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Genome-wide analyses of behavioural traits are
subject to bias by misreports and longitudinal
changes
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Jian Yang1,3,4✉

Genome-wide association studies (GWAS) have discovered numerous genetic variants

associated with human behavioural traits. However, behavioural traits are subject to misre-

ports and longitudinal changes (MLC) which can cause biases in GWAS and follow-up

analyses. Here, we demonstrate that individuals with higher disease burden in the UK Bio-

bank (n = 455,607) are more likely to misreport or reduce their alcohol consumption levels,

and propose a correction procedure to mitigate the MLC-induced biases. The alcohol con-

sumption GWAS signals removed by the MLC corrections are enriched in metabolic/cardi-

ovascular traits. Almost all the previously reported negative estimates of genetic correlations

between alcohol consumption and common diseases become positive/non-significant after

the MLC corrections. We also observe MLC biases for smoking and physical activities in the

UK Biobank. Our findings provide a plausible explanation of the controversy about the effects

of alcohol consumption on health outcomes and a caution for future analyses of self-reported

behavioural traits in biobank data.
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Behaviours and lifestyles are modifiable risk/protective fac-
tors for common diseases in humans. In the past few
decades, one of the most controversial debates in public

health is on the effect of alcohol consumption (AC) on common
diseases, especially cardiovascular/metabolic diseases. Large-scale
meta-analyses of epidemiological studies1,2 on AC concluded that
“no level of alcohol consumption improves health”3. This con-
clusion, however, is contradictory to the negative estimates of the
genetic correlation (rg) between AC and several diseases such as
obesity4–7, major depressive disorder (MDD)6,7, Parkinson’s
disease5, and type 2 diabetes (T2D)5 reported in the recent
genome-wide association studies (GWAS) and also contradictory
to the protective effects of moderate drinking reported in obser-
vational studies8,9. Different hypotheses have been proposed to
explain these discrepancies, including (1) heavy AC might alter
metabolism or impair nutrient absorption10,11, meaning that the
effect is dosage-dependent; (2) people who have health problems
may quit or reduce drinking, or underreport their intake level12;
and (3) some other common explanations include confounding
factors6 (e.g., socioeconomic status and physical activities) and
collider bias13,14. Nevertheless, to date, no study has provided an
in-depth investigation into the causes of the discrepancies.

In epidemiological or genetic studies, phenotypic data of
behavioural and lifestyle traits are often collected from self-
reported questionnaires, which are subject to misreports (i.e., self-
report biases), especially for questions related to smoking,
drinking, and drug use15–18. These phenotypes are also subject to
change during lifetime19–22, for instance in response to disease
diagnosis, but data to track such longitudinal variations are rarely
available. Both misreports and longitudinal changes (hereafter
referred to as MLC) could change the distribution of the phe-
notypes and thus may affect the results of both epidemiological
and genetic studies.

In this study, we set out to investigate biases due to MLC in
genetic analyses of self-reported behavioural traits including AC,
tobacco smoking, and physical activities in the UK Biobank
(UKB)23. The UKB includes detailed questionnaires of these
behavioural traits, providing a unique resource to investigate the
potential pitfalls in the analyses of self-reported phenotypes. We
demonstrate that MLC could induce biases in GWAS of these
traits and follow-up analyses that use summary statistics from the
GWAS. We then propose a correction procedure to mitigate the
MLC biases. Using AC as an example, we identify and remove the
participants whose self-reported AC is inconsistent with their
intake frequency, medical records or online follow-ups and the
participants who reduced their AC intake because of illness or
doctor’s advice during the past 10 years. Then, we stratify the
participants into three longitudinal change groups (drink “less”,
“the same” or “more” compared to 10 years ago) and run a
GWAS analysis in each group separately followed by a meta-
analysis. We also elaborate on why some of the previous studies
might suffer from MLC biases.

Results
Misreports and longitudinal changes in alcohol consumption.
Misreports are common in self-reported data sets15–18 but often
overlooked in genetic analyses. Here, we focused on the analyses
of AC because (1) its relationship with common diseases is
controversial; (2) the data required by our investigations and
corrections are available; (3) the sample size is large (n =
455,607). In this study, our definition of misreports for AC
includes misreporting about drinking status24, underreporting the
AC level15,17, and selective recall of the question about AC level25,
all of which might occur in the UKB. These kinds of misreports
are mainly attributed to26,27 social desirability28,29 (i.e., the

tendency of participants to answer questions in ways that make
them viewed favourably by others) and recall bias30,31 (i.e., the
accuracy and completeness of past events recalled by participants
are influenced by subsequent events that they experienced). First,
14,488 UKB participants identified themselves as never drinkers,
but data from follow-up questionnaires and medical records32 for
3,627 of these participants suggested that at least 10% of the
individuals were very likely to have drinking history, e.g., pre-
viously diagnosed as having alcoholic hepatitis or alcohol use
disorder (Supplementary Note 1). This result validated a previous
conclusion that classifying self-reported never drinkers as lifetime
abstainers could be problematic24. Thus, our analyses of AC were
mainly focused on current drinkers (n = 424,507) unless specified
elsewhere. Second, 9,064 individuals (2.1%) were classified as
current drinkers but reported zero consumption level, indicating
possible underreporting. Third, 66,058 individuals (15.6%)
reported their alcohol intake frequency and other related ques-
tions but did not report their actual AC levels, suggesting a
potential selective recall bias. It has been shown previously that
heavy drinkers tend to be less responsive25, and a high non-
response rate could lead to an underestimate of the average AC
level in the sample33. To investigate the characteristics of the
suspected misreporting individuals, we examined the phenotypes
of 18 common diseases in the UKB and used disease count (the
number of diseases carried) as an indicator of disease burden for
each participant (Methods; Table 1 and Supplementary Data 1).
We observed that unresponsive individuals had a significantly
higher mean disease count than individuals with complete
responses (1.63 vs. 1.37, Welch t-test P= 6.35 × 10−294; Table 1).
The suspected underreporting individuals (n = 9,064) also
showed a significantly higher mean disease count than the
remaining current drinkers (1.73 vs. 1.36, Welch t-test P= 2.68 ×
10−87).

Another important source of bias is the change in drinking
volume during the life course for reasons such as changes in
health status. For instance, if people change their AC level
because they are affected by a disease, such a disease ascertain-
ment will give rise to a bias in observed or genetic relationship
between AC and the disease. In the UKB, all the current drinkers
(n= 424,507) were asked a question “compared to 10 years ago,
do you drink less/the same/more nowadays?” (Methods), and
262,107 (61.7%) of them reported “less” or “more”. We denoted
the three groups of individuals as LESS, SAME and MORE,
respectively. The LESS group (n= 191,653, 45.1%) had a lower
average AC level, higher disease prevalence for several common
diseases, and higher mean disease count than individuals in the
other two groups (Table 1 and Supplementary Data 1). A follow-
up question was asking the participants to choose the reason(s)
why they reduced drinking, and the available options include
illness, health precaution, and financial reasons (Table 2). There
were 15,889 individuals (8.3%) choosing illness or doctor’s advice
as the primary reason for reducing drinking, and their mean
disease count was nearly twice that of all other current drinkers
(Table 2). In the subgroup of individuals who reported AC and
had reduced drinking due to illness or doctor’s advice (n =
11,886, 3.3%), the prevalence of cardiovascular disease (CVD)
was 0.411, ~2.7 times higher than that in all current drinkers
(0.154), providing strong evidence of disease ascertainment of AC
(Supplementary Data 1).

Biases in GWAS for alcohol consumption due to MLC. We
conducted GWAS analyses for AC with and without correcting for
MLC. The MLC corrections included excluding individuals who
might underreport AC level, excluding individuals who reduced
drinking due to illness or doctor’s advice, and adjusting the mean
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and variance difference in the three longitudinal change groups
(Methods and Supplementary Figs. 1–2). There were 53 and 47
independently genome-wide significant loci (PGWAS < 5 ´ 10�8)
before and after the corrections, respectively (Supplementary
Data 2 and Supplementary Figure 3). We identified 16 loci that
became non-significant after the corrections (PGWAS ≥ 5´ 10

�8,
Supplementary Data 2). By searching the top associated SNPs at
these loci in an online database PheWAS34 (http://atlas.ctglab.nl/
PheWAS), we found that 44.9% of associated phenotypes
(PPheWAS < 5 ´ 10�8) were metabolic/cardiovascular traits such as
body mass index (BMI), triglyceride (TC), and coronary artery
disease (CAD) (Fig. 1). We showed by a down-sampling analysis
that the number of loci that became non-significant after the MLC
corrections (16) was significantly larger than that expected from a
loss of sample size (10.03, standard error (s.e.) = 0.49), and 10 loci
that became genome-wide significant after the MLC corrections
were likely to be masked by MLC in the uncorrected GWAS (the
expected number is 3.26, s.e. = 0.30, Methods, Supplementary
Data 2–3). These results were in line with the simulation results
(Methods and Supplementary Note 2) that MLC could reduce the
power to detect true signals and induce spurious signals due to
disease ascertainment (Supplementary Figs. 3–9).

Estimates of genetic correlation biased by MLC. Biases in
GWAS results due to MLC are expected to carry over to follow-up
analyses using summary statistics of the GWAS, such as the
genetic correlation (rg) analysis. To demonstrate such biases, we
estimated rg between AC and 18 common diseases in the UKB by
the bivariate LD score regression35 (LDSC) using AC GWAS data
from each of the three longitudinal change groups or the whole
sample (Methods). Before the MLC corrections, we observed
substantial differences between r̂g (between AC and diseases)
estimated using AC GWAS data from the LESS, SAME and
MORE groups (Fig. 2 and Supplementary Data 4). We also esti-
mated the SNP-based heritability (h2SNP) from different AC GWAS
data sets and rg between the data sets (Supplementary Data 5–6,
and Supplementary Fig. 10) and found that the r̂g between AC in
the LESS and MORE groups was significantly different from unity
(̂rg ¼ 0:796, s.e. ¼ 0:074). All these results suggested that there
was heterogeneity among AC data from the three longitudinal
change groups. The heterogeneity was also demonstrated in an
additional analysis where we estimated rg between AC (using data
from the UKB) and 234 traits (using data from LD-Hub36) and
found that the r̂g using AC GWAS data from the LESS group were
substantially different from those using AC GWAS data from the
MORE group, with more than half of the r̂g (143/234) in the
opposite direction between the two groups (Supplementary Data 7
and Supplementary Fig. 11). Notably, after the MLC corrections,
the r̂g between all pairwise AC GWAS data sets were close to 1
(ranging from 0.91 to 0.99, Supplementary Data 6), demonstrating
the effectiveness of the MLC corrections in eliminating/reducing
the biases.

In the rg analysis using AC GWAS data from the whole sample
without the MLC corrections, AC showed nominally significant
(P < 0.05) negative r̂g with 3 diseases (i.e., T2D, hypertensive
disease, and iron deficiency anemias) (Fig. 2 and Supplementary
Data 4). However, after the MLC corrections in our study, AC
showed nominally significant r̂g with 8 diseases as well as disease
count, all of which were positive (Fig. 2). Negative estimates of rg
between AC and diseases have also been reported in the literature.
For instance, Clarke et al.4 showed negative r̂g between AC and
BMI/obesity, and Liu et al.5 showed that AC is negatively
genetically correlated with several common diseases includingT
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Parkinson’s disease, obesity, and T2D. We show that the negative
estimates could be replicated in our study using data without
the MLC corrections but most of them turned to positive after the
MLC corrections (Fig. 3 and Supplementary Data 8). These
results implied that the negative estimates of rg between AC and
diseases from the analyses without the MLC corrections
(including those in prior works) were caused by disease
ascertainment. Nevertheless, this conclusion was not definitive
because the ground truth was unknown in real data analysis.

Hence, we sought to verify it by simulation (Methods and
Supplementary Note 2), and the results showed that the estimated
SNP effect correlation (̂rb) between a simulated exposure
and disease gradually changed to the opposite direction as the
strength of disease ascertainment increased (Supplementary
Note 2 and Supplementary Figs. 5 and 7), supporting our
conclusion. Here rb is defined as the correlation of true SNP
effects between the simulated exposure and disease. The
simulation results also showed that after the MLC corrections,

Table 2 Descriptive statistics of the reasons for reducing alcohol intake.

Intake level
reported

Reason N Mean phenotype

AC BMI Disease count EA

Yes Illness or ill health 8555 (5.6%) 7.33 (0.10) 28.53 (0.06) 2.77 (0.02) 12.81 (0.06)
Doctor’s advice 3331 (2.2%) 14.72 (0.23) 29.49 (0.09) 2.58 (0.03) 12.65 (0.09)
Health precaution 48,483 (31.7%) 9.98 (0.04) 27.44 (0.02) 1.54 (0.01) 14.17 (0.02)
Financial reasons 7323 (4.8%) 10.27 (0.12) 28.54 (0.06) 1.74 (0.02) 11.57 (0.06)
Other reason 68,066 (44.6%) 7.54 (0.03) 27.71 (0.02) 1.28 (0.01) 13.90 (0.02)
Prefer not to answer 268 (0.2%) 5.77 (0.45) 27.69 (0.30) 1.75 (0.10) 10.90 (0.30)
Do not know 16,729 (11.0%) 7.28 (0.06) 27.96 (0.04) 1.35 (0.01) 13.00 (0.04)

No Illness or ill health 3541 (9.1%) — 29.28 (0.10) 2.81 (0.03) 12.35 (0.09)
Doctor’s advice 462 (1.2%) — 29.99 (0.26) 2.77 (0.09) 11.90 (0.24)
Health precaution 6767 (17.5%) — 28.26 (0.06) 1.87 (0.02) 12.86 (0.06)
Financial reasons 1600 (4.1%) — 29.05 (0.14) 1.91 (0.05) 11.26 (0.12)
Other reason 21,362 (55.1%) — 28.62 (0.04) 1.51 (0.01) 12.88 (0.03)
Prefer not to answer 101 (0.3%) — 28.23 (0.53) 2.10 (0.17) 9.56 (0.41)
Do not know 4934 (12.7%) — 28.79 (0.08) 1.53 (0.02) 11.89 (0.07)

The proportion in the bracket in N column indicates the proportion of each reason within two categories (reported intake level or not). The numbers in the bracket in Mean phenotype column are
standard error of each mean estimate. N, sample size; AC, alcohol consumption (units per week); BMI, body mass index (kg/m2); Disease count, number of common diseases affected; EA, educational
attainment (years of schooling). A total of 132 individuals did not have records for their reasons for reducing their alcohol intake.

Fig. 1 PheWAS results for the 16 AC GWAS signals that became non-significant after the MLC corrections. This figure shows associations of the AC-
associated variants, which became non-significant because of the MLC corrections, with all the common traits and diseases for which summary data from
large-scale GWASs are available in the public domain (https://atlas.ctglab.nl/PheWAS). The colour denotes the domain of each associated trait. There
were 136 traits associated with the 16 SNPs with P< 5 ´ 10�8, and 61 (44.9%) of them were metabolic/cardiovascular traits.
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rb was slightly underestimated but with no bias in the direction in
the presence of disease ascertainment, and that the MLC
corrections did not induce any bias in r̂b under the null
hypothesis that rb ¼ 0 (Supplementary Fig. 9).

Socioeconomic status (SES) has been shown to affect people’s
alcohol use and health outcomes, and several studies have shown
that people with higher SES tend to have higher AC levels and
lower disease risks than people with lower SES37,38. Clarke et al.4

and Liu et al.5 reported positive r̂g between AC and educational
attainment (EA). We observed a similar estimate in our study
(̂rg ¼ 0:082; P ¼ 1:0 ´ 10�4) before the MLC corrections, but the

estimate became non-significant after the MLC corrections
(r̂g ¼ �0:036; P ¼ 0:108; Fig. 3), likely because MLC are
associated with EA. For example, the mean years of schooling
of individuals who reduced AC due to illness/doctor advice
(12.76, standard error of the mean ðs:e:m:Þ ¼ 0:05) was
significantly lower than that of the remaining current drinkers
(14.23, s:e:m: ¼ 0:01), and people reduced AC because of health
precaution had the highest education level than any other reason
(Table 2), suggesting that the reasons for reducing intake were
EA-dependent. We also included household income (HI) and
social deprivation (SD) in the genetic correlation analysis
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Fig. 2 Estimates of genetic correlation between AC and common diseases in the UKB. The rows denote 8 GWAS summary data sets for AC with the
sample size labelled in the bracket. The columns are 18 common diseases and disease count. The nominal significant effects (P<0:05) are labelled with r̂g
[95% confidence interval] (P-value), and the significant effects after multiple testing correction (P<0:05=152) are labelled with an additional asterisk. The
colour of the block represents the size each genetic correlation estimate. The P-value shown in the block is the original P-value for r̂g (two-sided χ2 test).
“Current drinkers excluding underreporting” represents current drinkers excluding 9,064 individuals who likely underreported their AC levels. LESS, SAME,
and MORE represent current drinkers whose AC levels were reduced, maintained the same, and increased, respectively, compared to 10 years ago. “LESS
with illness removed” represents the LESS group excluding the participants who reduced their AC intake level due to illness or doctor’s advice.

Fig. 3 Estimates of genetic correlation between AC and complex traits using data from the UKB and other published studies. Genetic correlation was
estimated by the bivariate-LDSC in LD Hub. The y-axis shows the estimate of rg, and the x-axis shows different complex traits. The error bars denote the
standard errors of the estimates. The results using the summary statistics from our analysis were compared to those from Clarke et al.4, who used self-
reported AC from the interim release of the UKB data, and Liu et al.5, a meta-analysis that included the full release of the UKB data. The sample sizes of the
five AC data sets are 112,117 (Clarke et al.), 941,280 (Liu et al.), 372,897 (including never drinkers), 358,409 (excluding never drinkers), and 336,469 (after
the MLC corrections), respectively.
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(Methods), and our results showed that r̂g between AC and HI or
SD were also affected by MLC (Supplementary Data 9).

To test the effects of EA and HI on the r̂g between AC and
diseases, we adjusted AC for EA and HI. To avoid collider bias
due to adjusting for a heritable phenotype, we performed the
adjustment using the mtCOJO approach39 which is more robust
to collider bias than the conventional covariate adjustment
approach. We found that before the MLC corrections, the r̂g
between AC and 18 common diseases after further EA and HI
adjustment were highly consistent with those before the
adjustment (Pearson’s correlation r ¼ 0:966) (Supplementary
Fig. 12). The consistency was even higher after the MLC
corrections (r ¼ 0:988) (Supplementary Fig. 12). These results
suggest that biases in AC GWAS due to EA and HI are likely to be
small and have largely been removed by the MLC corrections. In
addition, there were significant differences in BMI between the
LESS and SAME groups (Welch-t = 67.9, −log10(P) = 841.0)
and between the LESS and MORE groups (Welch-t = 64.0,
−log10(P) = 879.7). The observation is in line with one of our
conclusions above that participants with cardiometabolic diseases
tend to reduce AC because these diseases are often associated
with higher BMI. This observation is unlikely to be driven by EA
because the differences remain highly significant (Welch-t = 77.3,
−log10(P) = 1288.9 between LESS and SAME and Welch-t =
79.5, −log10(P) = 1344.8 between LESS and MORE) after
adjusting BMI for EA.

Estimates of causal effect biased by MLC. Mendelian rando-
misation (MR) is a method that uses genetic variants as instru-
mental variables (IVs) to infer causal relationship between
exposure and outcome40,41. As the MR analysis relies on GWAS
data, it might also be affected by the MLC biases as described
above. We used BMI in the UKB as an example to demonstrate
the performance of MR in the presence of MLC, based on several
commonly used MR methods including IVW (inverse variance
weighted)42, Robust43, MR-Egger44, GSMR39, weighted median45,
simple median45, mode46, MR-PRESSO47, MRMix48, Con-Mix49,
RAPS50. While the estimates from some methods (including
weighted median, mode and GSMR) were all significantly positive
and consistent across all the analyses with or without the MLC
corrections, the estimates from IVW, simple median, MR-
PRESSO, MRMix, Con-Mix seemed to be sensitive to MLC with
some of them being negative (Fig. 4). The negative estimates from
the analyses without the MLC corrections were likely to be driven
by the 16 loci that were removed by the MLC corrections (note
that the mean per-SNP MR estimate for the 16 loci was −0.077).
After the MLC corrections of AC, the estimates from all the MR
methods were all positive and largely consistent (Fig. 4 and
Supplementary Data 10). We also ran a reverse GSMR analysis to
test the effect of BMI on AC without the MLC corrections and
found a significant and negative effect of BMI on AC
(b̂BMI!AC ¼ �0:076; P ¼ 1:11 ´ 10�33) (Supplementary
Data 11), consistent with the observation above that high BMI
might be one of the reasons to reduce AC (Table 1).

In addition to the UKB data, we also analysed GWAS summary
data for AC from Liu et al.5 with a sample size of ~1 million
consisting of ~42.9% of the sample from 23andMe and ~33.0%
from the UKB (Methods). The results were similar to those from
the analyses above using the AC GWAS data from the UKB only
(Supplementary Data 10 and Supplementary Figs. 13–14), which
implies that MLC may not be UKB-specific but also exist in other
data sets because otherwise the biases would be smaller in this
analysis given only one-third of the AC data were from the UKB.
We further confirmed the biases in MR analyses from MLC by
simulation (Supplementary Figs. 6 and 8), and demonstrated that

the estimates of causal effects from MR were nearly unbiased after
the MLC corrections (Supplementary Fig. 9).

The J-shaped relationship between AC and CVD. In epide-
miological studies, there are debates about whether moderate
drinking is protective against CVD because of an observed
J-shaped relationship between AC and CVD2,19,51. We showed
that the moderate drinking group (0 < AC ≤ 25 grams/week), often
used as the reference group to compute the effect (odds ratio, OR)
of AC on disease risk, was enriched with individuals from the
LESS group which had a higher CVD incidence than the SAME
and MORE groups (Supplementary Figure 15). This could result
in a higher CVD incidence in the reference group than average,
leading to a J-shaped relationship between AC and CVD (Sup-
plementary Fig. 16a). Although the J-shaped relationship between
AC and CVD did not change much after the MLC corrections
(Supplementary Fig. 16b), it became monotonically increasing
after excluding the LESS group from the reference (Supplementary
Fig. 16c). Polygenic predictor of AC showed no evidence for any
protective effect of moderate drinking against CVD (Supplemen-
tary Fig. 16d), consistent with the result from a previous study51.
We ran a simulation to confirm that if the true relationship
between two traits X and Y is a J-shape curve, then the relation-
ship between the genetic predictor of X and Y is expected to be
J-shaped (Supplementary Fig. 17). Our results indicated that the
J-shaped relationship between AC and CVD observed in epide-
miological studies might be driven by longitudinal changes due to
disease ascertainment (Supplementary Note 3).

Biases from MLC in other self-reported behavioural traits. Self-
reported smoking data in the UKB is also likely to suffer from
MLC. Similar to that for AC, all the current smokers were asked
“Compared to 10 years ago do you smoke less/the same/
more nowadays?”. We partitioned the current smokers (n=
32,801) into the LESS, SAME, and MORE groups (Supple-
mentary Note 4). The LESS group had a higher disease count
(1.69, s.e.m.= 0.01) than the SAME group (1.56, s.e.m.= 0.01)
but a lower disease count than the MORE group (1.84, s.e.m.=
0.03) (Supplementary Data 12); these results were different from
those observed in AC (see below for more discussion). In the
LESS group, individuals who had reduced CPD because of illness
or doctor’s advice had a much higher mean disease count (2.73, s.
e.m. = 0.03) compared to the entire sample (1.45, s.e.m. = 0.002)
or all current smokers (1.66, s.e.m. = 0.01), indicating that
smoking intensity was also ascertained by disease burden. How-
ever, unlike AC, the r̂g between CPD and common diseases were
mostly consistent across the LESS, SAME and MORE groups
(Supplementary Fig. 18), and there were negligible differences
between the r̂g estimated using the CPD GWAS data of the whole
sample before and after correcting for MLC (Methods; Supple-
mentary Data 13 and Supplementary Fig. 18).

Finally, we investigated physical activities (PA) in the UKB.
The PA traits included self-reported METT (Metabolic Equiva-
lent Task in Total) scores, IPAQ (International Physical Activity
Questionnaires), and overall acceleration average (OAA, mea-
sured by wrist-worn accelerometers). We investigated these three
measures in this study because they are the most commonly used
PA indicators and available in the UKB. IPAQ is a derived
categorical trait (low, moderate, and high) that utilises informa-
tion from the METT and its three subsets: walking, moderate, and
vigorous activities (Methods). We first estimated the rg between
METT, IPAQ and OAA and between METT from the three IPAQ
subgroups (Supplementary Fig. 19). We found a significant ge-
netic heterogeneity between METT and IPAQ (r̂g ¼ 0:795, s.e. =
0.016) and a small genetic overlap of either METT or IPAQ with
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OAA (r̂g ¼ 0:232 with s.e. = 0.037 for METT and r̂g ¼ 0:390
with s.e. = 0.034 for IPAQ). We then estimated the rg between
PA and 18 common diseases. While the r̂g of IPAQ and OAA
with the diseases were mostly negative, METT showed positive r̂g
with most diseases (Supplementary Data 15 and Supplementary
Fig. 20). It was also found that the r̂g of METT from the low
IPAQ subgroup with the diseases were highly consistent with
those of IPAQ and OAA but mostly in the opposite direction to
those of METT from the moderate and high IPAQ subgroups
(Supplementary Fig. 20), indicating potential biases in METT
from the moderate and high IPAQ subgroups, in line with the
finding from a previous study52. In addition, the phenotypic
correlation between the first and third assessment (n= 11,484) of
METT was only 0.431, implying substantial longitudinal changes.
Unfortunately, these changes were undocumented for the
majority of UKB participants, so we were not able to perform

correction as we did for smoking and drinking. It is known from
prior work that device-measured PA show consistent inverse
relationship with BMI, blood pressure, and adiposity53, while self-
reported PA show inconsistent genetic correlation patterns at
different intensity levels54, and that self-reported records in elder
cohorts could suffer more from recall bias due to the high
proportion of cognitive impairment55. Together with the evidence
from the literature, our results suggest that IPAQ and OAA are
better PA indicators than METT in the UKB, and that the rg
estimates for METT are likely to be biased by disease
ascertainment.

Discussion
In this study, we raised concerns that genetic analyses of human
behavioural traits could be biased by misreports and longitudinal
changes. AC in the UKB was used as the main example to

Fig. 4 Estimates of causal effect of AC on BMI using different MR methods. The colour of the circle denotes different MR methods. The methods on the
x-axis is ranked based on alphabetic order from the left to the right. The y-axis is the bxy estimates from each method. The error bars denote 95%
confidence interval of the estimates. The row-wise panels indicate five different GWAS summary data sets for AC. The horizontal black dashed line
indicates bxy = 0. The sample sizes (n) of the five AC data sets are 537,349 (Liu et al. excluding 23andMe), 941,280 (Liu et al. including 23andMe),
358,409 (excluding never drinkers), 372,897 (including never drinkers), and 336,469 (after the MLC corrections), respectively.
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demonstrate the detrimental effects of MLC on several genetic
analyses commonly used to identify variant-trait associations or
estimate the genetic or causative relationship between traits. Our
results showed that disease ascertainment was likely to be the
main cause of the MLC biases, which can be largely corrected for
using additional information (e.g., intake frequency and medical
records) and coarse longitudinal data (e.g., self-reported long-
itudinal changes). Our results also showed that the MLC cor-
rections proposed in this study added value to the routine quality
controls (QC) in GWAS for behavioural traits. Additionally,
biases due to longitudinal changes appeared to be larger than that
due to misreports, because the longitudinal changes were
observed in more than half of the participants, while misreports
only accounted for 10~20% of the UKB sample (at least for those
we have identified thus far), as verified in our simulations (Sup-
plementary Note 2 and Supplementary Figs. 5–8).

Our findings provide a plausible explanation for the long-
standing controversy about the effects of AC on health outcomes
in genetic4,5 and epidemiological studies2,3,19. While it seems that
most inconsistent estimates in previous studies were due to MLC,
there are several reasons why some studies suffered from stronger
biases than others. First, the average AC level varied across data
sets (from 2.9 to 19.3 units/week across 24 studies)5, suggesting
heterogeneity in drinking behaviours among different regions or
populations. Second, since we have demonstrated that biases from
MLC were mainly attributable to disease ascertainment, different
disease prevalence between populations may lead to different
patterns of MLC. Third, as MLC are associated with other factors,
such as SES, studies with ascertainment of any of the MLC-
associated factors would lead to a change of the MLC pattern.
Last but not least, the pattern of MLC could vary in different age
groups. For instance, disease ascertainment is expected to have a
larger influence in middle-aged populations than in younger
populations because younger populations are less likely to be
affected by common diseases investigated in this study56. This is
supported by the observation that the older UKB participants had
a higher mean disease count with a higher proportion of them
reducing AC due to illness or doctor’s advice (Supplementary
Fig. 21). To account for a potentially non-linear relationship
between AC and age, we fitted age squared as an additional
covariate in the AC GWAS but observed little difference in the
estimates of genetic or causal association between AC and BMI
(Supplementary Fig. 22).

The MLC biases could differ for different behavioural traits
such as AC and CPD. The main reason for the difference in the
MLC bias pattern between AC and CPD is likely to be that the
participants in the LESS group had a much higher mean disease
count than those in both the SAME and MORE groups for AC
(Table 1), indicating strong disease ascertainment, whereas such
disease ascertainment was not apparent for CPD, e.g., the mean
disease count in the LESS group is lower than that in the MORE
group (Supplementary Data 12). More specifically, in the LESS
group for CPD, the illness subgroup (i.e., participants reduced
CPD because of illness) has a higher mean CPD level than the
other subgroups (Supplementary Data 12), whereas in the LESS
group for AC, the illness subgroup has a lower mean AC level
(7.33 units/week) than the other subgroups (8.63 units/week). We
hypothesise that these differences are because the likelihood of
whether people choose to stop or reduce smoking due to reasons
such as illness is different from that for drinking, e.g., when
affected by illness, people tend to quit rather than reduce smoking
but tend to reduce rather than stop drinking. This hypothesis is
supported by the observations in the UKB that ~77% of the ever
smokers are former smokers (Supplementary Data 14) while only
~3% of the ever drinkers are former drinkers (Supplementary
Data 1).

Our study certainly has limitations as it is almost impossible to
correct for all the biases with limited availability of relevant data.
First, the 9,064 individuals who were suspected to underreport
their AC are very likely to be only a subset of all the under-
reporting individuals. Thus, more effective methods are needed to
identify the remaining underreporting individuals. Second, there
are many reasons for MLC. These reasons include the self-
reported reasons such as illness, doctor’s advice, health precau-
tion and financial issues, and other reasons such as social desir-
ability, major life changes (e.g., change of marital status and
having a child), influences from family members or friends,
religious experience, self‐evaluation and legal problem57,58. In the
UKB survey, ~58% of the individuals with reduced alcohol intake
reported that the reduction was due to “other reasons” or “do not
know” in the survey (Table 2). Any of the reasons especially those
related to disease and health precaution, if not accounted for,
would lead to biases in GWAS and subsequent analyses. Also,
since social acceptance is an important factor for the MLC rea-
sons, the change of social acceptance over time might give rise to
differences in MLC between real-time and retrospective reports.
Third, some participants may have misreported their longitudinal
changes, giving rise to an incorrect classification of longitudinal
change groups. Fourth, the coarse longitudinal change informa-
tion itself is cross-sectional (10 years before the time point of the
first assessment), meaning that some of the changes that occurred
beyond the time frame might not be accounted for in this study.
Fourth, 15% of the current drinkers who did not report their AC
level were removed from the analysis. One solution, as imple-
mented in a previous study59, was to impute the missing values
based on intake frequency and gender. However, 99.8% of the
unresponsive individuals in the UKB were occasional drinkers
while only 9.4% of the responsive individuals were occasional
drinkers, which might lead to a systematic heterogeneity between
the observed and imputed data sets. Thus, imputation just based
on self-reported intake frequency and gender could be proble-
matic. Finally, there were large differences in male/female ratio
between the three longitudinal change groups (1.22, 0.95, and 0.59
in the LESS, SAME and MORE groups, respectively), giving rise to
differences in MLC biases between males and females (Supple-
mentary Fig. 23). In the MLC correction procedure, we removed
mean and variance differences between the sex groups for AC by
standardising AC in females and males separately, which sub-
stantially reduced the sex-differential MLC biases (Supplementary
Fig. 23). However, if some of the trait-associated alleles are more
or less frequent in one gender group60 and there are genotype-sex
interaction effects, such locus-specific sex-differential biases are
unlikely to be eliminated by our MLC corrections.

In conclusion, we advise awareness of the pitfalls when ana-
lysing data on behavioural traits in biobank data sets such as the
UKB. Misreports and longitudinal changes of behavioural traits
by disease ascertainment could create biases and thereby induce
spurious signals and a loss of power in GWAS. Biases in GWAS
summary statistics due to MLC could further lead to biased
estimates in follow-up analyses such as genetic correlation and
Mendelian randomisation. As more biobank data sets have
become accessible, it is important to identify, investigate, and
correct for these biases in all kinds of behavioural traits including
smoking, drinking, diet, physical activity, sleep, and self-rated
health status. A longitudinal study of 1 million individuals for
several decades seems impractical at present, but we have shown
that the biases in AC can be largely corrected for by phenotypic
QC and longitudinal adjustment when additional phenotype
information (intake frequency, medical records, longitudinal
change, and reasons, etc.) are available. Questionnaires on life-
time use may provide more accurate estimates of the effects of
behaviours on health outcomes at a much lower cost than a
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longitudinal follow-up study. Researchers should be more careful
regarding these biases when conducting analyses for behavioural
and other modifiable traits using biobank data sets with self-
reported records.

Methods
Phenotypic data and quality controls. We obtained behavioural and disease traits
from the UK Biobank (UKB) data23. The UK Biobank has approval from the North
West Multicentre Research Ethics Committee (MREC), and informed consent has
been obtained from all participants. There were 455,607 individuals of European
ancestry with complete information on sex, age and principal components (PCs).
The self-reported drinking statuses (data-field ID: 20117) were: never drinkers (n
= 14,488), previous drinkers (n= 15,912), current drinkers (n= 424,507), and
unknown (446 participants preferred not to answer and 254 provided no response).
We removed “former drinkers” from all the analyses in this study, considering the
occurrence of the “sick quitter phenomenon”61. Among the 424,507 current
drinkers, 358,449 individuals reported their intake level. The AC level was summed
up as a weekly total intake score (units/week) of all the alcoholic drink subtypes
including beer plus cider, red wine, champagne plus white wine, spirits, and for-
tified wine. The mean of AC was 10.67 units per week (s.d. = 10.23). One unit was
defined as one measure for spirits, one glass for red wine/white wine/champagne,
or one pint of beer/cider. The raw AC units were transformed by log2 (raw AC
units + 1) to avoid having a heavily skewed distribution. The smoking intensity
was measured in cigarettes per day (CPD) in all current smokers (data-field ID:
3456; n= 32,801). Physical activity traits in the UKB were collected from both self-
reported questionnaires and devices (wrist-worn accelerometers). METT is a total
score of the Metabolic Equivalent Task (MET) minutes per week for walking,
moderate activity, and vigorous activity (data-field IDs: 864, 874, 884, 894, 904, and
914; n= 417,938). IPAQ is a derived categorical trait that utilises the information
from the METT and its three subsets mentioned above (see transformation criteria
in https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=540). The three IPAQ
categories are denoted as low, moderate, and high (n ¼ 100; 611, 190,056, and
127,271, respectively). OAA (overall acceleration average) is an objective assess-
ment of physical activity using a wrist-worn accelerometer (data-field ID: 90012; n
= 97,006). The participants were voluntary, and the measurements were collected
for seven consecutive days (see Doherty et al.62 for more details).

Following Zhu et al.39, we extracted phenotypic data of common diseases based
on the primary (data-field: 41202) and secondary (data-field: 41204) ICD 10 codes
and self-reported diseases (data-field: 20002) (Supplementary Data 4). There were
22 common diseases in total, and we further filtered out 4 diseases with a
prevalence <2% in the UKB. The mean disease count was 1.45 (s.d. = 1.56) in the
whole sample and 1.41 (s.d. = 1.53) in current drinkers. Body mass index (BMI)
was obtained from the physical measurements (data-field: 21001). Educational
attainment (EA) was indexed by years of school derived from qualification data
(data-field ID: 6138). Household income (HI) was measured by the average total
household income before tax (data-field ID: 738). For quantitative traits, extreme
phenotypic values outside the mean ± 7 s.d. range in each sex group were excluded.

Correcting for misreports and longitudinal changes. Our MLC corrections
consist of two steps. The first step is a phenotypic quality control (QC) procedure
used as an attempt to minimise the effects of misreports. We removed the indi-
viduals who self-reported as (1) never drinkers (n= 14,488), (2) current drinkers
with reported weekly consumption of zero (n= 9064), and (3) current drinkers
who provided no response to AC (n= 66,058), and retained a total of 349,385
individuals. The second step is to account for self-reported longitudinal changes
compared to 10 years ago (data-field ID: 1628). We partitioned the individuals who
passed the QC above into three groups based on the longitudinal change (i.e., LESS,
SAME or MORE) and conducted GWAS within each group. In the LESS group, we
further removed individuals who reduced their AC because of being ill or doctor’s
advice, i.e., longitudinal change due to disease ascertainment (data-field ID: 2664;
n= 11,886). We then performed an inverse-variance weighted meta-analysis of the
GWAS results from the three groups (n= 336,469). This partitioning strategy
efficiently removed any difference in mean or variance between the three groups.
More details of the MLC corrections are shown in Supplementary Figs. 1 and 2.

Genome-wide association analysis. The UKB genotype data were cleaned and
imputed into the Haplotype Reference Consortium (HRC)63 panel by the UKB
team23. We selected a subset of the sample of European ancestry (n= 456,426)
from the whole UKB cohort by projecting the individuals onto the PCs from the
1000 Genome Project (1KGP). Genotype posterior probabilities were converted to
hard-call genotypes using PLINK2 (–hard-call-thresh 0.1)64. We removed SNPs
with a minor allele count <5, Hardy-Weinberg equilibrium test P-value < 1 × 10−6,
missing genotype rate >5%, or imputation info score <0.3. For binary traits, we
performed BOLT-LMM analysis65 with sex, age and the first 10 PCs fitted as
covariates and then transformed the estimates of SNP effects on the observed 0-1
scale to odds ratios (OR) by LMOR66. For quantitative traits, we adjusted the
phenotypic values for sex and age, standardised the adjusted phenotypes to z-
scores, excluded individuals with zj j> 5, and conducted the BOLT-LMM analysis65

with the first 10 PCs as fitted as covariates in the model.

Considering a loss of power due to decreased sample size by MLC corrections,
we randomly down-sampled the GWAS data by 21,940 individuals and repeated
this process 30 times. We used a z-statistic to test if the number of loci that became
non-significant (or changed from non-significant to significant) after the MLC
corrections is significantly different from that expected by random down-sampling.
The average number of loci that became non-significant due to down-sampling was
10.03 (standard error of the mean s.e.m. = 0.85), significantly (P ¼ 2:08 ´ 10�12)
smaller than the decrease in the number of genome-wide significant loci due to the
MLC corrections (i.e., 16). For the GWAS signals lost because of down-sampling,
the average proportion of significant associations with the metabolic/cardiovascular
traits in PheWAS v20190117 was 31.2% (s.e.m.= 3.8%), which was significantly
lower than the observed 44.9% (P ¼ 3:61 ´ 10�4), supporting the enrichment of
the 16 loci in metabolic/cardiovascular traits (Supplementary Data 3). We also
identified 10 loci that became genome-wide significant only after the MLC
corrections (Supplementary Data 2). The down-sampling analysis showed that only
3.27 loci (s.e.m.= 0.52) would be expected by chance (Supplementary Data 3),
indicating that most of the 10 loci were likely to be masked by MLC in the
uncorrected GWAS.

Estimating heritability and genetic correlation. We used the LD score regres-
sion67 (LDSC) to estimate SNP-based heritability for a trait and the bivariate-
LDSC35 to estimate genetic correlation between traits using ~1.2 million SNPs in
common with those in HapMap 3 (ref. 68). For the 234 traits for which we obtained
GWAS summary data from LD Hub (http://ldsc.broadinstitute.org/ldhub/), the
LDSC analyses were performed online in LD Hub36. Note that due to the restricted
access to the full summary statistics of the 23andMe data sets, we did not perform
the genetic correlation analysis for AC using the full GSCAN data5.

Mendelian randomisation analysis. Mendelian randomisation (MR) is a method
to estimate causal effect of an exposure on an outcome using instrumental variables
(IVs) associated with the exposure40,41. MR assumes that the IVs are independent
of possible confounders that may associate with both the exposure and outcome.
Also, the IVs are assumed not to be associated with the outcome other than
mediated through the exposure. However, in real data, these assumptions can be
violated, leading to a biased estimate of the causal effect69. We performed MR
analyses to test the causal effect of AC on BMI using IVW, Robust, MR-Egger,
simple median, weighted median, mode, and Con-Mix implemented in the R
package ‘MendelianRandomization’ v0.4.2, MR-PRESSO v1.0, MRMix v0.1.0 and
RAPS v0.2 in R, and GSMR implemented in GCTA v1.91.8beta (http://
cnsgenomics.com/software/gsmr/). The IVs were selected from a clumping analysis
of the GWAS summary statistics in GCTA-GSMR (clumping criteria: window
size = 1Mb, P ¼ 5 ´ 10�8 and LD r2 ¼ 0:01).

Simulating data with disease ascertainment. We carried out simulations to
mimic the bias due to disease ascertainment in GWAS and its follow-up analyses. If
individuals who are affected by a disease tend to change a behaviour, such a change
would lead to a spurious correlation between the disease and behaviour. We
considered four scenarios in the simulation: (I) the disease liability (D) is inde-
pendent of the behavioural trait (Y), and 100 SNPs are associated with Y only; (II)
Y had a causal effect on D, and 100 SNPs are associated with Y (and D mediated
through Y); (III) Y and D are independent, and 100 SNPs are associated with D
only; (IV) Y had a causal effect on D, 100 SNPs affected Y (and D mediated
through Y), and another set of 100 SNPs affected D directly. In each scenario, to
mimic the disease ascertainment, we reduced the values of Y for the individuals
who had high values of D. More specifically, if the D value of an individual passed a
threshold (e.g., top 10%), the corresponding Y value would be subtracted by a
constant. We set the disease ascertainment threshold to be 10%, 20%, 30%, or 40%
and considered a subtraction from Y value by 1, 2, 3, 4 or 5 standard deviations.
We then conducted GWAS and estimated SNP effect correlation between Y and D
using the rb approach developed in a previous study70 as well as the causal effect of
Y on D using GSMR. To demonstrate the effectiveness of our MLC correction
procedure in correcting for disease ascertainment bias, we divided the individuals
into two groups (LESS and SAME) and then conducted the GWAS separately,
followed by a meta-analysis. Details of the simulation process and parameter
specifications can be found in Supplementary Note 2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GWAS summary data generated in this study are available at http://fastgwa.info/
share/mlc-paper/. The individual-level genotype and phenotype data from the UKB are
open to all bona fide researchers upon application (https://www.ukbiobank.ac.uk/
principles-of-access/). The GWAS summary statistics in the PheWAS database can be
downloaded at https://atlas.ctglab.nl/. The full download links of GWAS summary
statistics in the LD Hub can be found in the Lookup Center after login in at http://ldsc.
broadinstitute.org/. The 1000 Genome Project data can be downloaded at https://www.
internationalgenome.org/data/.
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