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1  | INTRODUC TION

Stable polymorphisms such as conspicuous asymmetry (departure 
from symmetry in morphology) or handedness (lateralized behav-
ior) have repeatedly emerged in both vertebrates and invertebrates 
(Ludwig, 1932; Palmer, 2004, 2009, 2016; e.g., Hori, 1993; Kurvers 
et al., 2017; Lucky, Ihara, Yamaoka, & Hori, 2012; Matsui, Takeuchi, 

& Hori, 2013; Takeuchi & Hori, 2008; Tobo, Takeuchi, & Hori, 2012). 
Yet, the evolutionary forces and the underlying genetic and devel-
opmental mechanisms underpinning most of these stable asymme-
tries (i.e., excluding fluctuating asymmetries) remain unclear (Palmer, 
2016; Uzoigwe, 2013). Bilateral asymmetries, where left or right 
individuals differ from typically bilateral symmetrical specimens, 
therefore provide fascinating models to study the evolution and 
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Abstract
The scale-eating cichlid fish Perissodus microlepis is a textbook example of bilateral 
asymmetry due to its left or right-bending heads and of negative frequency-
dependent selection, which is proposed to maintain this stable polymorphism. The 
mechanisms that underlie this asymmetry remain elusive. Several studies had initially 
postulated a simple genetic basis for this trait, but this explanation has been ques-
tioned, particularly by reports observing a unimodal distribution of mouth shapes. 
We hypothesize that this unimodal distribution might be due to a combination of 
genetic and phenotypically plastic components. Here, we expanded on previous 
work by investigating a formerly identified candidate SNP associated to mouth later-
ality, documenting inter-individual variation in feeding preference using stable iso-
tope analyses, and testing their association with mouth asymmetry. Our results 
suggest that this polymorphism is influenced by both a polygenic basis and inter-indi-
vidual non-genetic variation, possibly due to feeding experience, individual speciali-
zation, and intraspecific competition. We introduce a hypothesis potentially 
explaining the simultaneous maintenance of left, right, asymmetric and symmetric 
mouth phenotypes due to the interaction between diverse eco-evolutionary dynam-
ics including niche construction and balancing selection. Future studies will have to 
further tease apart the relative contribution of genetic and environmental factors 
and their interactions in an integrated fashion.
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the relative contribution of genes and non-genetic factors to phe-
notypes (Palmer, 2016). An outstanding model for this research is 
the scale-eating cichlid fish Perissodus microlepis (Figure 1) from Lake 
Tanganyika (Africa), where individuals with left (“L”) and right (“R”) 
bending mouths are found in sympatry in approximately equal fre-
quencies (Hori, 1993; Kusche, Lee, & Meyer, 2012). Its asymmetric 
mouth is associated with its lateralized foraging behavior: L fish 
preferentially feed on the scales of the right side of their victim fish, 
while R individuals bite the scales off from the left side (Hori, 1993; 
Lee, Kusche, & Meyer, 2012; Takeuchi, Hori, & Oda, 2012; Takeuchi, 
Hori, Tada, & Oda, 2016; Van Dooren, van Goor, & van Putten, 2010). 
This polymorphism is thought to be maintained through negative 
frequency-dependent selection, where the rare morph gains a se-
lective advantage over the abundant one due to the potential prey’s 
guarding behavior (Hori, 1993; Nakajima, Matsuda, & Hori, 2004). 
The suggested role of balancing selection made P. microlepis also a 
textbook example of extreme adaptation (Futuyma, 2009; Hori, 
1993; Lee, Heim, & Meyer, 2015). However, the developmental and 
genetic mechanisms that determine this polymorphism remain poorly 
understood. Three main explanations have been proposed to date: 
strictly genetic (due to a single Mendelian locus, Hori, 1993; Hori, 
Ochi, & Kohda, 2007; Stewart & Albertson, 2010), totally or partially 
random (Palmer, 2004, 2010), and multifactorial (Lee et al., 2015; 
Palmer, 2010; Raffini, Fruciano, Franchini, & Meyer, 2017; Stewart 
& Albertson, 2010; Van Dooren et al., 2010) determination of mouth 
asymmetry. The first two models are hard to reconcile with multiple 
findings that emerged in the last decade: a) unimodal distribution of 
mouth shape in both adults and larvae (Kusche et al., 2012; Lee et al., 
2015; Stewart & Albertson, 2010; Van Dooren et al., 2010), which 
is not consistent with a single Mendelian locus; b) parents-offspring 
frequencies that do not match expectations for a trait controlled by 
a single simple locus or a partially random determination of the di-
rection of laterality as seen in mice’s internal asymmetry (Lee et al., 
2015; Palmer, 2010); c) a significant heritability or single-nucleotide 
polymorphisms (SNPs) significantly associated with laterality (Lee 
et al., 2015; Raffini et al., 2017), which are incompatible with a purely 
random basis of mouth asymmetry; d) evidence for trait plasticity 
(Kusche et al., 2012; Lee et al., 2012; Takeuchi et al., 2016; Van 
Dooren et al., 2010), which is inconsistent with a strictly genetic 
basis. Mouth asymmetry in P. microlepis then is a complex trait (third 
model, Lee et al., 2015; Palmer, 2010; Raffini et al., 2017; Stewart & 
Albertson, 2010; Van Dooren et al., 2010), whose variation is most 
likely due to a polygenic basis and non-genetic factors (Kusche et al., 

2012; Lee et al., 2012; Raffini et al., 2017; Stewart & Albertson, 
2010; Takeuchi & Oda, 2017; Takeuchi et al., 2016; Van Dooren et al., 
2010). The purpose of this study is to integrate across genetic and 
environmental factors to further clarify their relative importance.

Several studies suggested that mouth asymmetry in P. microlepis 
has a sizable genetic component (Hori, 1993; Hori et al., 2007; Lee 
et al., 2015; Palmer, 2010; Raffini et al., 2017; Stewart & Albertson, 
2010). This leads to the question: which regions of the genome con-
tain the gene(s) responsible for asymmetry? A microsatellite locus 
was suggested to be linked to a putative laterality gene (Stewart & 
Albertson, 2010), but subsequent studies failed to confirm this as-
sociation (Lee et al., 2010, 2015). More recently, we conducted a 
genome-wide study that identified several SNPs potentially related 
to mouth asymmetry (Raffini et al., 2017). However, the association 
between these SNPs and the trait could be false positive resulting 
from factors such as a moderate sample sizes, necessitated by the 
costs of next-generation sequencing. Thus, new investigations were 
needed to validate these candidate loci. In particular, our recent study 
(Raffini et al., 2017) identified a single SNP by ddRAD sequencing of 
individuals presenting the most extreme L and R mouth morph (as op-
posed to multiple loci identified using pools of individuals). In the same 
study, the position and the gene context of this SNP were ascertained 
using the genomes of two other African cichlids fish: Pundamilia 
nyereri and Maylandia zebra. Our candidate SNP is located near the 
5′ end (nucleotide 113) of a 146 bp RAD locus (ID: 56537) placed on 
a scaffold (50,966 bp) containing three genes and one pseudogene 
for immunoglobulins. More specifically, this RAD locus is located in 
the non-coding region between two of these genes (LOC101464138 
and LOC101465275, Raffini et al., 2017). The first aim of this study 
was to validate this SNP by testing its association with asymmetry 
using a larger sample size and Sanger sequencing, which has a lower 
sequencing error. Additionally, while previous studies investigated 
genomic loci underlying the difference between L and R morphs (i.e., 
the direction of mouth asymmetry, Hori, 1993; Hori et al., 2007; Lee 
et al., 2015; Palmer, 2010; Raffini et al., 2017; Stewart & Albertson, 
2010), here, for the first time we extend this work by analyzing the 
association between the candidate locus and mouth bending angle, a 
more precise and continuous quantification of asymmetry.

Clearly, adaptive phenotypes do not necessarily have a strictly 
genetic basis, but they can also vary due to phenotypic plasticity 
(Bradshaw, 1965; reviewed in Pfennig et al., 2010; Pigliucci & 
Rausher, 2007; Schlichting, 2004; Schneider & Meyer, 2017; West-
Eberhard, 2003; Whitman & Agrawal, 2009). This might be the case 
for P. microlepis’ mouth asymmetry, whose heritability estimates 
indicated also a relatively large environmental component (around 
80%, Lee et al., 2015). Several studies analyzed the non-genetic basis 
of this trait, suggesting that feeding experience plays an important 
role, particularly for the amount of asymmetry (Kusche et al., 2012; 
Lee et al., 2012; Nshombo, Yanagisawa, & Nagoshi, 1985; Takahashi, 
Watanabe, Nishida, & Hori, 2007; Takeuchi & Oda, 2017; Takeuchi 
et al., 2016; Van Dooren et al., 2010). They also showed that ju-
veniles and adults primarily feed on scales, but also on alternative 
prey such as algae, copepods, atyid shrimps, insects’ larvae, benthic 

F IGURE  1 The scale-eating cichlid fish Perissodus microlepis
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animals, and food collected from the substrate (Nshombo et al., 
1985; Takeuchi et al., 2016). Interestingly, more scales have been 
found in the stomachs of individuals with more pronounced degree 
of mouth asymmetry—suggesting that laterality might be beneficial 
for scale eating (Takeuchi et al., 2016). Ecological theory predicts 
that, especially within species, a generalist (in our case, less asym-
metric fish feeding on fewer scales and more other items) would be 
outperformed by a specialist (more asymmetric fish relying more on 
scales) in the presence of ecological conditions favorable to the spe-
cialist (e.g., the specialist’s resources are not limited), possibly result-
ing in a selection for more extreme phenotypes (MacArthur & Levins, 
1964; Morris, 1996). However, two specialists and a generalist can 
also stably co-exist (e.g., Abrams, 2006; Bono, Gensel, Pfennig, & 
Burch, 2015; Büchi & Vuilleumier, 2014; Egas, Dieckmann, & Sabelis, 
2004; Eloranta, Knudsen, & Amundsen, 2013; Rueffler, Van Dooren, 
& Metz, 2006). Earlier analyses of feeding behavior in P. microlepis 
mainly concentrated on differences between age classes (Nshombo 
et al., 1985; Takeuchi et al., 2016), but overlooked potential partition-
ing into generalists and specialists at the same developmental stage. 
Such ecological differentiation could emerge due to factors such as 
diet preference, or stochastic inter-individual variation in prey items 
encountered and their proportions. These, in turn, might be one of 
the causes for variation in the level of asymmetry between individ-
uals. The jaw apparatus of cichlids is famously plastic and adapt-
able (e.g., Galis & Metz, 1998; Greenwood, 1965; Huysseune, Sire, 
& Meunier, 1994; Meyer, 1987; Muschick, Barluenga, Salzburger, & 
Meyer, 2011) and, specifically, in P. microlepis is influenced by feed-
ing experience (Lee et al., 2012; Takeuchi et al., 2016; Van Dooren 
et al., 2010). Thus, the observed unimodal distribution of mouth 
shapes could be the result of a combination of polygenetic basis and 
inter-individual non-genetic variation due to random (e.g., stochastic 
variation in feeding behavior) and non-random (e.g., prey preference) 
factors. The second goal of this study is, then, to explore individual-
level variation in feeding behavior (niche partitioning) and test its as-
sociation with the degree of mouth asymmetry.

Previous studies on P. microlepis’ feeding behavior have used 
stomach content analyses (Nshombo et al., 1985; Takeuchi et al., 
2016). This approach has the advantage of directly measuring what 
has been ingested. However, this technique has also various limita-
tions, the most critical of which are, in our case, that it reflects only 
feeding during short periods immediately before capture (Menzel, 
1959; Michener & Schell, 1994; Vander Zanden & Rasmussen, 
1999). Morphological changes associated with feeding plasticity 
involve bone and soft-tissues remodeling, which require some 
months to show plastic divergence in fish (e.g., Gunter et al., 2013; 
Schneider, Li, Meyer, & Gunter, 2014; Wimberger, 1991; Witten & 
Huysseune, 2009). Hence, differences in diet (such as feeding on 
more scales or alternative prey) should not be sporadic to induce 
a plastic change and produce different phenotypes (such as more 
or less asymmetrical mouths) through plasticity. We, therefore, 
focused on the investigation of longer-term (months/years) feed-
ing habits through the analysis of stable isotope markers, which 
provide time-integrated information of the individual diet. Stable 

isotope analysis is the identification of the distribution of chemical 
isotopes within organisms’ tissues. It has been successfully used 
to address many issues in ecology, supplementing measures from 
stomach contents (reviewed in Araújo, Bolnick, & Layman, 2011; 
Bearhop, Adams, Waldron, Fuller, & MacLeod, 2004; examples 
from cichlid fish: Ford et al., 2016; Hata, Shibata, Omori, Kohda, & 
Hori, 2015; Kavembe, Kautt, Machado-Schiaffino, & Meyer, 2016; 
Malinsky et al., 2015), and it is particularly useful to analyze diet 
differences among individuals, as variation in feeding behavior is 
reflected in their isotopic differences (Araújo, Bolnick, Machado, 
Giaretta, & Dos Reis, 2007; Fry et al., 1999). Trophic studies typi-
cally use the naturally occurring carbon (δ13C) and nitrogen (δ15N) 
stable isotope. The first provides information on the original 
source of carbon to the food web. In lacustrine animals, planktonic 
primary producers are depleted in δ13C compared to benthic pri-
mary producers and their respective predators (DeNiro & Epstein, 
1978; Hecky & Hesslein, 1995). The second isotope, δ15N, gives 
insight into an organism’s trophic position, as it consistently in-
creases with rising trophic level as the lighter nitrogen isotope is 
preferentially excreted (Cabana & Rasmussen, 1994).

In this study, we analyzed inter-individual variation both at the 
genetic level at a candidate genomic locus and in stable isotopes 
composition, pursuing a much-needed integrative perspective uni-
fying aspects of genetic and environmental determination. For the 
first time, our findings confirmed the association between a candi-
date locus and mouth asymmetry, documented established individ-
ual feeding specialization related to mouth phenotype among fish 
at the same developmental stage, provided further evidence for a 
quantitative basis of asymmetry, and proposed a mechanism that 
reconciles previously contrasting observations and comprehensively 
explains the origin and maintenance of the whole (direction and de-
gree) mouth polymorphism.

2  | MATERIAL S AND METHODS

A total of 239 adult fish were collected in April 2010 from four loca-
tions on the Zambian coast of Lake Tanganyika (Figure 2), and pre-
served in ethanol (Kusche et al., 2012; Raffini et al., 2017), according 
to the study permit (G.R. no: 2077761) issued from the Department 
of Immigration of the Republic of Zambia (Kusche et al., 2012). All 
methods were carried out in accordance with relevant guidelines 
and regulations.

The degree of mouth asymmetry was measured as reported 
in Raffini et al. (2017). Briefly, using photographs of the top of the 
head, we measured the mouth-bending angle of each individual. 
Three points corresponding to the most anterior part of the eye 
sockets and the tip of the snout were digitized on photographs. From 
the coordinates of these points, the angles at each of the eye sock-
ets were computed. The degree of asymmetry was measured as the 
difference between angles at the left and right eye. Positive values 
indicate left-bending (“left”) individuals, whereas negative results 
are indicative of right-bending (“right”) fish.
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Fish age has been frequently estimated analyzing calcified struc-
tures such as scales or otoliths, but it has often proven difficult in 
tropical fishes, as they do not experience marked seasonal variations 
in environmental conditions or reproductive activity (Longhurst 
& Pauly, 1987). A preliminary survey of scale rings in P. microlepis 
suggested that this species is not an exception. Therefore, we used 
body size as a proxy for age (Petersen, 1894), as previously done 
also in this species (Takeuchi et al., 2016). Individual body sizes were 
retrieved from standardized photographs of the body in lateral view 
as body centroid size (Raffini, Fruciano, & Meyer, in press), taking av-
erages of repeated measurements to reduce the measurement error 
(Fruciano, 2016; see online Appendix S1 for details).

2.1 | SNP validation

A previous study (Raffini et al., 2017) identified one SNP probably 
related to the differentiation between the L and R morph through 
ddRAD sequencing. This locus is located in a non-coding region con-
taining immunoglobulin genes and has two alternative alleles: G, as-
sociated to the right morph, and A, related to the left morph (Raffini 
et al., 2017).

Here, this candidate SNP 56537-113 was amplified and se-
quenced. Genomic DNA was extracted from finclips and amplified 
using specific PCR primers we designed for this study (Appendix 
S1). 168 successfully amplified PCR products were postprocessed 
and sequenced on a 3130xl ABI sequencer and then aligned using 
the ClustalW algorithm with default settings in MEGA v. 7.0 (Kumar, 

Stecher, & Tamura, 2016; details in Appendix S1). The consensus 
sequence of the locus 56537 was incorporated in the alignment to 
localize the candidate SNP (56537-113), and each individual was 
genotyped at this position. Deviation from the Hardy–Weinberg 
Equilibrium was tested in R v. 3.3.1 (R Core Team, 2016) using the 
package genetics (Warnes, Gorjanc, Leisch, & Man, 2013).

To test for the association between the SNP genotype and mouth 
bending angle, we conducted statistical analyses in R. A model se-
lection approach was used to select the quantitative genetic model 
that best characterized this SNP (Appendix S1). The genotype scor-
ing corresponding to the best fitting model was then used in ANOVA 
and PERMANOVA analyses (Anderson, 2001; Excoffier, Smouse, & 
Quattro, 1992; Fisher, 1919; Legendre & Anderson, 1999; Warton, 
Wright, & Wang, 2012; adonis function, R package vegan, Oksanen 
et al., 2016, using Euclidean distances and 999 permutations).

The fish were sampled at four different locations (Figures 2; 
Table S2), and geographic structure could be a confounding factor 
(Koblmüller et al., 2009; Raffini et al., 2017). Therefore, ANOVA and 
PERMANOVA analyses were repeated including also sampling loca-
tion as explanatory variable.

2.2 | Stable isotope analysis

We selected the 34 adult individuals with the most extreme mouth 
bending angle (“asymmetric” phenotype, 17 L and 17 R), and the 34 
most symmetric (“symmetric” phenotype) samples (Table S3). Similar 
or lower sample sizes had previously been successful in detect-
ing feeding differences in other fish species (e.g., Ford et al., 2016; 
Kavembe et al., 2016; Manousaki et al., 2013) and the selection of 
the most extreme specimens contributes to maximize the power of 
finding differences between groups. The diet during the period over 
which a tissue is synthesized determines the stable isotope signa-
tures of the tissue. Diverse tissues have different isotope turnover 
rates, and thus integrate dietary information over different time win-
dows (Pinnegar & Polunin, 1999; Tieszen, Boutton, Tesdahl, & Slade, 
1983). Therefore, we processed and analyzed both white muscle and 
bone tissues extracted from dorsal musculature and abdominal ver-
tebrae of each fish using standard procedures (Appendix S1), to gain 
a more comprehensive and less ambiguous data on both individual 
intermediate (months, muscle) and long-term (years, bone) feeding 
habit, respectively (Gaston & Suthers, 2004; MacNeil, Drouillard, & 
Fisk, 2006; Tieszen et al., 1983).

The relationship between stable isotopes values and mouth phe-
notype (asymmetric/symmetric) was statistically analyzed in R. Prior to 
these analyses, we performed the Shapiro–Wilk test (Shapiro & Wilk, 
1965) for normal distribution. One dataset, muscle δ13C, did not follow 
a normal distribution, similarly to what observed in other cichlids (e.g., 
Elmer, Lehtonen, Kautt, Harrod, & Meyer, 2010); thus, we used both 
parametric and non-parametric statistics. Univariate (ANCOVA, one 
for each stable isotope and tissue) and multivariate analyses of covari-
ance (MANCOVA, one for each tissue) were performed using δ13C and/
or δ15N (response variables) and the mouth phenotype (asymmetric/
symmetric, predictor variable). To allow for heteroscedasticity, we also 

F IGURE  2 Lake Tanganyika sampling locations in Zambia 
(Africa). Countries are reported in capital letters, sampling sites 
with regular front. National borders are indicated with dashed lines
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used generalized least squares models (Aitken, 1935; R functions gls 
and varIdent, library nlme v. 3.1-128, Pinheiro, Bates, DebRoy, & Sarkar, 
2016). In particular, we fit models with both constant (equivalent to 
the general linear models described above) and different (structured, 
one for each phenotype, asymmetric/symmetric) variance. As sampling 
location and body size (Table S3) can contribute to variation in stable 
isotopes values, we also included them in our models, both with and 
without interaction between variables. These different models were 
compared using a model selection approach (AICc, AICctab and like-
lihood ratio test, Appendix S1, Neyman & Pearson, 1933; R function 
anova, Chambers, Freeny, & Heiberger, 1992).

Variance in stable isotopes was used as a measure of niche width 
(Bearhop et al., 2004). Specifically, we tested for homogeneity of 
variance between the two mouth phenotypes (asymmetric/symmet-
ric) for each isotope dataset using the variance ratio test (F-test, as in 
Bearhopet al., 2004), and Levene’s test (more robust to departures 
from normality, Levene, 1960; R package car, Fox & Weisberg, 2011). 
To take into account the effect of sampling location and size, we first fit 
linear models using location and size as predictors, and then tested for 
the equality of variances of residuals (all normally distributed; Shapiro–
Wilk test p-value > .05). This analysis was performed to test if the 
asymmetric (pooling individuals with extreme L and R morph) fish have 
a more specialized diet when compared to the symmetric individuals. 
If this were true, it would lend support to the idea of a significant rela-
tionship between individual specialization and the level of asymmetry.

3  | RESULTS

3.1 | SNP validation

To verify a previously identified SNP and its relationship with the de-
gree of mouth asymmetry, we explored the association between the 

candidate SNP 56537-113 and mouth bending angle. 168 samples 
were successfully genotyped at this locus (Table S2). These included 
22 individuals that were already sequenced with ddRAD in a previ-
ous study (Raffini et al., 2017); 21 of 22 samples matched between 
the ddRAD and PCR genotyping. The single mismatch is likely due 
to sequencing error, which is notoriously lower in Sanger sequenc-
ing (Shendure & Ji, 2008). The following variants were observed: 
homozygous for A (AA), homozygous for G (GG), or heterozygous 
(AG/GA), without the presence of other nucleotides. This locus sig-
nificantly deviates from the Hardy–Weinberg Equilibrium (number 
of individuals with genotype GG = 84, AA = 44, AG/GA = 40, exact 
test for Hardy–Weinberg Equilibrium p = 1.346e−10).

The three quantitative genetic models (A dominant, G domi-
nant, totally additive) were all statistically significant for our genetic 
data; the G dominant model was the one that best characterizes this 
SNP (Table S4). The results were all concordant in indicating a sta-
tistically significant association between the mouth bending angle 
and the candidate SNP, and that variation at this locus accounts 
for about 6% of the trait variation (Figure 3; ANOVA F1,166 = 10.66, 
p = .001329, R-squared = .06035; PERMANOVA F1,166 = 10.662, 
p = .002, R-squared = .06035). This relationship remained signif-
icant when sampling sites (a potential confounding factor) were 
included in the model (ANOVA mouth angle: F1,160 = 10.458, 
p = .00148; locations: F3,160 = 0.753, p = .52219; multiple R-
squared = .07672; PERMANOVA mouth angle: F1,160 = 10.4584, 
p = .001, R-squared = .06035; locations: F3,160 = 0.7529, p = .539, 
R-squared = .01303; multiple R-squared = .07338; interactions be-
tween mouth angle and locations always p > .05), that, together with 
our SNP, explains about 7% of the phenotypic variation.

3.2 | Medium and long-term diet analysis

Variation in individual feeding behavior and its association with 
mouth phenotypes (asymmetric/symmetric, two groups created by 
selecting the specimens with the highest and lowest mouth bending 
angle respectively) was investigated through stable isotope analy-
sis of muscle (medium term) ad bone (long term) tissue (Gaston & 
Suthers, 2004; MacNeil et al., 2006; Tieszen et al., 1983). Three 
additional outliers presenting clearly distinct stable isotopes val-
ues from the rest of specimens were identified in both the muscle 
(Figure S5, sample ID: 10781, 10862, 10879) and bone (Figure S6, 
sample ID: 10862, 10877, 10879) datasets. As this deviation was not 
linked to any known biological differences, they were removed be-
fore any subsequent analyses of stable isotope variation to avoid the 
inclusion of potential artifacts not linked to natural variation. The 
sample sizes used for analyses in muscle were 31 (32 for bone) and 
34 (33 for bone) for asymmetric and symmetric fish, respectively.

Model selection indicated that including mouth phenotype 
(asymmetric/symmetric), sampling location and body size (a proxy 
for age) best explain our data (Table S7), while incorporating a vari-
ance heterogeneity (i.e., a specific variance for the symmetric and 
asymmetric group, respectively) was not always the best-supported 
option (Table S8). Interaction terms between mouth phenotype 

F IGURE  3 Violin plots of mouth bending angle by genotype at 
the SNP 56537-113 locus. The boxplots show the group median 
(black horizontal lines), first and third quartiles (the 25th and 
75th percentiles; hinges), and 95% confidence interval of median 
(notches). Three individuals from the Crocodile sampling site were 
excluded from analysis (see main text). H, heterozygous (genotype 
AG or GA)
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(asymmetric/symmetric) and location and size in both ANOVA and 
MANCOVA were always not significant. We, therefore, fit the var-
ious models using only the main terms and discarded interaction 
terms.

We observed a significant relationship between the carbon sta-
ble isotope values and the mouth phenotypes (asymmetric/sym-
metric) in both medium (muscle) and long (bone) term diet (mean 
stable isotope values). The asymmetric group was on average de-
pleted (higher negative values) in δ13C compared to the symmetric 
pool. This association was not significant for the nitrogen marker 
(Figure 4; Table 1; Table S9; Table S10; Table S11; Table S12).

The asymmetric and symmetric phenotypes showed a different 
niche width (variance in stable isotopes values) in the medium term 
(muscle). It is larger in the symmetric group, indicative of a broader 
diet including more various kinds of food, compared to the asymmet-
ric group, which appeared to be more specialized. This difference 
was not observed for the longer-term niche width (bone, Table 2; 
Figure 4; Figure S5; Figure S6). These differences in niche width are 
clear only when controlling for geographical variation, probably as 
the contribution to variance due to geography is large enough to ob-
scure the underlying pattern (Table 2).

Size and location had a significant effect on the stable isotopes 
values (Table 1; Table S9; Table S10; Table S11; Table S12), but not 
on mouth phenotype (asymmetric/symmetric, interactions never 
significant).

4  | DISCUSSION

We analyzed the relationship between genetic and ecological (es-
tablished individual feeding behavior) variation and morphological 
asymmetry in the scale-eating fish Perissodus microlepis. The re-
sults confirm that the candidate SNP 56537-113 is associated with 
mouth bending angle, which explains a relatively small amount 
(6%) of phenotypic variation, and provide further support for the 
hypothesis that head asymmetry in P. microlepis has a complex 
genetic basis. They also suggest that individual specialization and 

variation in feeding habits could, in addition to such a complex 
genetic architecture, contribute to the unimodal distribution of 
this trait. We introduce a comprehensive hypothesis potentially 
explaining how these genetic and non-genetic cues jointly influ-
ence the direction and the degree of mouth asymmetry as well as 
the maintenance of intraspecific variation.

4.1 | A role of the immune system in 
mouth asymmetry

Several immunity genes were proposed to potentially underlie P. mi-
crolepis’ mouth asymmetry (Raffini et al., 2017). While previous 
studies failed to validate a former candidate locus (UNH2101; Lee 
et al., 2015, 2010; Stewart & Albertson, 2010; but note the use of 
different methods to estimate asymmetry), here, we confirmed the 
association between the locus located in a genomic region contain-
ing immunoglobulin genes and mouth polymorphism. Specifically, 
the SNP 56537-113 is related to mouth asymmetry whether this is 
expressed as a continuous trait (mouth bending angle, this study) or 
as a categorical variable (L and R morphs, Raffini et al., 2017).

The candidate SNP showed an excess of homozygotes that could 
be indicative of inbreeding or strong assortative mating, population 
structure or selection against heterozygous individuals (Haldane, 
1954; Hedrick, 2011; Hernandez & Weir, 1989; Levene, 1949; 
Wellek, 2004). Previous studies suggested random or disassortative 
mating as well as negative frequency-dependent selection in P. mi-
crolepis (Hori, 1993; Kusche et al., 2012; Lee et al., 2010; Takahashi 
& Hori, 2008 but see Raffini et al., 2017). Restrictions to gene flow 
linked to geography have been identified in the distribution range 
of this species (Koblmüller et al., 2009; Raffini et al., 2017, in press); 
however, we observed a significant genotype-phenotype relation-
ship also when controlling for geography (Raffini et al., 2017, this 
study).

Our results (Raffini et al., 2017; this study) seem to indicate a 
role of the immune system in mouth asymmetry. The immune sys-
tem is known to contribute to animal diversification also in the ab-
sence of geographical boundaries (e.g., Eizaguirre, Lenz, Traulsen, 

F IGURE  4 Muscle (white) and bone 
(gray) carbon and nitrogen isotopic values 
as a function of the mouth phenotype 
(asymmetric/symmetric). The boxplots 
show the group median (black horizontal 
lines), first and third quartiles (the 25th 
and 75th percentiles; hinges), and 95% 
confidence interval of median (notches). 
Three outliers were excluded from 
both the muscle and bone datasets (see 
main text). A, asymmetric phenotype; S, 
symmetric phenotype
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& Milinski, 2009; Landry, Garant, Duchesne, & Bernatchez, 
2001; Malmstrøm et al., 2016; discussed in Raffini et al., 2017). 
However, the immunoglobulin locus associated with the identi-
fied SNP might also have indirect effects on mouth shapes due to 
functional or physical association to the genomic locus (or loci) for 
asymmetry (e.g., Lehnert, Pitcher, Devlin, & Heath, 2016; Sacchi 
et al., 2007). Linkage rather than a direct causal relationship or a 
polygenetic basis for mouth asymmetry (as discussed in Raffini 
et al., 2017) could explain the relatively small proportion of mouth 
phenotypic variation accounted for by this SNP, including when 
the geographic variation is considered. Alternatively, the location 
of this SNP in a putatively non-coding region flanking two genes 
might suggest that variation in regulatory and not in coding ele-
ments may be responsible for phenotypic variation (as seen in e.g., 
Belting, Shashikant, & Ruddle, 1998; Chan et al., 2010; Cretekos 
et al., 2008; Guenther, Tasic, Luo, Bedell, & Kingsley, 2014; 
Guerreiro et al., 2013; Schneider et al., 2014; Shapiro, Marks, 

Peichel, & Blackman, 2004). Future investigations focusing on 
immunity-related processes or loci underlying this polymorphism 
might further advance our understanding of the genetic architec-
ture of the P. microlepis head asymmetry.

4.2 | Individual feeding specialization is related 
to the degree of asymmetry

This is the first study to investigate medium and long-term dietary 
differences in P. microlepis, the presence of niche partitioning among 
adult samples, and its relationship with mouth asymmetry.

The stable isotope signature means of the most asymmetric fish 
were significantly different from those of the most symmetric indi-
viduals. On one hand, the symmetric group consumed on average 
a higher proportion of carbon of benthic origin (enriched in δ13C 
according to aquatic food webs, France, 1995; Michener & Schell, 
1994; Michener & Kaufman, 2008), compatible with a medium and 

Tissue Stable isotope Variable
Df num, 
df den F-value p-value

Muscle δ13C Mouth phenotype 1, 59 10.855 .00167

Location 3, 59 16.651 5.934e−08

Size 1, 59 40.245 3.451e−08

δ15N Mouth phenotype 1, 59 3.9582 .05128

Location 3, 59 3.9393 .01250

Size 1, 59 33.7171 2.701e−7

Bone δ13C Mouth phenotype 1, 59 8.5919 .004798

Location 3, 59 15.6956 1.283e−07

Size 1, 59 39.1736 4.790e−08

δ15N Mouth phenotype 1, 59 1.6414 .2051525

Location 3, 59 7.4128 .0002701

Size 1, 59 8.2716 .0055952

Three outliers were excluded from both the muscle and bone datasets (see main text).
Df, degree of freedom.
Significant p-value (< .05) is reported in boldface.

TABLE  1 Univariate ANCOVA results 
of the stable isotope dataset

TABLE  2 Tests of homogeneity of variance for the stable isotope datasets

Dataset Tissue Stable isotope

F-test Levene’s test

df F-value p-value df F-value p-value

Without correction for 
location and size

Muscle δ13C 30, 33 0.58406 .1403 1, 63 4.4467 .03895

δ15N 30, 33 0.43603 .0240 1, 63 2.111 .1512

Bone δ13C 31, 32 0.6391 .2158 1, 63 3.6558 .06558

δ15N 31, 32 1.3412 .4132 1.63 0.5859 .4469

Residuals corrected for 
location and size

Muscle δ13C 30, 33 0.4217 .02085 1, 63 4.4476 .03893

δ15N 30, 33 0.26272 .003816 1, 63 6.4373 .01366

Bone δ13C 31, 32 0.52489 .076 1, 63 1.6592 .2024

δ15N 31, 32 1.4341 .3154 1, 63 2.262 .1376

Df, degree of freedom.
Significant p-value (< .05) is reported in boldface.
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long-term diet including more benthic-associated prey such as the 
alternative food found in P. microlepis’ stomach (some copepods, 
benthic animals, atyid shrimps, ephemeroptera, or trichoptera lar-
vae, etc., Nshombo et al., 1985; Takeuchi et al., 2016). On the other 
hand, the higher negative values of δ13C in asymmetric individuals 
are congruous with eating more pelagic prey, such as fishes from 
which P. microlepis remove scales. This is in agreement with previous 
findings based on stomach content analysis, where more scales were 
ingested by more asymmetric specimens (Takeuchi et al., 2016). 
Only the δ13C, but not the δ15N signatures were significantly asso-
ciated with differentiation between two phenotypes (asymmetric/
symmetric). Both groups mainly feed on primary consumers (algae-
eater fishes’ scales or copepods, fishes and insects’ larvae, Nshombo 
et al., 1985; Takeuchi et al., 2016), resulting in related trophic levels, 
that are reflected in analogous δ15N values, similarly to what was 
reported for some recently diverged species (e.g., Ford et al., 2016; 
Malinsky et al., 2015).

The two mouth phenotypes (asymmetric/symmetric) showed a 
different niche width in the medium term, and it was smaller in asym-
metric individuals compared to symmetric ones. This could be inter-
preted as a hallmark of a more specialized, narrow ecological niche 
in the more asymmetric fish compared to a more generalist diet in 
the more symmetrical individuals. On a longer timescale, these two 
phenotypes did not exhibit significant differences in their variance 
of isotopic composition. This is likely because bones provide an aver-
aged information about assimilated nutrients over several months/
years (Gaston & Suthers, 2004; Tieszen et al., 1983). Thus, if differ-
ences in niche width are relatively small (such as in sympatric morphs 
of the same species), these could be masked when integrated over an 
extended period of time.

Stable isotope signatures were also influenced by sample lo-
cation and size. The isotopic baseline is typically affected by sev-
eral environmental factors (e.g., depth, amount of anthropogenic 
disturbance, local prey community) that can also vary within lakes 
at small spatial scales (Casey & Post, 2011; Post, 2002). Another 
known phenomenon in fish is ontogenetic dietary change, reflected 
in a change in the isotopic signatures with increasing body size 
(Jardine, McGeachy, Paton, Savoie, & Cunjak, 2003; Mittelbach & 
Persson, 1998). In P. microlepis, a dietary switch occurs from omni-
vores to predominantly scale-eating in juveniles (Nshombo et al., 
1985; Takeuchi et al., 2016). Our results showed a strong effect 
of body size on stable isotope values, which might reflect such a 
feeding change as well. In fact, our fish were all adults but some of 
them (e.g., fish of centroid size nine) might have changed feeding 
more recently than others (e.g., fish of centroid size 16), and, since 
stable isotope value provide time-integrated information on diet 
over the past months/years, we observed a correlation between 
body size and isotopic signature. Importantly, although location 
and size had higher impact on the stable isotope values, neither 
of them were significantly associated with the mouth phenotype 
(asymmetric/symmetric), hence these influences did not affect our 
analyses of association between mouth asymmetry and stable iso-
tope signatures.

It has been suggested (Takeuchi et al., 2016) that disruptive 
selection in P. microlepis would favor fish having more asymmetric 
mouth due to improved scale-eating efficiency, while symmetric 
samples would be negatively affected in their growth, survival and 
reproductive rate. Although a conclusive investigation of this hy-
pothesis would require a detailed analysis of mortality rate, hunting, 
and reproductive success, current data does not seem to support 
this scenario. In fact, adult symmetric fish are commonly observed in 
nature (Kusche et al., 2012; Takeuchi et al., 2016; Van Dooren et al., 
2010) as reported also in studies with larger sample sizes from a sin-
gle location (Takeuchi et al., 2016; Van Dooren et al., 2010). In our 
study, symmetric specimens showed higher interindividual variation 
in stable isotopes values. This broader variation in isotope signa-
tures is caused by feeding on a larger variety of food items (Bearhop 
et al., 2004), possibly in an effort to compensate for lower amount 
of scales (Takeuchi et al., 2016) with alternative food. Estimates of 
caloric value obtained in each attack showed that feeding on co-
pepods (alternative prey) is comparable to eating scales (Nshombo 
et al., 1985). Therefore, there is currently no clear evidence of lower 
fitness of less asymmetric fish, at least in terms of growth and sur-
vival. A mechanism other than disruptive selection via scale-feeding 
efficiency might be responsible for the maintenance of this trait. 
And, as even extremely specialized cichlids tend to feed opportunis-
tically, only during the most challenging of ecological times might the 
selective advantage of specialized morphology become important 
(e.g., Grant & Grant, 1993). We advocate future studies to explore 
this hypothesis.

Overall, our results showed that differences in medium and long-
term feeding behavior and diet breadth exist between P. microlepis 
individuals at the same developmental stage that have the most and 
the least asymmetric heads. Considering the direct (Van Dooren 
et al., 2010) and indirect (Kusche et al., 2012; Lee et al., 2012; 
Takeuchi et al., 2016) evidence of an impact of phenotypic plasticity 
through diet on mouth polymorphism, our results may suggest that 
individual feeding specialization contribute to influence the degree 
of mouth asymmetry. Future studies will need to further analyze the 
influence of non-genetic factors, particularly feeding behavior, and 
individual specialization, especially in the context of genetic studies 
(e.g., gene X environment interactions).

4.3 | Gene(s) & environment: a concerted effect?

According to these and previous results (Hori, 1993; Kusche et al., 
2012; Lee et al., 2012, 2015; Nshombo et al., 1985; Raffini et al., 
2017; Takeuchi et al., 2016; Van Dooren et al., 2010), the direction of 
mouth asymmetry could be under genetic control, while the bending 
angle is influenced by gene(s) possibly together with environmental 
factors. A similar complex architecture has been reported in human 
and other fish handedness and brain lateralization (reviewed in 
Ocklenburg & Gunturkun, 2012).

The suggestion that both genes and environment contribute 
to variation in P. microlepis head asymmetry has been made be-
fore (Kusche et al., 2012; Lee et al., 2015; Stewart & Albertson, 
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2010; Van Dooren et al., 2010). However, a hypothesis on how 
they jointly influence this polymorphism was lacking so far. Here, 
we propose that juveniles, that initially attack both flanks of their 
prey, may learn during their ontogeny at which side they are more 
efficient in removing scales depending on their overall mouth-
bending direction (Takeuchi & Oda, 2017; Takeuchi et al., 2016), 
which is genetically determined (Hori, 1993; Raffini et al., 2017; 
this study) and whose polymorphism could still possibly be main-
tained through negative frequency-dependent selection (Hori, 
1993). Thereby, fish become increasingly specialized (handed) in 
preying on their victim fish preferentially from their “adapted” 
side (Lee et al., 2012; Takeuchi & Oda, 2017; Takeuchi et al., 2012, 
2016). In response to this established behavioral lateralization, 
morphological asymmetry is amplified through plasticity in those 
individuals eating more scales, resulting in a positive feedback 
loop between mouth asymmetry and lateralized behavior (Lee 
et al., 2012; Palmer, 2010; Stewart & Albertson, 2010; Takeuchi 
et al., 2016; Van Dooren et al., 2010). Conversely, individuals that 
are potentially less successful in grazing scales (corresponding to 
the symmetric ones, as stomach content analysis seems to indi-
rectly suggest, Takeuchi et al., 2016) may learn to compensate this 
source of nutrients through alternative foods (as possibly indicated 
by this study) that do not stimulate plastic responses in asymme-
try. This hypothesis is particularly supported by more pronounced 
amounts of asymmetry in adults compared to juveniles, the gradual 
establishment of lateralized behavior during development that is 
increasingly positively correlated with mouth asymmetry, the pres-
ence of higher number of scales in the stomachs of more asym-
metric specimens, and the significant increase of variance in the 
degree of mouth asymmetry with growth (Takeuchi & Oda, 2017; 
Takeuchi et al., 2016). P. microlepis might be a special case of indi-
vidualized niche construction, as the fish would fit the particular 
task of prey acquisition to its morphology.

The existence of differences in diet and/or scales-hunting suc-
cess within this species can arise from external factors, such as vari-
ability in the types of food found, as well as inter- or intra-specific 
competition (Bono et al., 2015; Mateus, Ortega, Mendes, & Penha, 
2016; Schluter, 1994, 2000, 2001). Alternatively, feeding preference 
might be innate (e.g., under strong genetic or epigenetic control; e.g., 
Serobyan et al., 2016), or hunting success may strictly depend on the 
extent of mouth asymmetry (Takeuchi et al., 2012), that in this study 
appeared to also have an, at least partial, genetic basis. Following 
this interpretation, both the direction and the amount of asymmetry 
are genetically based, generating a unimodal distribution of mouth 
shapes due to the combined effects of their polygenic nature (Raffini 
et al., 2017; this study) and plasticity via feeding experience as de-
scribed above. Another factor internal to the organism that could 
contribute to the observed differences in scale-eating success is the 
among-individual variance in learning ability, a well-documented 
phenomenon in fish (Fawcett, Hamblin, & Giraldeau, 2013; Kieffer & 
Colgan, 1991; Versace, 2015). “Fast learners” could start to success-
fully attack preys earlier, resulting in a higher success and amount 
of eaten scales during their life, and thus a more accentuated effect 

of plasticity on the degree of mouth asymmetry compared to “slow 
apprentices.”

While the precise mechanisms remain to be clarified, a central 
role for inter-individual variation emerges as the key to understand 
the bases of P. microlepis mouth polymorphism, reconciling and uni-
fying the largely genetic and environmental determination mod-
els. inter-individual differences have important evolutionary and 
ecological effects, and constitute a source of variation upon which 
natural selection can act (Araújo et al., 2011; Dall, Bell, Bolnick, & 
Ratnieks, 2012; Nosil, 2012; Schluter, 2000, 2001). It might also 
suggest a mechanism of sympatric coexistence and maintenance of 
different mouth phenotypes in P. microlepis: more asymmetric fish 
are specialized predators and provisionally more successful scale 
predators depending on the morphs (left/right) relative abundance 
(the classic model of negative frequency-dependent selection, Hori, 
1993), while symmetric specimens are more generalist hunters. 
Mathematical models suggest that evolutionarily stable coexistence 
of two specialists and a generalist can arise through immigration or 
mutation, especially in the presence of strong resources temporal 
variability or consumer-resources cycles and adaptive foraging be-
havior (Abrams, 2006; Egas et al., 2004; Rueffler et al., 2006). Then, 
these factors might contribute to the long-term maintenance of the 
trophic polymorphism observed in P. microlepis. To our knowledge, 
this is the first hypothesis introducing a process that can simultane-
ously explain the presence of left, right, symmetric, and asymmetric 
fish due to the interaction between different evolutionary and eco-
logical dynamics and response strategies.

This study clarified the relative importance of genetic and envi-
ronmental factors affecting mouth asymmetry in P. microlepis. Our 
results add to the growing support for a quantitative nature of this 
trait, confirm a previously identified genomic region as harboring at 
least one of the loci responsible for it, and emphasize the impor-
tance of considering both genetic and external triggers. For the first 
time, we propose that individuals are partitioning resources (niche 
specialization/construction) according to their mouth phenotype, 
which is partly genetically determined, allowing the coexistence and 
maintenance of different morphs. Importantly, our study highlights 
the promise of considering inter-individual variation when aiming 
to understand how this polymorphism is produced and maintained, 
and how an integrative view can help reconcile previously distinct 
observations.
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