method and comparing with the PCA and ICA dimension reduction approach.

There are two important factors regarding the input data. The first concerns the variables
from the price history for each day. In previous studies, many technical variables have been
proposed as the features to predict the trend of the stock market, such as closing price, moving
average line, Williams index and so on. Different models apply different variables and there is
no unified framework for the selection of input variables. For example, Teixeira et al [34] and
Ettes [12] selected only two input variables. This is quite different from Zorin et al. [35] who
used 61 variables. For our study, we believe too few variables will fail to represent the intrinsic
features of the stock market, and too many variables will lead to computational (and potentially
model generalization) difficulties. In [36], 22 variables were selected as input to the prediction
model and satisfactory results were achieved. As the stock market price is determined by vari-
ous economic and non-economic factors, it is difficult to predict stock market trends using
only a few factors. For this reason, with reference to [34] and [37], we selected 36 variables for
each day as the input to the prediction model, as reported in Table 1. x(t),xh(t),xl(t) and xo(t)
mean the stock’s close, high, low and open prices, respectively, on day t. Other variables are cal-
culated based on x(t),xh(t),xl(t) and xo(t), and the description and formulae of the variables are
displayed in Table 1. The principle that we used to select the variables is three folds: The first
part is the basic data of the stock market, which can be directly obtained from the stock market
database. These variables include I1 to I4. The second part is technical variables which are com-
monly used by some investors. For example, Moving average, Williams index, and so on. These
variables include I5 to I25. The third part is the movement of basic data or technical variables,
which represent the trend of changes in the data. These variables include I26 to I36.

The second key factor of the input data is the length of the sliding window. There lies in the
fact that the direction of stock market indexes changes over the long run, and the price of the
stock market is the result of “momentum” accumulated over a period of time. Thus, it is not
reasonable to select data from only one day or several days to predict the next day's price. Some
studies have also indicated that the near daily data had a bigger influence over the future price
than data furthered in the past. In this study, 20 days are selected as the length of the sliding
window for each variable. The input data include all 36 technical variables, each variable having
20 days of observation, which gives a 36×20 matrix. For example, if the prediction time is t+1,
the input data are I(t-j,i)(i = 1,2,. . .,36;j = 0,1,2,. . .,19).

Different from the previous study, both historical data and the related technical variables
are taken into the count in this approach. The raw input data is a natural tensor containing the
correlation between technical variables. So it is important retaining this tensor structure on the
feature extraction step. Obviously, it is difficult for conventional forecasting models to accept
this huge data as input, thus the first step is to reduce the dimension of the raw data before
sending it to the forecasting model.

In this study, we provide two kinds of output of the forecasting system. One is the prediction
of the closing price x(t+1) on day t+1; the other is the prediction of the trend of closing price,
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which can be defined as follows:

yðtÞ ¼
1 xðt þ 1Þ > xðtÞ
0 xðt þ 1Þ ¼ xðtÞ
�1 xðt þ 1Þ < xðtÞ

ð7Þ

8><
>:

The overall framework of the model
To predict future trends of a stock price, the system can be built up with the following four
components: (1) the initial exploration, (2) calculation of variables, (3) dimension reduction
using (2D)2PCA2, and (4) forecasting by the RBF network. Therefore, a research forecasting
model (Fig 2) is presented to evaluate the performance of the proposed model. The data

Table 1. Variables used as inputs.

name Description or Formula

I1 = xo(t) Open price

I2 = xh(t) High price

I3 = xl(t) Low price

I4 = x(t) Close price

I5 = MA5 I5 = MA10 I7 =
MA20

Moving average

I8 = BIAS5 I9 = BIAS10 BIAS

I10 = DIF EMA12-EMA26

I11 = DEA5 I12 = DEA10 Difference and Equal average

I13 = K I14 = D Stochastic %K %D

I15 = ROC Price rate of change

I16 = TR True range of price Movements

I17 = MTM6 I18 = MTM12 Momentum

I19 = WR%10 I20 = WR%5 Williams index

I21 = OSC6 I22 = OSC12 Oscillator

I23 = RSI6 I24 = RSI12 Relative strength index

I25 = PSY Phycholoigical Line

I26 K(t)-K(t-1)

I27 D(t)-D(t-1)

I28 (x(t)-x(t-1))/x(t-1)

I29 (x(t)-xo(t))/xo(t)

I30 (x(t)-xl(t))/(xh(t)-xl(t))

I31 (MA5(t)-MA5(t-1))/MA5(t-1)

I32 (MA20(t)-MA20(t-1))/MA20(t-1)

I33 (MA5(t)-MA20(t-1))/MA20(t-1)

I34 (x(t)-MA20(t))/MA20(t) (x(t)-min(x(t-1),x(t-2),. . .,(t-N)))/ min(x(t),x(t-1),. . .,(t-
N))

I35 (x(t)-min(x(t-1),x(t-2),. . .,(t-N)))/min(x(t),x(t-1),. . .,(t-N))

I36 (x(t)-max(x(t-1),x(t-2),. . .,(t-N)))/max(x(t),x(t-1),. . .,(t-N))

I1 to I36 36 variables are selected as the inputs of the forecasting model. The name and description of the

variables are shown in the 1st column and the 2nd column, respectively.

doi:10.1371/journal.pone.0122385.t001
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processing begins with the selection of data from the stock market database and ends with the
prediction result of the closing price or movement of the closing price.

Input variables of the model. In the first module of the system, historical stock market
data are selected from the database, such as the stock’s close, high, low and open price. After
the raw data are prepared, they are sent to the second module of the system to compute the var-
iables used as the raw features of the forecasting model. Based on Table 1, the first four vari-
ables I1 to I4 are the raw data, xo(t),xh(t),xl(t) and x(t), with the last 32 I5 to I36 technical
variables calculated based on the given formulae.

Data collecting. A sliding window is applied to the entire data set to extract the input raw
data used by the forecasting model. As we have mentioned in 3.1, 20 is chosen as the length of
the sliding window; as the window is moved from the beginning to the end of the data set, the
training samples and testing samples are obtained sequentially. This process can be described
as showed in Fig 3. The gray block represents the input data of the forecasting model which in-
cludes 20 trading days' data for the 36 technical variables. As the window is sliding, N input
data are obtained from the trading data set. The data instances 1 to Ni are used as the training
set, and the data from Ni+1 to N are used as the test set. The white block represents the target
output data, which is the next day's closing price or the price movement. Corresponding to the

Fig 2. Diagram of (2D)2PCA+RBFNN forecastingmodel. The model is divided five modules, including the database of stock market, variables calculated
module, sliding window, dimension reduction module and RBFNN predictor.

doi:10.1371/journal.pone.0122385.g002

Fig 3. Diagram of building up the dataset. Stock time series segmentation is made by 20 width sliding
window. The gray block represents the input data which including 20 trading day’s data. The white block
represents the target output data which is the next day's closing price.

doi:10.1371/journal.pone.0122385.g003
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input, targets 1 to Ni are used as the training targets, and targets Ni+1 to N are the test targets.
A similar method was also reported in [34].

Dimension reduction. The function of the third module aims to reduce the dimension of
the input data. Dimension reduction is a key step in signal processing and pattern recognition
systems. It aims to filter out the information redundancy and extract the intrinsic features from
high dimensional data. In this study, 36 technical variables were selected, and each is measured
for 20 previous trading days; we note that the dimensionality of the input data is high, and the
data likely will generally have some redundancy. In order to decrease computational complexi-
ty both of the system design and of the forecasting, it is both acceptable (from an information
loss standpoint) and necessary to reduce the data dimensionality. We propose to use
(2D)2PCA to extract features from the original data. Anm×nmatrix Ai is projected into the
(2D)2PCA subspace to yield a d×p feature matrix zi,d and p can be selected based on (Eq 3). As
discussed in previous section, the size of zi is much smaller than that of Ai, and thus zi is chosen
to be the input of the RBFNN.

Forecasting process. The last module of the system is the RBFNN, which accepts zi from
the (2D)2 PCA dimension reduction module and forecasts the next day's price or the price
movement. The training set is used to learn the weightsW1 andW2of the RBFNN. After the
training is completed, the test set is used to evaluate the performance of the forecasting model.
The input variables are not usually within the range [0 1] in the training set after dimension re-
duction; each data point is thus scaled to be within this range by (Eq 8):

zij ¼
zij �minðziÞ

maxðziÞ �minðziÞ
ð8Þ

where zij is the j-th element of zi, min(zi) is the Minimum value of zi, and max(zi) is the Maxi-
mum value of zi.

The architecture of the RBFNN is as follows: the nodes of the input layer are equal to the
data dimension reduced by PCA or (2D)2PCA; the output layer has 1 node. The first layer has
Radial basis transfer function (RABAS) neurons, and calculates its weighted input with the Eu-
clidean distance weight function, and calculates a layer's net input by combining its weighted
inputs. The second layer has Linear transfer function (PURELINE) neurons, and calculates its
weighted input with the Dot product weight function, and its net input with sum net input
function. The training method used for the RBFNN is the Least Squares (LS) algorithm [38].

The following steps are repeated until the network's mean squared error falls below the
GOAL or the maximum number of neurons are reached:①The network outputs are generated
for the training set;② The input vector with the greatest error is found;③A RADBAS neuron
is added with weights equal to that vector;④ The PURELIN layer weights are redesigned to
minimize the training set mean-squared prediction error.

As discussed in Section RBFNN, transformation function F(r) of the hidden layer has to be
determined when the RBFNN forecasting model is developed. In this work, Gaussian function
is adopted because it is the most widely used transformation function and has performed well
in most forecasting cases [39]. The performance of RBFNN also depends on the choice of the
parameter σ (the width of the Gaussian). There are no general methods for setting σ. Selection
is usually based on the cross-validation method or the user’s prior knowledge and expertise
[40]. In this study, the grid search method [41] using exponentially growing sequences of σ is
applied to identify good parameter. σ is selected through repeated and numerous experiments
according to performance considerations.

A Stock Market Forecasting Model Combining 2DPCA and RBFNN
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Analysis of the model
In this section, we give an intuitive analysis for the (2D)2PCA+RBFNNmodel. The perfor-
mance advantage of the proposed model (which will be experimentally investigated in the next
section) may lie on the following reasons.

First, traditional forecasting models may be classified as auto-regressive and multi-variable
models. The former is based on the idea that all the related factors can be reflected in the clos-
ing price of the stock, so the closing price history decides the future trend. On the other hand,
the latter model holds that some technical variables are very useful for making predictions,
such as Moving average, Relative strength index, Oscillator, Williams index and so on. In our
proposed model, the input data of the model is a matrix, with columns representing the techni-
cal variables and, rows representing the historical data for the technical variables, so the influ-
ence on the stock market price from both the technical variables and the historical data are
taken into account.

Second, from the formulae in Table 1, we can see that the technical variables are correlated
with each other. It is obvious that historical data within the sliding window are also correlated.
So the input data have correlation both in the row direction and in the column direction. In the
proposed model, (2D)2PCA is carried out to reduce the dimension of the raw data. The advan-
tage of (2D)2PCA is its extraction of useful information by removing the correlation from both
the row direction and the column direction. This fact suggests the potential improvement in
performance, compared to models that do not decorrelate in both directions. The other key
issue is the algorithm complexity of the methods. If the size of the training sample ism×n, let
d1 and d2 be the number of row-projected and the column-projected vectors, respectively. The
training complexity of (2D)2PCA and PCA are O(n2d1×m

2d2) and O(n
2×m2) respectively.

Since d1<<n and d2<<m, the complexity of (2D)2PCA is much less than that of PCA. With
respect to ICA, it is common to use PCA to whiten the raw data before ICA is calculated. So
the complexity of ICA is much bigger than PCA. In this case, compared to ICA and PCA,
(2D)2PCA accelerates the computational speed of forecasting by more efficient calculation.

Last but not least, RBFNN is used as the predictor. Compared to traditional neural net-
works, RBFNN has several distinct characteristics [42]. Firstly, it has the best approximation
characteristic and no local minimum problem. Second, it has a strong robust and adaptive ca-
pability which can help it to give better forecasting results. Furthermore, it has fast convergence
speed and good stability. For these reasons, RBFNN is widely used in pattern recognition and
time series prediction. Since stock market data has random walk characteristics, stock market
forecasting is a nonlinear regression problem. The characteristics of RBFNN are quite suitable
to deal with such problems.

Experimental Results and Analysis

Data preparation
In order to verify the effectiveness of the proposed model for forecasting, the Shanghai stock
market index collected from 4 Jan. 2000 to 31 Dec. 2004 was used in this experiment. The over-
all data include 1200 trading days' data which are split into two parts: 4 Jan. 2000 to 31 Dec.
2003 and 1 Jan. 2004 to 31 Dec. 2004. The former, which includes 957 trading days' data, is
used as the training set, and the latter, which includes 243 trading days' data, is used as the test
set. The daily Shanghai stock market index closing prices are shown in Fig 4. As discussed in
the last section, a sliding window is employed to build up the raw data of the training set, with
937 training samples obtained from 957 days of trading data. Each input training sample is a
36×20 matrix, the rows representing the technical variables shown in Table 1, and the column
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representing the past 20 days’ data for each technical variable. The target output of a training
sample is the closing price for the next day. Experiments are performed on a PC with 2.30GHz
PCU, 2G RAMmemory, on a MATLAB 7.1(R2010a) platform.

Experiment design
There are two purposes in this experiment. One is to test the validity of the proposed model for
one-day-ahead forecasting of the stock price; the other is to compare the performance of the
(2D)2PCA+RBFNNmodel with other related models, PCA+RBFNNmodel, ICA+RBFNN and
PCA+BPNN model [26, 27, 29]. In the PCA models, the dimension of the input data is deter-
mined by (Eq 3). Experiments show forecasting results vary with the feature dimensionality; in
this experiment, three scales are selected corresponding to θ. When θ is 0.99, 0.999 and 0.9999,
the dimension of the PCAmodel and ICA model are 7, 50 and 128 respectively. Another exper-
iment is conducted to compare the performance of the (2D)2PCA+BPNN with PCA +BPNN
and ICA+BPNNmodels. Because the time required to train the BPNN in the case of high di-
mension is prohibitively high, the performance of the three models is only compared in the
case of Dim = 7 in this experiment.

Here, the fixed-point algorithm [36] is carried out to implement ICA, and a method based
on amplitude of the weight vector is used to determine the selection of the ICA subspace [43].
The training parameters for the RBFNN are: Mean squared error goal is 0; SPREAD is selected
through repeated and numerous experiments according to performance considerations. It is
found that the best SPREAD = 5×103 for the range of SPREAD =m×10n(m = 1,2,. . .,9;
n = 1,2,. . .,9).The maximum number of neurons was set equal to the number of training sam-
ples. In our experiment, the architecture of BPNN was chosen to be 7-10-1; that is, the input
layer has 7 nodes, the hidden layer has 10 nodes and the output layer has 1 node. The hidden
nodes were determined through trial and error because the BPNN does not have a general rule
for selecting the optimal number of hidden nodes. The number of hidden layer and output
layer transform functions were chosen to be the Hyperbolic tangent sigmoid transfer function
and Linear transfer function respectively. The maximum training step epoch was 10000, the
training error goal was 0.0009, the learning rate was 0.01, and the Additional Momentum

Fig 4. The closing price of raw data. Shanghai stock market index collected from 4 Jan. 2000 to 31 Dec. 2004 includes 1200 trading days' data.

doi:10.1371/journal.pone.0122385.g004
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Method was used to train the network. In order to compare with the PCA model,
7×1 = 7,7×7 = 49, and 11×11 = 121 were selected as the dimensions of the (2D)2PCA models.
Clearly, the dimension of the (2D)2PCA model is equal to or even smaller than the PCA model
and ICA model under the three different conditions.

To measure the performance of the proposed model, 12 performance indicators were select-
ed. The descriptions and formulae of these indicators are described in Table 2. In these indica-
tors, PCD, R2, r1, r2, MAPE, HR, TR, RMSE and SMAPE are used to measure whether the
predicted value is similar to the actual value. If PCD, R2 and r1 are big, it means that the pre-
dicted result is similar to the actual value. If MAPE, RMSE and SMAPE are small, this also indi-
cates that the predicted result is close to the actual value. HR is used to measure the prediction
accuracy of the stock market trend. TR and r2 are applied to evaluate the return of different
models. ET, TT and ST are used to test the effective computation time of the proposed model;
the total running time of the proposed model is the sum of ET, TT and ST.

Table 2. Measure indicators.

name Description Formula

r1 correlation coefficient between actual value and prediction value

r ¼

XN

t¼1

ðyðtÞ � �yðtÞÞðy_ðtÞ � y_�ðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

t¼1

ðyðtÞ � �yðtÞÞ2ðy_ðtÞ � �y_ðtÞÞ2
s

R2 Non-linear regression multiple correlation coefficient

R2 ¼ 1�

XN

t¼1

ðyðt þ 1Þ � y_ðtÞÞ2

XN

t¼1

ðyðtÞ � �yðtÞÞ2

r2 correlation coefficient between actual return and prediction return

r ¼

XN

t¼1

ðreðtÞ � �r eðtÞÞðr_eðtÞ � �r_eðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

t¼1

ðreðtÞ � �r eðtÞÞ2ð r_eðtÞ � �r_eðtÞÞ2
s

PCD Percentage of correct direction
PCD ¼ 1

N

XN

t¼1

Pcdt

Pcdt ¼
1 ðyðt þ 1Þ � y_ðtÞÞðyðt þ 1Þ � yðtÞÞ > 0

0 else

8<
:

SMAPE Symmetric mean absolute percentage error
MAE ¼ 1

N

XN

t¼1

2jyðtÞ � y_ðtÞj=jyðtÞ þ y_ðtÞj

MAPE Mean Absolute Percentage Error
MAPE ¼ 1

N

XN

t¼1

jyðtÞ � y_ðtÞj=yðtÞ

RMSE Root mean square error
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

t¼1

ðyðtÞ � y_ðtÞÞ2
s

HR Hit rate HR = Np/N

TR Total Return
TR ¼

XN

t¼1

½yðt þ 1Þ � yðtÞ�; if y_ðt þ 1Þ > yðtÞ

ET(s) Extracting feature time —

TT(s) Training time —

ST(s) Simulation time —

11 variables are selected as the measurement of the foresting model. The name, description and formula are displayed in the 1st column, 2nd column and

3rd column, respectively.

doi:10.1371/journal.pone.0122385.t002
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Results and discussion
The experimental results are depicted in Figs 5–7 and S1 Data. Tables 3 and 4 summarize the
empirical results of the proposed model, PCA+RBFNN, ICA+RBFNN, (2D)2PCA+BPNN,
ICA+BPNN and PCA+BPNN models on stock price forecasting. Fig 5 presents the fitting
curve of prediction values and actual values, Fig 6 displays the return under four conditions. In
the Fig 5, the blue curve represents the actual data and the red curve represents the prediction.
The bottom line of Figs 5 and 6 shows the fitness curves of proposed model and (2D)2PCA
+BPNNmodel; the middle line shows the fitness curves using the PCA+RBFNN and PCA
+BPNNmodel; and the top line Fig 5 shows the fitness curves using the ICA+RBFNN and ICA
+BP model.

From Fig 5, we can see that the prediction results of the proposed model are much closer to
the actual data than the other models. Comparing PCA and ICA models, it is clear that the
(2D)2PCA+RBFNNmodel shows better performance. The performance of the three models
changes with the dimension of the input data—the prediction performance improves with
increasing dimension.

Observing the graphs of returns of Fig 6, different models are tried as predictor based on re-
turn to find out which model gives out the best result. In the Fig 6, if the point of return is
above zero, it means the return is positive and the investor can profit. More point above zero,
better performance the model has. From the result, we can see (2D)2PCA+RBFNNmodel ob-
tains the best result with the dimension being 121 since most of the points are above zero. The
total returns of different models are listed in Table 3.

Fig 7 shows the training process. The (2D)2PCA+BPNN model converges after 461 epochs,
while PCA+BPNN converges after 4627 epochs which is much slower convergence than the

Fig 5. Fitting curve of prediction results and the actual data. The red and black colored curves indicate the prediction results and actual data,
respectively. The top, middle and bottom row display the prediction results of ICA, PCA and (2D)2PCA associated with RBFNN (Dim = 7,50,128) and BPNN
(Dim = 7), respectively.

doi:10.1371/journal.pone.0122385.g005
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(2D)2PCA+BPNNmodel. For ICA+BPNN, it is hard to meet convergence—the training steps
reached the maximum of 10000. The results show that, for BPNN, the data processed by
(2D)2PCA has better convergence performance than that of PCA and ICA.

Table 3 and Table 4 compare the forecasting results of the (2D)2PCA model with the PCA
model, ICA model and raw data model. The results indicate that the (2D)2PCA+RBFNN
model outperforms the PCA+RBFNN model and; that the (2D)2PCA +BPNNmodel outper-
forms both the PCA+BPNN model and the ICA+BPNNmodel. At the same time, the
(2D)2PCA+RBFNNmodel outperforms the PCA+RBFNNmodel and ICA+RBFNN models.

Fig 7. The training process of the BP network. (a)The (2D)2PCA+BPNN (DIM = 7×1 = 7) model converge after 461 epochs. (b)PCA+BPNN (DIM = 7)
converges after 4627 epochs.

doi:10.1371/journal.pone.0122385.g007

Fig 6. Curve of return time series. The red and black colored curves indicate the prediction return and actual return, respectively. The top, middle and
bottom row display the returns of ICA, PCA and (2D)2PCA associated with RBFNN (Dim = 7,50,128) and BPNN (Dim = 7), respectively.

doi:10.1371/journal.pone.0122385.g006
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From Table 3, almost all the measure indicators of the (2D)2PCA model are superior to those
of the PCA and ICA models. In the first group experiment especially, the (2D)2PCA model
shows much better performance than the other models. For example, the indicators PCD, R2

and HR of the (2D)2PCA model reach 0.75309, 0.99369 and 0.73251, respectively, which are
much larger than those of the PCA and ICA models. From the indicators, only the PCD of the
(2D)2PCA+RBFNNmodel is less than that of the ICA+RBFNN model when the dimension is
50, and the other 8 indicators are superior to the ICA+RBFNN model. Comparing the
(2D)2PCA+BPNNmodel with the PCA+BPNNmodel and ICA+BPNNmodel, the (2D)2PCA
+BPNNmodel shows better performance than the other two models, and the RMSE 29.215 of
the (2D)2PCA+BPNNmodel is smaller than that of the PCA+BPNNmodel (35.819) and ICA
+BPNN (80.51).

Table 4. The running time of ICA, PCA and (2D)2PCA associated with RBFNN and BPNN under different dimension.

Group Method DIM ET(s) TT(s) ST(s) Total Time(s)

1 (2D)2PCA+RBFNN 11×11 = 121 0.369967 2.170977 0.484439 3.025383

PCA+RBFNN 128(E>0.9999) 9.491866 3.343269 0.494813 13.330248

ICA+RBFNN 128 17.096262 3.456170 0.470561 21.022993

2 (2D)2PCA+RBFNN 7×7 = 49 0.182625 0.977762 0.154389 1.314776

PCA+RBFNN 50(E>0.999) 7.518724 1.233592 0.169199 8.921515

ICA+RBFNN 50 14.037029 1.314493 0.115149 15.466671

3 (2D)2PCA+RBFNN 7×1 = 7 0.128442 0.734274 0.086912 0.969428

PCA+RBFNN 7(E>0.99) 6.962491 0.932658 0.028345 7.923494

ICA+RBFNN 7 14.366689 1.117943 0.028196 15.512828

4 (2D)2PCA+BPNN 7×1 = 7 0.114934 19.034696 0.040818 19.190448

PCA+BPNN 7(E>0.99) 6.996199 26.816377 0.045035 33.857611

ICA+BPNN 7 14.028339 85.574272 0.042313 99.644924

5 raw data+RBFNN 36×20 = 720 0 8.942768 4.769554 13.712322

The predictor in Group 1,2,3 and 5 is RBFNN, and the predictor in Group 4 is BPNN.

doi:10.1371/journal.pone.0122385.t004

Table 3. Nine measure indicators of ICA, PCA and (2D)2PCA associated with RBFNN and BPNN under different dimension.

Group Method DIM PCD R2 TR MAPEr1 r1 r2 RMSE SMAPE HR

1 (2D)2PCA+RBFNN 11×11 = 121 0.75309 0.99369 1317.7 6.6305e-04 0.9969 0.9458 12.135 0.0066354 0.73251

PCA+RBFNN 128(E>0.9999) 0.5679 0.98493 242.7 9.7919e-04 0.9927 0.6806 18.525 0.0097724 0.64609

ICA+RBFNN 128 0.5638 0.9555 352.2 3.3e-03 0.9800 0.6972 30.840 0.0186000 0.57610

2 (2D)2PCA+RBFNN 7×7 = 49 0.51852 0.9854 93.1 0.0022000 0.9927 0.6535 18.425 0.0097841 0.5679

PCA+RBFNN 50(E>0.999) 0.4737 0.9833 -20.9 0.0103340 0.9918 0.6593 19.599 0.010327 0.54773

ICA+RBFNN 50 0.5432 0.9253 -89.6 0.0025000 0.9668 0.5959 40.170 0.034800 0.55560

3 (2D)2PCA+RBFNN 7×1 = 7 0.49794 0.96573 -255.7 0.0019000 0.9853 0.4952 27.033 0.014945 0.53086

PCA+RBFNN 7(E>0.99) 0.48971 0.9642 -56.2 0.0153700 0.9757 0.5338 29.571 0.015367 0.51440

ICA+RBFNN 7 0.4938 0.7307 26.8 0.0091530 0.9103 0.6742 67.170 0.066900 0.49790

4 (2D)2PCA+BPNN 7×1 = 7 0.5026 0.95073 -72.6 8.189e-4 0.9779 0.5744 29.215 0.016477 0.50617

PCA+BPNN 7(E>0.99) 0.49794 0.93699 -14.8 0.0202100 0.9678 0.6215 35.819 0.020097 0.49383

ICA+BPNN 7 0.4650 0.6927 -143.6 0.0026000 0.8678 0.5716 80.510 0.084100 0.47740

5 raw data+RBFNN 36×20 = 720 0.6914 0.9687 948.3 0.0041 0.9884 0.8410 25.090 0.013600 0.69420

The predictor in group 1,2,3 and 5 is RBFNN, and the predictor in group 4 is BPNN.

doi:10.1371/journal.pone.0122385.t003
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Comparing the (2D)2PCA+BPNN model with the PCA+BPNN and ICA+BPNNmodels,
when the input data are the same dimension, the former has better performance than the latter.
Comparing the (2D)2PCA+BPNNmodel with the raw data+RBFNN model, the (2D)2PCA
+BPNNmodel shows better performance than the raw data+RBFNN when the feature di-
mensionality is 11×11 = 121. This indicates that dimension reduction play an important role in
accuracy of the predictive model. (2D)2PCA removes the redundant information from the raw
data to improve the predictive accuracy. When the dimensionality is 7×7 = 49, not all measure
indicators are better than that of raw data+RBFNN. The reason is that the dimensionality of
the features is too small to extract enough useful information from the raw data.

From Table 3, we can see that the (2D)2PCA+RBFNN model obtains the highest total re-
turn, 1317.7, in this stock market set, with the dimension being 121. (2D)2PCA+RBFNN per-
forms better than other models including raw data+RBFNN, whose return is 948.3. Another
key issue of note is that the hit rate is not fully consistent with the returns from the figures in
Table 3. For example, the hit rate of (2D)2PCA+RBFNN is higher than that of PCA+BPNN
and ICA+BPNN in group 3. However, the returns of the former are lower than that of the lat-
ter. The reason for this is that hit rate only represents the frequency of the forecasting accuracy
but does not take into account the fluctuation level of the stock market [14]. So when the actual
price of the stock fluctuates drastically, both hit rate and the return should be considered to
evaluate the performance of the forecasting model.

Table 4 shows the running time of the proposed model. In the four group experiments, the
dimension reduction time of the (2D)2PCA models is much less than that of the PCA models;
for instance, the (2D)2PCA model needs 2.687s while the PCA model requires 57.219s and the
ICA model 84.326s in the first group experiment. Because the dimension of the (2D)2PCA
model is quite close to the PCAmodel and ICA model, the RBFNN training time and the simu-
lation time are close for the three types of model. It is also found that, in the four group experi-
ments, because the convergence speed of the (2D)2PCA model is much faster than the other
two models, the feature extraction time of the former is significantly less than the latter. In re-
gard to total running time, due to the contribution of dimension reduction time, the (2D)2PCA
model is also more powerful than the PCA model. Another phenomenon should be noted,
namely that the (2D)2PCA+RBFNN model is more efficient than the (2D)2PCA+BPNN model
from the point of view of the network training time in the fourth group experiment. The train-
ing time of (2D)2PCA+BPNNmodel is 14.891s which is 6.344s faster than that of the
(2D)2PCA+RBFNNmodel. In fact, this difference is for DIM = 7; when the DIM is 49 and 121,
for (2D)2PCA+BPNN, the network training time is prohibitively long. From the table, we can
also find that the training time and the testing time of raw data+RBFNN are much larger than
for the other RBFNN models because of the larger feature dimensionality. Comparing the
(2D)2PCA+BPNNmodel with the raw data+RBFNN model, although the former requires fea-
ture extraction, due to the smaller dimensionality of the features, the training time, testing time
and total time of the former method are much less than that of the latter.

Based on the finding in Figs 5 and 6, Tables 3 and 4, it can be found that the proposed
(2D)2PCA+RBFNNmodel can produce the lower prediction error and higher return under the
Shanghai stock market dataset. Therefore, the proposed model indeed results better prediction
performance than PCA+RBFNN, ICA+RBFNN, PCA+BPNN and ICA+BPNNmodels.

Conclusion
This investigation evaluates 36 technical variables for forecasting stock market short-term
trends, and utilizes (2D)2PCA to reduce the dimension of the input data; RBFNN is combined
with (2D)2PCA to build a forecasting model. The proposed approach with RBFNNmodels
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provides strong robust and adaptive capability in predicting the daily closing price, so it was
able to cope with the fluctuation of stock market values and yielded good prediction accuracy.
In addition, with fewer input variables generated by (2D)2PCA feature selection approach, the
(2D)2PCA+RBFNNmodel can shorten the training time. To evaluate the efficacy of the pro-
posed model, the (2D)2PCA+RBFNNmodel is applied to forecast the Shanghai stock market
index and the results show that the proposed model has good performance. We compared the
obtained forecasting accuracy (using multiple performance criteria) with those of the tradition-
al model PCA+RBFNN. Additionally, to evaluate the performance of the RBFNN with that of a
popular alternative regression model, we also compared with a (2D)2PCA+BPNNmodel and a
PCA+BPNN model. The comparison shows that the forecasting ability of the (2D)2PCA
+RBFNNmodel is better than the other models. Furthermore, due to the low complexity of
(2D)2PCA for dimension reduction and the high convergence speed of the associated regres-
sion model learning, the proposed model shows better computational efficiency in stock mar-
ket forecasting than its alternatives.

Overall, the results presented in this study have confirmed that the proposed model pro-
vides a promising method for stock forecasting. Although the proposed model provides many
advantages, it also has minor weakness. While the model obtains high accuracy forecasting at
low computational cost, the input dimension of the RBFNN is still high. In our experiments,
the highest dimension was 121, and despite the fact that the RBFNN training has fast conver-
gence, this high dimensionality and associated training complexity may not be suitable for
some real-time forecasting contexts where models must be rapidly built, “on-the-fly”. To allevi-
ate this problem, a possible way is to select more efficient technical variables. However, this is
an open problem.

Supporting Information
S1 Data. Data of experiment.
(XLS)
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