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Molecular imaging of Alzheimer’s disease–related
gamma-secretase in mice and nonhuman primates
Yulong Xu1, Changning Wang1, Hsiao-Ying Wey1, Yingxia Liang2, Zude Chen1, Se Hoon Choi2, Chongzhao Ran1, Kevin D. Rynearson3, Daniela R. Bernales1,
Robert E. Koegel1, Stephanie A. Fiedler1, Robin Striar1, Steven L. Wagner3,4, Rudolph E. Tanzi2, and Can Zhang2

The pathogenesis of Alzheimer’s disease (AD) is primarily driven by brain accumulation of the amyloid-β-42 (Aβ42) peptide
generated from the amyloid-β precursor protein (APP) via cleavages by β- and γ-secretase. γ-Secretase is a prime drug target
for AD; however, its brain regional expression and distribution remain largely unknown. Here, we are aimed at developing
molecular imaging tools for visualizing γ-secretase. We used our recently developed γ-secretase modulators (GSMs) and
synthesized our GSM-based imaging agent, [11C]SGSM-15606. We subsequently performed molecular imaging in rodents,
including AD transgenic animals, and macaques, which revealed that our probe displayed good brain uptake and selectivity,
stable metabolism, and appropriate kinetics and distribution for imaging γ-secretase in the brain. Interestingly, rodents and
macaques shared certain brain areas with high γ-secretase expression, suggesting a functional conservation of γ-secretase.
Collectively, we have provided the first molecular brain imaging of γ-secretase, which may not only accelerate our drug
discovery for AD but also advance our understanding of AD.

Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder and
the primary cause of dementia. Currently, there are no approved
therapeutics that completely stop or reverse the cognitive defi-
cits associated with AD. With increasing life expectancy and an
aging baby boomer generation, the prevalence of this age-
related disease is predicted to increase by more than 40% in
10 yr. The current standard of care only slows or delays the
progression of this insidious disease, potentially intensifying the
social and economic costs of the disease.

The molecular neuropathology of AD is characterized by two
hallmarks: β-amyloid plaques primarily composed of a small
protein, amyloid-β (Aβ; Bertram and Tanzi, 2008; Choi et al.,
2014; Cummings, 2004; Hardy and Selkoe, 2002); and neurofi-
brillary tangles (NFTs) composed of hyperphosphorylated tau
protein. Although the underlying mechanisms of AD have not
been completely elucidated, considerable evidence supports the
“Aβ hypothesis,” positing that excessive accumulation of Aβ is
the primary pathological event of AD, which induces the for-
mation of NFTs, followed by neuroinflammation and neuro-
degeneration in AD (Bertram and Tanzi, 2008; Choi et al., 2014;
Gandy, 2005; Hardy and Selkoe, 2002; Park et al., 2018). Aβ is

produced via a serial cleavage of the Aβ precursor protein (APP)
by β- and γ-secretase. While Aβ42 and Aβ40 are the two primary
Aβ species, Aβ42 is more aggregation prone and more prevalent
than Aβ40 in β-amyloid plaques in the brain (Bertram and Tanzi,
2008; Choi et al., 2014; Hardy and Selkoe, 2002). Thus, an ef-
fective therapeutic for AD should preferentially decrease Aβ42
levels (Choi et al., 2014; Zhang, 2017).

Particularly, γ-secretase cleavage of APP, following
β-processing of APP, determines the length of Aβ species and
can be modulated to decrease Aβ42 levels. Thus, selectively
modulating γ-secretase activity has emerged as a potential
disease therapeutic strategy for AD, because γ-secretase mod-
ulators (GSMs) can reduce the formation of pathogenic Aβ42
species while displaying little or no effects on non-APP sub-
strates of γ-secretase, such as Notch (Brendel et al., 2015;
Imbimbo et al., 2007; Kounnas et al., 2010; Rogers et al., 2012).
Several GSMs have been reported and can be largely divided
into two categories, including the early-stage nonsteroidal anti-
inflammatory drug (NSAID)–derived carboxylic acid–containing
GSMs and non-NSAID imidazole–containing GSMs. For example,
CHF5074 is a NSAID-like compound that displays IC50 (inhibitory
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concentration of reduction by 50%) of decreasing Aβ42 of 3.6 µM
in cell-based studies with promising results in AD mouse model–
based studies (Imbimbo et al., 2007; Sivilia et al., 2013) and safety
profiles in human trials (Imbimbo et al., 2013). The other two com-
pounds, RO5506284 (Brendel et al., 2015) and EVP-0015962 (Rogers
et al., 2012), both displayed over 20 nM in IC50s of Aβ42 from cell-
based studies and reduced β-amyloid pathology, one also displayed
improved behavioral deficits in AD mouse mice (Rogers et al., 2012).

Results and discussion
We have developed a series of new GSMs that display high
potential in AD therapeutics. We first described aryl 2-
aminothiazole class parent GSMs (Kounnas et al., 2010) with
relatively low aqueous solubility (Fig. S1) and then developed
aryl 2-aminothiazole class soluble GSMs (SGSMs) with increased
aqueous solubility but relatively lower IC50 in reducing Aβ42
(Raven et al., 2017; Wagner et al., 2014; SGSM-36; Fig. S1). We
recently developed a novel series of pyridazine class SGSMs and
reported SGSM-15606 with excellent solubility, potency in re-
ducing Aβ42 levels, and desirable drug-like properties (Wagner
et al., 2017; Fig. S1 and Table S1). Moreover, our GSMs were
characterized with mechanism of actions in targeting Aβ42 re-
lated to binding γ-secretase components, particularly PS1 frag-
ments using cell-based affinity chromatography analysis
(Kounnas et al., 2010). Additionally, our GSMs may access and
act on an allosteric site within PS1, which leads to a conforma-
tional change in PS1 (Raven et al., 2017). Our findings further
supported the results of other studies showing that pharmaco-
logical agents targeting γ-secretase bind the PS1–γ-secretase
complex and induce conformational changes within the active
sites of γ-secretase (Gertsik et al., 2015; Pozdnyakov et al., 2013).
GSM gaining access to PS1 may be related to γ-processing of
APP, resulting in changes in the levels and isoforms of Aβ spe-
cies (Raven et al., 2017). Collectively, these mechanism-based
studies on the molecular level and pharmacological studies
strongly support our SGSMs, particularly SGSM-15606, in clin-
ical development for AD intervention.

In this study, we set out to investigate whether our SGSMs
may be used in molecular imaging for PS1 proteins and inves-
tigation of AD (Table S1). Particularly, noninvasive molecular
imaging methods, such as positron emission tomography (PET),
have been developed to visualize and analyze the biochemistry-
based molecular targets in inaccessible tissues (e.g., the brain)
and therefore provided distinct advantages for AD-related
studies. The methods are different from in vitro techniques
that cannot provide analyses of systems-level intact organisms
over time in endogenous environment. Specifically, in vivo
molecular PET imaging of AD has been developed as an impor-
tant tool to evaluate AD pathological progresses and stages.
Moreover, the PET ligands, including those for Aβ plaques
(Klunk et al., 2004; Landau et al., 2014; Nordberg, 2004) and
neurofibrillary tau tangles (Choe and Lee, 2015; James et al.,
2015; Okamura et al., 2014), are widely used and becoming
more routine in clinical trials and neuropathology evaluation.
Earlier this year, a report described the development of
β-secretase, or BACE1, PET ligands in nonhuman primates

(NHPs; Zhang et al., 2018). Several PS1 tritium radiotracers have
been developed based on inhibitory or modulatory mechanisms
of γ-secretase in vitro (Iben et al., 2007; Liu et al., 2013; Patel
et al., 2006; Yan et al., 2004). However, there are no reports
on PET imaging probe targeting γ-secretase in animals and
humans, to our knowledge. Thus, the goal of our project is to
enhance our GSM development program through investigating
the SGSM brain engagement in vivo by developing the first PET
radiotracer targeting γ-secretase in animal brains.

Development of specific PET radiotracers to measure
γ-secretase density or any other central nervous system com-
ponent with high uptake is challenging (Wang et al., 2014). A
number of major factors have been identified that determine the
success of a radiotracer candidate. We have focused on these
factors in our current studies, which were described below.

Synthesis of [11C]SGSM-15606 that readily enter the brains
Certain criteria determines the ability of a potential PET tracer
to penetrate the blood–brain barrier (BBB) and become a valid
imaging tool. We therefore evaluated a recently reported lead
compound from our the new pyridazine class, SGSM-15606, in
crossing the BBB. Usually, properties including small molecular
weight (<500 daltons) and a high degree of lipophilicity may
favor a tracer to pass the lipid bilayer of the BBB. Furthermore,
predictive models based on PET imaging data suggest values of
the total polar surface area (tPSA) of <76 (Seo et al., 2014). The
molecular weight and tPSA of SGSM-15606 are within the typ-
ical range for small molecules that demonstrate good brain
penetration (Table S1). We radiolabeled SGSM-15606 at the
hydroxyl position with [11C]CH3I to lead to [11C]SGSM-15606
(Fig. 1 A). It was prepared in 30–35 min after the end of bom-
bardment, with radiochemical yields (2–8%, uncorrected for
decay and based on trapped [11C]CH3I), high radiochemical pu-
rity, and high chemical purity (>97%).

Next, we performed self-blocking study to further charac-
terize the binding affinity and selectivity of our [11C]SGSM-
15606 in rodents. Particularly, wild-type C57BL/6 mice (25–30 g,
male, 15 wk old) were treated with or without SGSM-15606
5 min before injection of [11C]SGSM-15606 (Fig. 1, B–E). We
showed that brain uptake of [11C]SGSM-15606 was ∼50% re-
duction based on AUC (area under curve) compared with base-
line uptake (Fig. 1 E). The highest brain uptake was observed at
3 min. The behavior of [11C]SGSM-15606 in the blocking scans
showed an injection peak followed by faster washout over time,
while the slower washout was observed in the baseline scans. A
more steady TAC in the baseline scans resulted in higher activity
levels at the end of the scan. These results of the blocking study
revealed that [11C]SGSM-15606 showed high brain uptake and
good specific binding by our self-blocking analysis. Thus, our
results indicate that [11C]SGSM-15606 would serve as a imaging
tool for new GSM target engagement measurement and accel-
erate the GSM development as potential AD therapeutics.

The binding affinity and selectivity of a radiotracer for its
target must be high enough to produce sufficient signal for de-
tection. Here, SGSM-15606 displayed excellent biological ability
in both specificity and potency (IC50 of Aβ42 = 7 nM). Unlike
γ-secretase inhibitors (Kreft et al., 2009), which inhibit the
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production of all Aβ peptides, GSMs bind PS1 components and do
not affect the total amount of Aβ produced. Also, GSMs do not result
in an accumulation of APP-CTFs or affect processing of other
γ-secretase substrates, including Notch. Based on the MDR1-MDCK
assay, SGSM-15606 is not a P-glycoprotein substrate, and no signif-
icant off-target binding with Centre d’Enseignement et de Recherche
en Etudes Postcoloniales profiling, with reported pharmacological
and toxicological properties (Table S1; Wagner et al., 2017).

PET imaging for PS1/γ-secretase in brains of AD transgenic
mice
After we synthesized and validated our [11C]SGSM-15606, we
further used our new tracer to evaluate the expression and
distribution of PS1/γ-secretase in AD. Particularly, we used the
previously reported 5XFAD transgenic mice that express
APPSwedish/Florida/London PS1M146L/L286V (Oakley et al., 2006;
Youmans et al., 2012) compared with wild-type animals. 10-wk-
old female transgenic or wild-type control mice were subjected
to PET imaging analysis using [11C]SGSM-15606. Our results
revealed steady and robust up-regulation of brain radioactivity
of [11C]SGSM-15606 in brains of AD transgenic mice (Figs. 2,
A–C). Additionally, we performed quantification analysis
showing the time–activity curves (TACs) of whole-brain uptake
of [11C]SGSM-15606 comparing AD to mice, represented by the
percentage of injected dose per cubic centimeter. Our results

showed that the brain uptake of [11C]SGSM-15606 in transgenic
animals was related to a 2.3-fold increase in brain uptake com-
pared with that of the control mice, and also reached a per-
centage of injected dose per cubic centimeter plateau of ∼3.5 at
the end of the scan (Fig. 2 C). Furthermore, we performed brain
regional analysis for PS1/γ-secretase expressions after i.v. in-
jection of [11C]SGSM-15606 and sagittal superimposition of cor-
responding template magnetic resonance imaging (MRI; Fig. 3,
A–D). We found that [11C]SGSM-15606 revealed higher uptake in
several brain regions, including cortex, hippocampus, and mid-
brain comparing transgenic to wild-type animals (Fig. 3, A–D).
Our results on brain imaging revealed brain regional and dif-
ferential expression of PS1/γ-secretase. Because γ-secretase
plays critical roles in AD, our findings provided new insights
of γ-secretase in AD and may also complement the knowledge of
γ-secretase concerning cellular and structural biology (Bai et al.,
2015; Chávez-Gutiérrez et al., 2012; Liu et al., 2019). Collectively,
our findings suggest that [11C]SGSM-15606 has provided a valid
imaging tool to further study AD, potentially in humans.

NHP PET/MRI study and metabolic stability analysis
So far, our data suggested that our new [11C]SGSM-15606 tracer
may be potentially used in AD patients to evaluate brain PS1/
γ-secretase. Therefore, we performed an NHP experiment to
evaluate the translational potential of our [11C]SGSM-15606

Figure 1. Radiosynthesis of [11C]SGSM-15606 and PET-CT–blocking analysis. (A) Reaction conditions: (a) TMS-Cl, NaI, MeOH, reflux, 2 h, >80%;
(b) 1 (precursor, 0.5 mg), [11C]CH3I, CsCO3 (5 mg), in 300 µl DMSO, 3 min, 50°C. Radiochemical yield: 2–5% (nondecay corrected to trapped [11C]CH3I).
(B and C) PET-CT blocking analysis of [11C]SGSM-15606 in C57BL/6 wild-type mice (male, 15 wk old). PET-CT image of [11C]SGSM-15606 at baseline (B; n = 2) or
following pretreatment with 1.0 mg/kg of SGSM-15606 (C; n = 2). Mice were from The Jackson Laboratory. (D) TACs of whole-brain uptake of [11C]SGSM-15606 of B
and C. *, whole-brain radioactivity normalized by maximal blood radioactivity. (E) AUC for TACs of baseline and blocking (30–60 min, ∼50% reduction in AUC).
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tracer as a possible step forward toward human studies. Our
results demonstrated high brain uptake (0.8–3.0 in standardized
uptake value [SUV]) of [11C]SGSM-15606 based on PET-MRI
(Fig. 4 A). Notably, relatively higher uptake was observed in

regions such as midbrain and anterior cingulate cortex (Fig. 4, B
and C). Rodents and macaques shared certain brain areas, par-
ticularly midbrain, that highly express γ-secretase, suggesting a
functional conservation of γ-secretase.

Figure 2. PET-CT analysis of PS1/γ-secretase in 5XFAD
transgenic and wild-type mice. (A) PET-CT image of
5XFAD transgenic mice (n = 2) after i.v. injection of [11C]
SGSM-15606. (B) PET-CT image of wild-type mice (n = 2)
after i.v. injection of [11C]SGSM-15606. (C) TACs of whole
brain uptake of [11C]SGSM-15606 in A and B. Data are ex-
pressed as the percentage of injected dose per cubic cen-
timeter (% ID/cc). B6SJL 5XFAD transgenic and wild-type
mice (B and C) were from The Jackson Laboratory.

Figure 3. Brain regional PS1/γ-secretase expression in 5XFAD transgenic and wild-type mice. (A) Representative PET images of 5XFAD transgenic mice
(n = 2) after i.v. injection of [11C]SGSM-15606. (B) Representative PET images of wild-type mice (n = 2) after i.v. injection of [11C]SGSM-15606. (C) Sagittal
sections were superimposed on the corresponding template MRI. (D) TACs for brain regions of A and B. BS, brainstem; CX, cortex; HIP, hippocampus; MB,
midbrain; TH, thalamus. Data were expressed as the percentage of injected dose per cubic centimeter (% ID/cc). B6SJL 5XFAD transgenic and wild-type mice
(A–D) were from The Jackson Laboratory.
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Furthermore, we performed kinetic modeling to estimate the
volume of distribution (VT) values, because kinetic modeling
analysis with an arterial plasma input function are considered
the gold standard for quantitation of target enzyme expression.
We used a two-tissue compartment (2-TC) model to analyze
dynamic [11C]SGSM-15606 PET data in the NHP brain. Our ki-
netic modeling results showed different expression levels of
[11C]SGSM-15606 across brain regions (Fig. 5 A). [11C]SGSM-
15606 was expressed across different brain regions, and the
levels in midbrain and anterior cingulate cortex displayed high
levels (Fig. 5 A). A tracer candidate can still be rendered unusable
in vivo if it is metabolized rapidly and those metabolites pervade
regions of interest. In addition, knowledge of SGSM-15606 me-
tabolism is important for modeling its distribution kinetics and
assessing safety profiles (Table S1). The appearance of labeled
metabolites in arterial plasma after [11C]SGSM-15606 i.v. injection
was depicted (Fig. 5 B). After 10min, <10% of the total radioactivity
in arterial plasma corresponded to [11C]SGSM-15606, indicating
fast washout of the radiotracer from blood. The stability evaluated
in plasma over time showed lasting presence of >70% of parent
compound at 30 min (Fig. 5 C). Collectively, our results suggested
that PET neuroimaging by [11C]SGSM-15606 allowed us to visualize
γ-secretase in brain regions in preclinical animals, which highly
support great potentials for clinical studies in AD patients.

Our GSM-based probe has provided a potential useful tool
that can be applied in combination with other probes/drugs or
approaches to better define the pathology of AD. For example,
[18F] PF-06684511 has been recently developed as a PET imaging

probe for BACE1 (Zhang et al., 2018). Based on the NHP imaging
with [18F] PF-06684511, BACE1 has a higher expression in AD-related
brain regions such as cortex and hippocampus, which shows similar
distributionwith our NHP study using [11C]SGSM-15606.With these
PET probes imaging secretases responsible for Aβ generation, we
could study the function/expression of the APP cleavage enzymes
noninvasively in the brain. More importantly, in combination with
other established AD PET probes, such as the probes for amyloid
plaque and tau PET imaging, we can have deeper understanding of
AD etiology and accelerate therapeutic development for curing AD.

In summary, [11C]SGSM-15606 is a radiolabeled GSM with
high selectivity and high brain uptake and provide a tool for
quantitative imaging for PS1/γ-secretase in the brain in vivo.
[11C]SGSM-15606 can be used as a γ-secretase–based PET radi-
oligand to investigate not only the roles of γ-secretase in AD
pathogenesis but also γ-secretase–based therapeutics in AD in-
tervention. At present, the safety and toxicology studies of
SGSM-15606 have been completed, and we have developed the
first γ-secretase PET radiotracer in animals. In future studies, it
is important that we characterize and optimize [11C]SGSM-15606
for further evaluation as a potential PET radiotracer in humans.

Materials and methods
General methods and materials
All reagents and solvents were of American Chemical Society–
grade purity or higher and used without further purification.
SGSM-15606 has been previously reported (Wagner et al., 2017).

Figure 4. PET-MRI imaging of PS1/γ-secretase in macaque brain. (A) Summed PET images (0–60 min) superimposed with MEMPRAGE-MRI of macaque
brains following injection of [11C]SGSM-15606. (B) Time-dependent (0–60min) activity curves for brain regions of interest. (C) SUV ratio (SUVR; 30–60min) of
brain regions of interest. *, SUV of brain regions of interest normalized by SUV of whole brain.
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It was designed at the University of California, San Diego, syn-
thesized at Albany Molecular Research, and determined to be
>95% pure based on liquid chromatography–tandem mass
spectrometry and nuclear magnetic resonance analyses. Mass
spectrometry data were recorded on an Agilent 6310 ion trap
mass spectrometer (electrospray ionization source) connected to
an Agilent 1200 series HPLC with quaternary pump, vacuum
degasser, diode-array detector, and autosampler. [11C]CO2 (1.0 Ci)
was obtained via the 14N (p, α)11C reaction on nitrogen with 2.5%
oxygen, with 11 MeV protons (Siemens Eclipse cyclotron), and
trapped on molecular sieves in a TRACERlab FX-MeI synthesizer
(General Electric). [11C]CH4 was obtained by the reduction of [11C]
CO2 in the presence of Ni/hydrogen at 350°C and recirculated
through an oven containing I2 to produce 11CH3I via a radical
reaction. All animal studies were performed at Massachusetts
General Hospital (PHS Assurance of Compliance no. A3596-01).
The Subcommittee on Research Animal Care serves as the Insti-
tutional Animal Care and Use Committee for the Massachusetts
General Hospital. The Subcommittee on Research Animal Care
reviewed and approved all procedures detailed in this paper.

Synthesis of compound 1 (precursor)
A mix of SGSM-15606 (10 mg, 0.024 mmol), NaI (11 mg, 0.073
mmol, 3 eq), andTMSCl (0.01ml, 8.6mg, 0.079mmol, 3 eq) inMeCN

(1.0 ml) was heated at 80°C for 2 h. The resulting mix was cooled to
room temperature and subjected to silica gel chromatography to give
the desired product as a brown solid (8 mg, 0.020 mmol, 84% yield;
mass spectrometry electrospray ionization [M+H] + 405.2).

Radiosynthesis of [11C]SGSM-15606
[11C]CH3I was trapped in a TRACERlab FX-M synthesizer reactor
(General Electric) preloaded with a solution of precursor (0.5
mg) Cs2CO3 (5.0 mg) in dry DMSO (300 µl). The solution was
stirred at 50°C for 3 min, and water (1.2 ml) was added. The
reaction mixture was purified by reverse phase semipreparative
HPLC (Phenomenex Luna 5u C8(2), 250 mm × 10 mm, 5 µm,
5.0 ml/min, 50% H2O + ammonium formate [0.1 M]/50%
CH3CN), and the desired fraction was collected. The final pro-
duct was reformulated by loading onto a solid-phase exchange
C-18 cartridge, rinsing with water (5 ml) and eluting with EtOH
(0.3 ml) and saline (0.9%, 2.7 ml). The chemical and radio-
chemical purity of the final product was tested by analytical
HPLC (Agilent Eclipse XDB-C18, 150 mm × 4.6 mm). The average
time required for the synthesis from end of cyclotron bom-
bardment to end of synthesis was 35 min. The average radio-
chemical yield was 2–5% (nondecay corrected to trapped [11C]
CH3I). Chemical and radiochemical purities were ≥95% with a
specific activity 0.8 ± 0.2 Ci/μmol (end of bombardment).

Figure 5. Kinetic modeling of [11C]SGSM-15606 in macaque brain and plasma analysis. (A) Kinetic modeling of [11C]SGSM-15606 in macaque brain.
VT data of 2-TC kinetic modeling showed PS1/γ-secretase in different brain regions. The top two areas included the midbrain and the anterior cingulate cortex.
(B) Plasma radioactivity analysis of [11C]SGSM-15606. Arterial plasma analysis revealed that the radioactivity was rapidly cleared from blood. (C) Plasma
stability analysis of [11C]SGSM-15606. The plasma stability evaluation over time showed lasting presence of >70% of parent compound at 30 min and close to
60% of parent compound at 60 min.

Xu et al. Journal of Experimental Medicine 6 of 9

Visualizing Alzheimer’s gamma-secretase https://doi.org/10.1084/jem.20182266

https://doi.org/10.1084/jem.20182266


Rodent PET–computed tomography (CT) acquisition and
postprocessing
Mice were used in this study. Animals were anesthetized with
inhalational isoflurane (Forane) at 3% in a carrier of 1.5–2 liter/
min medical oxygen and maintained at 2% isoflurane during the
imaging scan. The mice were then arranged in a Triumph Tri-
modality PET/CT/SPECT scanner (Gamma Medica) with a PET
resolution of 1–1.5 mm. Radiolabeled compound (100–200 µCi
per animal) was injected via lateral tail vein catheterization. For
the blocking study, unlabeled compound was injected 5 min
before the start of PET acquisition. Each dynamic PET scan was
performed for 60 min and followed by CT.

Rodent PET-CT image analysis
After scanning, dynamic PET data were collected and the cor-
responding images were reconstructed by 3D-MLEM (maximum
likelihood expectation maximization) method. The spheres in
brain regions were defined as the volumes of interest (VOIs)
according to the high-resolution CT structural images and
summed PET data, with a radius of no less than 1 mm to mini-
mize partial volume effects. Reconstructed images were ex-
ported from the scanner in DICOM format along with an
anatomical CT for rodent studies.

Macaque PET-MR acquisition
One rhesus macaque (male, 13 yr old), deprived of food for 12 h
before the study, was included in the PET-MRI scan. Anesthesia
was induced with intramuscular xylazine (0.5–2.0 mg/kg) and
ketamine (10 mg/kg). After endotracheal intubation, V-line and
A-line were inserted, and anesthesia was maintained using
isoflurane. The macaque was catheterized antecubitally for
radiotracer injection, and a radial arterial line was placed for
arterial blood sampling for blood and metabolite analysis. PET
magnetic resonance images of the brain were acquired on a
BrainPET insert on a Siemens TIM-Trio 3T MRI scanner with a
PET resolution of ∼2.5 mm at isocenter. Dynamic PET image
acquisition was initiated followed by administration of 2 mCi
[11C]SGSM-15606. A multi-echo magnetization prepared rapid
acquisition gradient echo (MEMPRAGE) sequence begin at the
same time of the PET scan for anatomical coregistration. Dy-
namic data from the PET scan were recorded in list mode and
corrected for attenuation. Macaque data were reconstructed
using a 3D-OSEM (ordered subsets expectation-maximization)
method.

Macaques PET-MR image analysis
PET data were motion corrected, spatially smoothed with a 2.5-
mm full-width at half-maximum Gaussian filter, and registered
to the INIA19 Template and NeuroMaps Atlas for brain imaging
analysis in macaques. Image registration was performed on
high-resolution MPRAGE MRI image using a 12–degrees of
freedom linear algorithm and a nonlinear algorithm to the atlas
brain. The transformation was then applied to the simulta-
neously collected dynamic PET data. Kinetic modeling was
performed in PMOD (PMOD3.4; PMOD Technologies). VOIs
were selected according to the brain atlas. A common VOI mask
was applied. TACs were exported from the whole brain and

brain regions for analysis. A 2-TC model was used to estimate
regional VT (ml/cm3) with a metabolite-corrected plasma TAC.
Voxel-wise VT maps will be calculated using 2-TC from the dy-
namic PET data.

Plasma and metabolite analysis
Arterial samples collected during imaging from the macaque
were centrifuged to obtain plasma, which will be then removed
and placed in an automated gamma counter. Metabolite analysis
was conducted on a custom automated robot fitted with Phe-
nomenex solid-phase exchange Strata-X 500 mg solid-phase
extraction cartridges that will be primed with ethanol (2 ml)
and deionized water (20 ml). Protein precipitation was achieved
by addition of plasma (300 µl) to acetonitrile (300 µl), which
was centrifuged for 1 min to obtain protein-free plasma. 300 µl
protein-free plasma/acetonitrile solution was diluted into de-
ionized water (3ml), loaded onto the C18 cartridge, and removed
of polar metabolites with 100% water. Next, a series of ex-
tractions were performed using water and acetonitrile. Each
sample was counted in a WIZARD2 Automatic Gamma Counter
to determine the presence of radiolabeled metabolites.

Online supplemental material
Fig. S1 demonstrates the developmental stages of our GSMs.
Table S1 lists the biochemical properties of SGSM-15606.
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Supplemental material

Table S1 is provided online and shows that SGSM-15606 displayed excellent properties for PET imaging probe development.

Figure S1. Development of our GSMs. Our GSMs have been developed in three stages and displayed unique structures with different aqueous solubility and
inhibitory effects on Aβ42 levels (represented by IC50/Aβ42 values). Our parent GSM was an aryl 2-aminothiazole class GSM with relatively low aqueous
solubility, which displayed low aqueous solubility (IC50/Aβ42 −10 nM). SGSM-36 was our first-generation soluble GSM and is an aryl 2-aminothiazole class
compound (IC50/Aβ42 −100 nM). SGSM-15606 was our second-generation SGSM and was a highly potent pyridazine class SGSM (IC50/Aβ42 −7 nM).
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