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Military personnel experience energy deficit (total energy expenditure higher than energy

intake), particularly during combat training and field exercises where exercising energy

expenditures are high and energy intake is reduced. Low energy availability (energy

intake minus exercising energy expenditure expressed relative to fat free mass) impairs

endocrine function and bone health, as recognized in female athletes as the Female

Athlete Triad syndrome. More recently, the Relative Energy Deficiency in Sport (RED-S)

syndrome encompasses broader health outcomes, physical and cognitive performance,

non-athletes, and men. This review summarizes the evidence for the effect of low

energy availability and energy deficiency in military training and operations on health and

performance outcomes. Energy availability is difficult to measure in free-living individuals

but doubly labeled water studies demonstrate high total energy expenditures during

military training; studies that have concurrently measured energy intake, or measured

body composition changes with DXA, suggest severe and/or prolonged energy deficits.

Military training in energy deficit disturbs endocrine and metabolic function, menstrual

function, bone health, immune function, gastrointestinal health, iron status, mood, and

physical and cognitive performance. There are more data for men than women, and little

evidence on the chronic effects of repeated exposures to energy deficit. Military training

impairs indices of health and performance, indicative of the Triad and RED-S, but the

multi-stressor environment makes it difficult to isolate the independent effects of energy

deficiency. Studies supplementing with energy to attenuate the energy deficit suggest an

independent effect of energy deficiency in the disturbances to metabolic, endocrine and

immune function, and physical performance, but randomized controlled trials are lacking.

Keywords: energy availability, energy deficit, endocrinology, physical performance, reproductive function, bone

INTRODUCTION

Military personnel experience episodes of energy deficit (total energy expenditure higher than
energy intake) throughout their career. High exercising energy expenditures and restricted food
intake, either due to logistical constraints, suppressed appetite, or as part of a training objective,
are contributing factors (1–8). Prolonged periods of energy deficit can negatively impact health
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and performance (9–11) and potentially impair military
effectiveness. The Female Athlete Triad (Triad) (11) and Relative
Energy Deficiency in Sport (RED-S) (9, 10) syndromes describe
the effects of chronic low energy availability (energy intake minus
exercise energy expenditure expressed relative to fat free mass)
(12) on health and performance outcomes. The Triad reflects
the effect of low energy availability on menstrual disturbances
and low bone mineral density (BMD) (11); RED-S describes
the effects of low energy availability on a range of wider health
and performance outcomes in “at risk” sporting and some
non-sporting (e.g., dancers) civilian populations (9, 10). The
relevance of the Triad and RED-S in a military context has not
been comprehensively reviewed.

The physical and psychological challenges faced by military
personnel are inherently different than those faced by athletes.
The implications of impaired performance are also different
between military and sporting populations; military tasks require
a unique combination of physical and cognitive effort in
unpredictable and stressful environments, and the consequences
of underperformance can be catastrophic. The predisposing
factors leading to, and health and performance implications of,
low energy availability in sport, may, therefore, not be applicable
to the military. Training for sport is focussed on optimizing
performance and often a desire for “leanness,” whereas military
training prepares individuals for the hostile physical and
psychological conditions of combat (e.g., concomitant periods of
prolonged exercise, food restriction, sleep deprivation, extreme
environments, and psychological stress). Evidence for the effects
of low energy availability in the Triad (11) and RED-S (9, 10)
mostly originates from short-term laboratory studies and cross-
sectional studies comparing amenorrhoeic and eumenorrhoeic
female athletes. Longitudinal prospective assessment of low
energy availability is possible in military populations in the
field, where energy restriction is often induced purposively as a
training objective or due to logistical constraints. Whilst military
field studies are not designed for this purpose, and involve
exposure to several stressors, data from these studies contribute
to an understanding of the implications of low energy availability
on health and performance. Most evidence for the effects of low
energy availability presented within the Triad (11) and RED-
S (9, 10) are for clinical outcomes, and a better understanding
of performance outcomes has important implications for the
military. The aim of this article is to review the evidence for the
effect of energy deficiency on health and performance outcomes
implicated in the Triad and RED-S in military populations.

ENERGY AVAILABILITY AND ENERGY
BALANCE

Energy availability is the dietary energy available for
metabolic function after exercise, defined as energy intake
minus exercise energy expenditure expressed relative to
fat free mass (FFM) (Equation 1) (12). Dietary energy is
essential for physiological processes, including locomotion,
thermoregulation, reproduction, and growth (13). High exercise
energy expenditures (locomotion) during athletic or military

training use energy that is no longer available for other processes
(12). Low energy availability partitions metabolic fuels toward
processes essential for survival (i.e., circulation and neural
activity) over non-essential processes (i.e., reproduction and
growth) (13). The mechanism is through altered endocrine
signaling from the central nervous system (i.e., decreased release
of gonadotropin releasing hormone to suppress reproductive
function) in response to acute changes in cellular fuel oxidation
and peripheral hormones (13). This altered endocrine signaling
can be harmful to health and performance.

Energy availability exists on a spectrum from optimal to low,
with or without disordered eating, as highlighted by the Triad
(11). Energy availability for normal metabolic function is 45
kcal·kg FFM−1 · d−1 (12, 14–18). Energy availability below 30
kcal·kg FFM−1 · d−1, equivalent to resting metabolic rate (12),
decreases luteinising hormone (LH) pulse frequency, oestradiol,
3,3,5-triiodothyronine (T3), insulin-like growth factor-1 (IGF-1),
and leptin, and increases cortisol, growth hormone (GH), and
bone resorption, in women (14, 15, 17). Low energy availability
has, therefore, been considered as < 30 kcal·kg FFM−1 · d−1

in the Triad (11, 19) and RED-S (9, 10). Although defining a
threshold for low energy availability is practically useful, the effect
of differing severities of low energy availability is likely dependent
on the physiological system, and an individual’s body size, age,
and sex (10); further validation of this threshold against other
clinical outcomes is required.

Energy Availability [kcal·kg FFM−1 · d−1] = (Energy Intake

[kcal·d−1]—Exercise Energy Expenditure [kcal·d−1])/Fat Free

Mass [kg].

Equation 1. Calculation of energy availability (12).
Energy balance is defined as energy intake minus total energy

expenditure (i.e., exercise and all other physiological processes)
and is distinctly different from energy availability; energy
availability is the input to physiological processes, whereas energy
balance is the net change in total body energy stores resulting
from the output from physiological processes (12). The acute
metabolic adaptations that occur with low energy availability
reduce resting metabolic rate and total energy expenditure, and
can result in an individual having low energy availability despite
being in energy balance and body mass stable (12, 19). Most
military studies have measured energy balance or body mass
to estimate energy status (reviewed in Demands of Military
Training and Employment); for the purpose of this review,
energy deficit is used to reflect a negative energy balance rather
than low energy availability. Findings from these military studies
must, therefore, be interpreted in context of these definitions and
physiological implications.

Female Athlete Triad and Relative Energy
Deficiency in Sport
The observation that disordered eating in female athletes,
particularly in sports emphasizing “leanness,” leads to functional
hypothalamic amenorrhoea and osteoporosis, was first
summarized by the American College of Sports Medicine with
the Triad framework in the 1990s (20). The Triad was updated in
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2007 to reflect the inter-relationship of energy availability (with
or without disordered eating), menstrual disturbance (with or
without functional hypothalamic amenorrhoea) and low BMD
(with or without osteoporosis) on a spectrum (11).

Subsequent to the Triad, the International Olympic
Committee defined RED-S in 2014 (9), with further updates in
2015 and 2018 (10, 21). The RED-S syndrome expands the Triad
to include men, populations other than athletes (e.g., dancers),
and other clinical and performance outcomes affected by low
energy availability (9, 10), although the evidence surrounding
some of the outcomes in RED-S and their clinical relevance has
been questioned (22). In brief, the RED-S syndrome highlights
that low energy availability can have effects on endocrine
and metabolic function, menstrual function, bone health,
immune function, hematological function, gastrointestinal
health, psychological well-being, and physical and cognitive
performance (9, 10):

The syndrome of RED-S refers to impaired physiological function

including, but not limited to, metabolic rate, menstrual function,

bone health, immunity, protein synthesis, cardiovascular health

caused by relative energy deficiency (9).

Disordered eating and/or the desire to be lean for aesthetic
or performance reasons are considered pre-dispositions for
the Triad (11) and RED-S (9). Unlike some sports, a specific
body composition is not a prerequisite to successful military
performance (23), however, leanness may be desired by some
military personnel, militaries have body mass employment
standards, and there is evidence of disordered eating in military
women (24, 25). Environments with unavoidable extreme
exercise and insufficient energy intake also likely contribute to
the development of RED-S (9), and there is evidence of the
Triad in non-athletes as well as athletes (26) and in men as
well as women (27). It, therefore, seems prudent to question
whether components of the Triad and RED-S are evident in
military personnel, considering: (i) periods of sustained high
exercising energy expenditures with restricted food intake (either
as a training objective, due to limited food availability in hostile
environments, or suppressed appetite) are imposed on military
personnel, particularly in the more arduous combat roles; (ii)
all military roles, including these arduous combat roles, are now
open to both men and women in many militaries, and; (iii)
military occupational tasks require the performance components
proposed within RED-S.

DEMANDS OF MILITARY TRAINING AND
EMPLOYMENT

Physical Demands
Military tasks are diverse (e.g., combat field exercises, casualty
extraction, weapon handling, repetitive lifting, prolonged load
carriage) and impose a wide range of physiological stresses.
Aerobic capacity and muscle strength, power, and endurance are
all important for performing military tasks (28). Basic military
training prepares new recruits for these tasks, and, therefore,
consists of a range of activities including physical training

(aerobic training, strength and conditioning, circuit training,
obstacle courses, agility training, and swimming), field exercises,
adventure training, and training on a variety of military specific
skills including load carriage, marching, military drill, and
weapon and equipment handling (29). Basic military training is
physically demanding, and total energy expenditures can exceed
∼3,400 and ∼4,400 kcal·d−1 for female and male recruits (29–
32); however, food is usually eaten ad libitum. Beyond basic
military training, trained soldiers undertake specialist military
training courses and field exercises in preparation for the hostile
nature of combat; selection and field exercises, therefore, impose
the added stressors of energy restriction, sleep deprivation, and
psychological stress (2, 33). For the purpose of this review, basic
military training refers to training courses completed by new
recruits upon entry to themilitary, and specialist military training
refers to advanced combat or promotional courses, or field
exercises, completed by trained soldiers throughout their careers.

Energy Availability and Energy Balance
The direct measurement of energy availability in free-living
individuals is challenging, with no consensus on measurement
protocols (e.g., defining what qualifies as exercise energy
expenditure) and inherent inaccuracies with the required
techniques (e.g., self-reported energy intake) (10, 34). The
uniform nature of military training (e.g., same equipment,
physical activity, and eating and sleeping patterns) may help
standardize measurement of energy availability, but exercise
energy expenditure is difficult to define inmilitary training. There
are various ambiguous definitions of exercise energy expenditure
(i.e., purposeful training, other leisure activities, or activity above
a certain intensity) (34), and unlike athletic training, military
training does not comprise discrete bouts of physical activity.

Most military studies have measured energy balance rather
than energy availability, likely due to the relative simplicity of
measurement. Numerous studies have measured total energy
expenditure and/or energy balance in military training and on
operations with either doubly labeled water or dual energy X-
ray absorptiometry (DXA). A comprehensive overview of these
studies is presented in Table 1. These studies demonstrate that
total energy expenditures, measured using the doubly labeled
water method, are high, and largely differ between individuals
as a function of body mass (29, 31, 49). Studies that have
measured both total energy expenditure and energy intake
have observed energy deficits (i.e., negative energy balance),
but the measurement of energy intake is inherently inaccurate.
Some studies have calculated energy deficits using DXA, which
measures the change in fat mass and FFM based on the known
energy densities of the two tissues (2, 4, 33, 53, 61). Food,
either served in canteens or in ration packs, is often provided
in standard portions or must be consumed within restricted
times, and, therefore, some heavier individuals may not meet
their energy requirements (1). In addition to high total energy
expenditures, restricted energy intake, as the result of logistical
barriers to eating or as a training objective (6), a hesitancy to
carry extra weight (71), sub-optimal dietary practices (72, 73),
or suppressed appetite or menu fatigue (6), may all contribute
to energy deficits. The remainder of this review discusses the
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TABLE 1 | Field studies measuring total energy expenditure and/or energy balance in military training and operations with doubly labeled water or dual energy X-ray absorptiometry.

Military activity Participants Measurements Total energy

expenditure

(kcal·d−1)

Energy intake

(kcal·d−1)

Energy balance

(kcal·d−1)

Australian Air Defense Guards

training (12 days) (35)

10 men provided full

rations; 10 men provided

half rations; 11 men

provided fresh food

TEE: doubly labeled water over 7 days (n = 8);

EI: weighed-food, estimations, and ration pack

discards; EB: not assessed

3,650 ± 1,060 Full ration: 2,197 ±

549; half ration:

1,576 ± 191; fresh

feeding: 2,866 ±

310

Not assessed

Australian Army jungle warfare

training (12 days) (36)

34 men TEE: doubly labeled water over 7 days (n = 4);

EI: weighed-food, estimations, and ration pack

discards; EB: not assessed

4,750 ± 531 4,040 (mess: 5,135;

field: 2,582)

Not assessed

British Army basic training (12

weeks) (31)

7 women; 7 men TEE: doubly labeled water over 10 days across

week 1 to 2 and week 9 to 10; EI: not

assessed; EB: not assessed

Women: 2,964 ±

263 and 2,988 ±

143; men: 3,633 ±

359 and 3,537 ±

335

Not assessed Not assessed

British Army basic training (14

weeks) (32)

10 women; 9 men TEE: doubly labeled water over 10 days across

week 1 to 2 and week 13 to 14; EI: not

assessed; EB: not assessed

Women: 2,986 ±

382 and 3,227 ±

454; men: 4,159 ±

621 and 4,350 ±

478

Not assessed Not assessed

British Army basic training (14

weeks) (29)

17 women; 16 men TEE: doubly labeled water over 10 days across

week 1 to 2 and week 12 to 13; EI: not

assessed; EB: not assessed

Women: 2,847 ±

323 and 3,390 ±

344; men: 4,020 ±

620 and 4,253 ±

556

Not assessed Not assessed

British Army Infantry basic

training (14 weeks) (37)

14 men TEE: doubly labeled water over 10 days across

week 1 and 2; EI: not assessed; EB: not

assessed

4,419 ± 430 Not assessed Not assessed

British Army Officer basic training

(44 weeks) (38)

10 women; 10 men TEE: doubly labeled water over 10 days; EI: not

assessed; EB: not assessed

4,112 ± 652 Not assessed Not assessed

British Army Parachute Regiment

basic training (24 weeks) (30)

6 men TEE: doubly labeled water over 10 days across

week 1 to 2 and week 19 to 20; EI: not

assessed; EB: not assessed

4,735 ± 700 and

4,696 ± 545

Not assessed Not assessed

British Army Section

Commanders battle course (8

weeks) (1)

27 men TEE: doubly labeled water over 10 days across

week 2 to 3 and week 6 to 7; EI: estimated

from TEE and EB; EB: estimated from changes

in FFM and FM measured with doubly labeled

water

4,693 ± 424 and

5,094 ± 471

4,235 −644

British Army Section

Commanders battle course (8

weeks) (4)

15 male controls; 15 men

provided extra 1,218

kcal·d−1

TEE: not assessed; EI: not assessed; EB:

estimated from changes in FFM and FM

measured by DXA

Not assessed Not assessed Normal training:

−526 ± 263;

supplemented

training: −167 ±

263

(Continued)
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TABLE 1 | Continued

Military activity Participants Measurements Total energy

expenditure

(kcal·d−1)

Energy intake

(kcal·d−1)

Energy balance

(kcal·d−1)

British Royal Marines on

deployment to Afghanistan (6

months) (39)

18 men TEE: doubly labeled water over 7 days

mid-deployment; EI: 7-day food record

mid-deployment; EB: not assessed

3,626 ± 450 Patrolling days:

2,194 ± 630;

non-patrolling days:

2,095 ± 613

Not assessed

Canadian Infantry arctic field

exercise (10 days) (40)

10 men TEE: doubly labeled water over 7 days; EI: food

records; EB: EI/TEE × 100

4,317 ± 927 2,633 ± 499 EI was 61% of TEE

Finish Defense Force basic

training (8 weeks) (41)

24 men TEE: doubly labeled water over 15 days during

last 2 weeks of training; EI: food records over 7

days; EB: (EI—TEE)/TEE × 100

3,697 ± 394 2,752 ± 771 −26 ± 18%

Finish Defense Force basic

training (8 weeks) (42)

24 men TEE: doubly labeled water over 8 days during

field exercise; EI: not assessed; EB: not

assessed

3,965 ± 502 Not assessed Not assessed

Gulf Cooperation Council

country Army, Air Force and Navy

Officer training (2 to 3 years) (43)

119 men TEE: doubly labeled water over 7 days; EI: not

assessed; EB: not assessed

3,057 ± 429 to

3,301 ± 504

Not assessed Not assessed

Israeli Defense Force winter and

summer Infantry training (44)

18 men in winter; 12 men

in summer

TEE: doubly labeled water over 12 days (winter,

n = 14; summer, n = 10); EI: food records; EB:

EI—TEE

Winter: 4,281 ±

170c; summer:

3,937 ± 159c

Winter: 2,792 ±

108c; summer:

2,857 ± 179c

Winter: −1,422 ±

163c; summer:

−924 ± 232c

Royal Netherlands Army

submarine deploymemt (3

months) (45)

10 men TEE: doubly labeled water over 2 weeks

(weeks 4 to 5); EI: estimated from TEE and EB;

EB: estimated from changes in FFM and FM

measured with doubly labeled water

2,937 ± 498 3,158 ± 786 221 ± 506

Norwegian Army winter training

(4 days training, 3 days ski

march) (46)

21 men TEE: doubly labeled water; EI: discards from

ration packs; EB: EI—TEE

6,140 ± 394

(training: 5,480 ±

389; ski march:

6,851 ± 562)

Training: 3,098 ±

236; ski march:

3,461 ± 586

−2,899 ± 498

(training: −2,382 ±

499; ski march:

−3,390 ± 669)

Norwegian Army winter training

(4 days) (47)

2 women and 71 men (18

controls; 27 provided

additional carbohydrate;

28 provided additional

protein [both ∼1,000

kcal·d−1 ])

TEE: doubly labeled water (controls, n = 14;

carbohydrate, n = 14; protein, n =14); EI: food

records; EB: EI—TEE

Control: 6,096 ±

412; carbohydrate:

6,181 ± 505;

protein: 6,167 ± 592

Control: 2,506 ±

410; carbohydrate:

3,131 ± 633;

protein: 2,825 ± 599

Control: −3,595 ±

606; carbohydrate:

−3,050 ± 888;

protein: −3,402 ±

687

Norwegian Defense Cyber

Academy field exercise (10 days)

(48)

4 women and 15 men

provided low protein (1

g·kg·d−1 ), and 3 women

and 16 men provided high

protein (2 g·kg·d−1 ) diet

TEE: not assessed; EI: food provided; EB:

estimated from changes in FFM and FM

measured by DXA

Not assessed Low protein: 1,183

± 168; high protein:

1,174 ± 170

Low protein: −4,373

± 1,250; high

protein: −4,271 ±

1,075

(Continued)
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TABLE 1 | Continued

Military activity Participants Measurements Total energy

expenditure

(kcal·d−1)

Energy intake

(kcal·d−1)

Energy balance

(kcal·d−1)

Norwegian Ranger training (7

day field exercise) (49)

6 women; 10 men TEE: doubly labeled water over 7 days; EI:

estimated from food provided; EB: not

assessed

Women: 5,234 ±

478; men: 6,358 ±

478

Women: 48 to 454;

men: 48 to 526

Not assessed

US Army basic combat training

(10 weeks) (50)

14 women; 30 men TEE: doubly labeled water over 5 days during

week 5 and 10; EI: not assessed; EB: not

assessed

Women:

3,412 ± 350 and

3,325 ± 493; men:

4,279 ± 445 and

4,096 ± 500

Not assessed Not assessed

US Army construction and

humanitarian tasks at altitude (15

days) (51)

35 male controls; 32 men

provided additional

carbohydrate

TEE: doubly labeled water (n = 11); EI: visual

estimations and food records; EB: not

assessed

3,549 ± 608 Control: 2,140 ± 94;

carbohydrate: 2,265

± 119

Not assessed

US Army Ranger selection and

assessment programme (6

weeks) (52)

131 men TEE: doubly labeled water over 5 days during

week 1 (n = 16); EI: estimated as food

provided from menus (canteen) and ration

packs (field); EB: not assessed

4,264 ± 342 2,919 ± 331 Not assessed

US Army Ranger training (8

weeks) (33, 53)

50 to 55 men TEE: estimated from EB and EI; EI: estimated

from rations provided; EB: estimated from

changes in FFM and FM measured by DXA

2,796 to 3,220 3,991 to 4,200 −1,195 ± 390 to

−900 ± 390

US Army Ranger training (8

weeks) (2)

49 male controls; 48 men

provided extra 400

kcal·d−1

TEE: not reported; EI: estimated as food

provided from menus (canteen) and ration

packs (field); EB: estimated from changes in

FFM and FM measured by DXA

Figure not reported Figure not reported Controls: −1,195 ±

478; supplemented:

−980 ± 382

US Marine cold weather field

exercise (11 days) (54)

23 men TEE: doubly labeled water; EI: food records;

EB: estimated from changes in FFM and FM

measured with doubly labeled water

4,919 ± 190c 3,132 ± 165c −1,872 ± 293c

US Marine desert field exercise

(11 days) (55)

11 men provided

carbohydrate drink; 8 men

provided placebo drink

TEE: doubly labeled water; EI: food records

and visual estimation; EB: not assessed

Carbohydrate: 4,397

± 1,051; placebo:

3,950 ± 645

Carbohydrate: 3,415

± 143; placebo:

3,057 ± 191

Not assessed

US Marine Infantry Officer

training (7 day field course) (56)

8 men TEE: doubly labeled water over 50 h; EI: empty

food wrappers from rations; EB: not assessed

3,647 ± 394 1,366 ± 272 Not assessed

US Marine Infantry Officer

training (8 day field course)

(57, 58)

29 to 34 men TEE: doubly labeled water (n = 12); EI: empty

food wrappers from rations; EB: not assessed

3,834 ± 200 to

3,862 ± 200

1,540 ± 300 to

1,540 ± 235

Not assessed

US Marine Infantry Officer

training (8 day field course) (59)

18 men provided low

protein (0.5 g·kg·d−1 ) and

17 men provided

moderate protein (0.9

g·kg·d−1 ) rations

TEE: doubly labeled water (low protein, n = 6;

moderate protein, n = 12); EI: empty food

wrappers from rations; EB: EI—TEE

Low protein: 3,941

± 478; moderate

protein: 3,798 ± 502

Low protein: 1,552

± 143; moderate

protein: 1,529 ± 167

Both groups:

−2,317

US Marines Special Operation

Command individual training

(four phases [each 7 to 23 days]

over 9 months) (60)

9 to 13 men TEE: doubly labeled water; EI: 24 h dietary

recalls and food records; EB: EI—TEE

3,754 ± 314 to

6,376 ± 712

346 ± 0 to 2,819 ±

488

−1,027 ± 740 to

−3,966 ± 776

(Continued)
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TABLE 1 | Continued

Military activity Participants Measurements Total energy

expenditure

(kcal·d−1)

Energy intake

(kcal·d−1)

Energy balance

(kcal·d−1)

US Marine survival, evasion,

resistance, escape training (18

days) (61)

63 men TEE: not assessed; EI: not assessed; EB:

estimated from changes in FFM and FM

measured by DXA

Not assessed Not assessed −4,203 ± 1,686

US Marine winter field exercise

(54 h) (62)

20 women; 30 men TEE: doubly labeled water; EI: empty food

wrappers from rations; EB: EI—TEE

Women: 4,729 ±

143; men: 6,138 ±

191

Women: 1,146 ±

430; men: 1,433 ±

478

Women: −8,121 ±

1,433; men:

−10,318 ± 2,484

over 54 h

US Natick Soldier Research,

Development and Engineering

Center personnel during normal

duties (7 days) (63)

2 women; 24 men TEE: doubly labeled water; EI: written or

personal digital assistant food records; EB:

(EI—TEE)/TEE × 100

Written record

group: 3,141 ± 647;

personal digital

assistant group:

3,158 ± 614

Written record

group: 3,266 ± 635;

personal digital

assistant group:

2,865 ± 716

Written record

group: 3%; personal

digital assistant

group: −8%

US Navy Sailors on amphibious

assault ship (8 days) (64)

10 women; 7 men TEE: doubly labeled water; EI: not assessed;

EB: not assessed

2,998 ± 788 Not assessed Not assessed

US Special Forces field training

(28 days) (65)

8 men provided full rations

(4,020 kcal·d−1 ); 8 men

provided lightweight

rations (1,980 kcal·d−1 )

TEE: doubly labeled water over 28 days; EI:

daily food records; EB: not assessed

Full ration: 3,480 ±

220; lightweight

ration: 3,320 ± 280

Full ration: first 14

days 2,840 ± 280,

second 14 days

3,080 ± 630;

lightweight ration:

first 14 days 1,900

± 130, second 14

days 1,960 ± 120

Not assessed

US Special Forces hot and cold

climate training (4 to 5 days) (66)

21 men in hot

environment; 8 men in

cold environment

TEE: doubly labeled water; EI: food recall; EB:

EI—TEE

Hot: 4,664 ± 1,339;

cold: 4,549 ± 1,221

Hot: 2,200 ± 711;

cold: 3,001 ± 900

Hot: −2,464 ±

1,696; cold: −1,548

± 1,607

US Special Forces

pre-deployment and combat

diver training (7 days) (67)

29 men TEE: doubly labeled water; EI: not assessed;

EB: not assessed

Pre-deployment

training: 3,901 ±

521; combat diver

training: 4,564 ±

351

Not assessed Not assessed

US Special Forces training (6 day

mountainous field exercise) (68)

6 men TEE: doubly labeled water; EI: daily food

records; EB: estimated from changes in FFM

and FM, predicted from underwater weighing

and total body water

4,554 ± 566 2,357 ± 860 −2,280 ± 368

US Special Forces training (four

phases over 64 days) (3)

36 men TEE: doubly labeled water over 10 days; EI:

visual estimation (canteen) or discards from

ration packs (field); EB: EI—TEE

3,633 ± 980 to

5,210 ± 717

Minimum of 2,510 ±

884; maximum not

reporteda

Up to −2,700 ± 540

US Special Forces training

(routine garrison training) (69)

32 men in special forces;

13 male support soldiers

TEE: doubly labeled water over 9 days (special

forces, n = 9; support soldiers, n = 9); EI: visual

estimation and food records; EB: not assessed

Special forces:

4,099 ± 740;

support soldiers:

3,136 ± 652

Special forces and

support combined:

3,204 (2,838,

3,676)b

Not assessed

Zimbabwean Commando

heat-stress field exercise (70)

8 men TEE: doubly labeled water over 10 days; EI:

food records; EB: not assessed

5,493 ± 358c 4,060 ± 358c Not assessed

Data are mean ± SD unless otherwise stated.
aData estimated from figures; bmedian and interquartile range; cmean ± standard error.

DXA, dual energy X-ray absorptiometry; EB, energy balance; EI, energy intake; FFM, fat free mass; FM, fat mass; Mess, military canteen; TEE, total energy expenditure.
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evidence for the health and performance implications of this
energy deficiency in military personnel.

ENERGY DEFICIENCY AND HEALTH

Endocrine and Metabolic Function
Low energy availability decreases reproductive (gonadotropins
and sex steroids), thyroid (T3), and metabolic (IGF-1, leptin)
hormone concentrations, and increases cortisol and GH (14–17).
Widespread disturbances in endocrine and metabolic function
are evident in energy deficient soldiers during specialist military
training. In Norwegian military cadets, 5 days of combat
training increased circulating cortisol and GH, and decreased
thyroid (T3 and thyroxine [T4]) and reproductive (follicle-
stimulating hormone [FSH], testosterone, and oestradiol)
hormone concentrations (74–79). The energy deficit was severe—
estimated energy intake≤ 1,600 kcal·d−1 and energy expenditure
≥ 8,500 kcal·d−1–and total sleep was ∼2 h across the 5 days.
Subsequent studies of male US Army Rangers support these
findings, and demonstrate that 8 weeks of combat training in
energy deficit (∼1,000 kcal·d−1) increased cortisol, and decreased
T3, IGF-1, and reproductive hormones (decreased LH and
testosterone, increased sex hormone binding globulin [SHBG])
(2, 80–82). Disturbances to endocrine and metabolic function
were also evident following a wide range of other specialist
military training courses (4, 48, 57, 59, 83–85). Limited studies on
operational deployment show decreased (with body mass losses)
(86) or unchanged (with stable body mass) (87) reproductive
hormone concentrations in men following deployment. The
long-term effects of acute changes in endocrine function are
unclear, but a cross-sectional analysis of experienced naval
operators completing normal duties reported low testosterone
suggesting chronic implications for gonadal function (88).
Further work on the implications of these changes in sex steroids
on reproductive function in men is required.

There are fewer studies on military women, likely due, in
part, to their historic exclusion from combat roles and there is
a greater proportion of men in the military. During a 5.5 day
Norwegian Special Forces field exercise, women had a greater
increase in cortisol and greater reduction in IGF-1 than men
(89). The men and women did not, however, complete the same
activities and further data comparing the response of men and
women to the same military training are warranted. There is
emerging evidence that female military personnel can experience
low energy availability without effects on hypothalamic-pituitary-
gonadal and adrenal axis function, assessed using clinically
relevant dynamic testing (90). Six women who lost 13% body
mass during a 61 day Antarctic crossing had largely unchanged
responsiveness of the gonadal and adrenal axes, and metabolic
status (90, 91). Results from this study provide important insight
into extreme energy deficit in women but most outcomes were
underpowered. For example, Korean female military cadets lost
∼5% of body mass after 4 and 8 weeks of training and had
decreased oestradiol (92). Assessment of hypothalamic-pituitary-
adrenal axis responsiveness after adrenocorticotrophic hormone
administration showed no mal-adaptation in women after 28
weeks of the 44 week British Army Officer training course, but

increases in hair and saliva cortisol were observed in the initial
weeks of training (93). Markers of psychological stress were also
increased and so it is likely that increased cortisol was due, in
part, to psychological stress. Whilst these observational studies in
men andwomen demonstrate disturbed endocrine function, high
levels of physical activity, sleep deprivation, and psychological
stress could contribute to these responses and the role of energy
deficit cannot be confirmed.

Several studies have examined differing severities of energy
deficit and these studies provide support for a relationship
between energy status and endocrine disturbance. Finnish male
trained soldiers had increased GH and cortisol, and decreased
testosterone and LH, following a 7 day field exercise in an
energy deficit of ∼4,000 kcal·d−1 (94). These markers of
endocrine function recovered during the subsequent 2 weeks
of field exercise when the energy deficit was decreased to <

1,000 kcal·d−1. Similarly, endocrine function was preserved in
Norwegian special forces soldiers during 3 weeks of training with
ad libitum food intake, but a subsequent 7 day field exercise in
∼4,000 kcal·d−1 energy deficit increased cortisol and SHGB, and
decreased IGF-1, T3, T4, and testosterone (95). The periods of
most severe energy deficit likely coincide with periods of highest
physical activity, sleep deprivation, and psychological stress. It
is, therefore, not possible to identify the independent effects of
energy status in these studies and randomized supplementation
trials are required.

The few studies that have provided supplementary energy
in addition to the habitual dietary intake during training
provide further support for energy status as the mechanism
for endocrine disturbances. An additional intake of 6,000–8,500
kcal·d−1 during the 5 day Norwegian Ranger course attenuated
disturbances to GH, cortisol and thyroid hormones, but not
reproductive hormones (74, 77, 78), whereas the provision of 3–
6 h extra sleep per night had no protective effect (74, 76, 79).
Increasing energy intake from 1,800 kcal·d−1 to 3,200 kcal·d−1

or 4,200 kcal·d−1 did not prevent the decrease in testosterone
after a 5 day combat course, but estimated energy expenditure
was > 5,000 kcal·d−1 and so the supplementary energy was
insufficient to eliminate the energy deficit (96). Periods of re-
feeding throughout US Army Ranger training resulted in the
recovery of cortisol, IGF-1, T3, SHBG, and testosterone, but
the provision of an extra 400 kcal·d−1 had no effect on these
markers, which was also insufficient to eliminate the energy
deficit (2). Supplementation with 1,218 kcal·d−1 during an 8
week British Army combat course did not prevent the increase
in cortisol, or decrease in IGF-1 and testosterone compared with
a control group, but only 66% of the supplement was consumed
resulting in only a small attenuation of the energy deficit (4).
Disturbances to adrenal, thyroid, reproductive, and metabolic
hormones may depend on the severity of energy deficit, and some
of these disturbances can be attenuated by additional energy
intake, supporting a role of energy deficit, at least in part, in the
endocrine disturbances observed with military activities.

Menstrual Function
Chronic low energy availability can result in functional
hypothalamic amenorrhoea in women. Functional hypothalamic
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amenorrhoea is the absence of menses due to suppression of
the hypothalamic-pituitary-ovarian axis (97). The suppressed
pulsatile release of gonadotropin-releasing hormone from the
hypothalamus, decreases LH pulse frequency from the pituitary,
and results in low circulating oestradiol (15, 16). Several
studies have investigated menstrual disturbances in the military
(24, 98–101), but inconsistencies with definitions of, and
screening methods used for, menstrual disturbances, limit robust
conclusions [see Gifford et al. (102) for a comprehensive
review of menstrual dysfunction in the military]. Cross-sectional
studies in the US Army identified the prevalence of menstrual
disturbances was 11–15% (amenorrhoea, oligomenorrhoea, or
delayed menarche) (24, 99). More than 90% of women reported
menstrual irregularities during 1 year of basic military training at
the US military academy, with almost half of the female cohort
reporting decreased menstrual frequency (98, 100). A similarly
high prevalence (70%) of menstrual disturbances were reported
after starting Korean basic military training (92). Although these
studies demonstrate basic military training can disturbmenstrual
function, the role of energy availability is not clear. Hormonal
contraceptive use is also higher in servicewomen than their
civilian counterparts, possibly due to an increased desire to
suppress menses (103). A high use of hormonal contraception
in servicewomen may mask changes in menstrual function in
military training. To our knowledge, there are no prospective
data examining the relationship between energy status and
menstrual function in military women, and other factors such
as psychological stress may contribute to menstrual function
disturbances (92, 101, 102).

Bone
Poor skeletal health is a widely recognized clinical outcome
associated with chronic low energy availability, and forms part
of the Triad (11) and RED-S (9). Low energy availability
decreases bone formation, possibly mediated by increased
cortisol and decreased T3, leptin, and IGF-1, and can increase
bone resorption by decreasing oestradiol production in women
(9, 11, 14, 102, 104). Amenorrhoeic athletes have lower whole-
body, axial, and appendicular areal BMD (105–108), poorer bone
microarchitecture and/or mechanical strength (105, 107, 109,
110), and increased stress fracture risk (105) compared with their
eumenorrhoeic counterparts. Low energy availability and low
oestradiol may have independent and combined effects on bone
(110, 111). The relationship between low energy availability and
bone in men is less well-described, but endocrine disturbances,
including decreases in sex steroids and IGF-1, likely disturb bone
health (27, 112, 113).

Male US Army Rangers had decreased markers of bone
formation (bone-specific alkaline phosphatase) and increased
markers of bone resorption (tartrate-resistant acid phosphatase)
after 8 weeks of training with energy deficits of ∼1,000 kcal·d−1

(114). Bone-specific alkaline phosphatase is indicative of bone
mineralisation and tartrate-resistant acid phosphatase reflects
osteoclast number (115), whereas C-telopeptide cross-links of
type 1 collagen, a marker of type I collagen breakdown,
was unchanged. Bone-specific alkaline phosphatase was still
decreased 2–6 weeks after the cessation of training and when

body mass had returned to pre-training values, whereas tartrate-
resistant acid phosphatase had returned to baseline, indicating a
lag in bone formation and a vulnerable period for overloading
bone. This reduction in bone formation coincided with decreases
in whole-body bone mineral content (2). Whole-body bone
mineral content and areal BMD losses were also evident after
7–10 months of operational deployment, during which time a
1.9% loss in body mass was observed (116). Six female soldiers
who lost 13% body mass over a 61 day crossing of the Antarctic
had decreased bone formation and areal BMD at the axial
skeleton (117). Tibial macro and microstructure were unchanged
suggesting mechanical loading was protective during energy
deficiency. These studies demonstrate that specialist military
training and deployment in energy deficit results in decreased
bone formation, increased bone resorption, and loss of bonemass
from the axial skeleton.

Stress fractures at weight-bearing sites are common during
basic military training (25, 118, 119), more so in women
than in men (120, 121). Skeletal injuries are indicative of the
high mechanical stresses of military activities, but decreased
bone formation and increased bone resorption with low
energy availability could decrease mechanical strength of bone
and increase the propagation of microcracks with repeated
loading. The evidence for low energy availability in basic
military training is mixed, and bone adapts favorably in
response to 8–13 weeks basic military training programmes
at appendicular sites (122–126). Increased incidence of stress
fractures (25, 99, 127–129) and musculoskeletal injuries (130),
and lower bone mass (131), are seen in servicewomen with
menstrual disturbances (oligomenorrhoea, amenorrhoea, or
delayed menarche), although these findings are not supported
by all studies (24, 132–136). Disordered eating (25, 134, 136)
and self-reported dietary intake (133, 137) are also not predictive
of stress fracture, but these studies must be interpreted with
consideration for the limitations of measuring dietary behaviors.
Studies have also demonstrated a greater decrease in body mass
(136) and IGF-1 (138), indicative of energy deficiency, in stress
fracture cases compared with non-injured controls during basic
military training. Decreased bone formation, increased bone
resorption, and bone loss from the axial skeleton are observed
during specialist military training, field exercises, and operational
deployment in military personnel experiencing energy deficit,
but the link between energy deficit and stress fracture in this
population is unclear.

Immune Function
Cell-mediated and humoral immune function is disturbed by
specialist military training in energy deficit (5 days to 8 weeks)
(35, 139–149). High levels of physical activity, insufficient
micronutrient intake, exposure to environmental extremes, sleep
deprivation, and psychological stress may have contributed to
these responses (150, 151), but providing an energy supplement
attenuates some of these effects. Eight weeks of US Army Ranger
training in energy deficit suppressed in vitro T-lymphocyte
function and resulted in a high incidence of infection, which
were both attenuated with an additional∼400 kcal·d−1 of energy
intake (140, 152). The provision of an extra 1,218 kcal·d−1 during
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an 8 week British Army combat course maintained circulating
leukocytes, lymphocytes, and monocytes, and increased the
secretory rate of salivary immunoglobulin A compared with
a control group (139). Similarly, increasing energy intake by
providing fresh food rather than a ration pack maintained
salivary immunoglobulin A during an Australian Air Force 12-
day tropical field exercise (35). The clinical relevance of these
acute changes in immune function is unclear, however, post-
exercise protein supplementation throughout US Marine basic
military training decreased the number of visits to the medical
center for illness (153), providing some support for energy status
in clinical outcomes. Basic military training (19–20 weeks) with
high total energy expenditures and psychological stress, but stable
body mass, had minimal effect on markers of immune function
and the incidence of upper respiratory tract infection (154, 155),
further supporting an independent role of energy status on
immune function. These studies provide some support for a
role of energy deficiency in disturbed immune function during
military training.

Gastrointestinal
Gastrointestinal distress is common during specialist military
training (156) and operational deployment (157). Restricting
the gut of essential nutrients places stress on the microbiota,
and changes in gut microbiota may contribute to decrements
in gut health during energy deficit (158). Increased intestinal
permeability and marked changes in gut microbiota and gut
microbiota derived metabolites were observed after 4 days
of severe energy deficit in Norwegian soldiers (159). An
increase in intestinal permeability is consistently reported
following specialist military training and could contribute to
the increase in gastrointestinal symptoms (156, 160). Changes
to the gut microbiota could be important in the etiology of
several other clinical outcomes including musculoskeletal injury,
illness and infection, and psychological impairments (158), but
the role of energy deficit on these outcomes is not clear.
High levels of physical activity, inflammation, environmental
extremes, sleep deprivation, psychological stress, and changes to
diet composition could all contribute to these gastrointestinal
changes (158).

Hematological
Low energy availability may play a role in iron deficiency
commonly seen in female athletes (10). Iron status is determined
by the measurement of a combination of biochemical markers
including ferritin, transferrin saturation, soluble transferrin
receptor, and hemoglobin (161, 162). Widespread disturbances
in these markers of iron status were reported in men and women
following 7–26 weeks of basic military training (137, 163–169)
and 12–26 weeks of operational deployment (39, 170). Stable
or small losses in body mass in these studies, and similar
self-reported habitual energy intake between recruits with and
without iron deficiency (171), suggest energy deficit was not a
primary mechanism in impaired iron status. Specialist military
training in energy deficit does not affect iron status in trained
male soldiers, although small decreases in hemoglobin have been
observed (162, 172). Ferritin and hepcidin, a regulator of iron

status, increased during specialist military training courses in
energy deficit in trained male soldiers (57, 81, 162, 173, 174),
indicative of increased inflammation rather than improved iron
status (162). These studies suggest that changes in iron status
with military training and operations are independent of energy
deficits; increased physical activity and inflammation, decreased
iron intake, gastrointestinal bleeding, iron sweat loss, and an
increase in iron turnover are potential mechanisms (163, 166).

Psychological
Numerous studies have reported mood disturbances, as
measured by the Profile of Mood States, in response to specialist
military training of several days to 8 weeks in energy deficit
(35, 147, 173, 175–183). The 8 week US Army Ranger course
increased tension, depression, anger, fatigue, and confusion,
and decreased vigor (176); similar disturbances to mood have
been reported following just 3 days of sustained military
activities in severe energy deficit (∼3,000 kcal·d−1) (175, 178).
US basic military training improved mood for both men
and women (166, 184–186), where energy intake was more
likely matched to energy expenditure (124, 187). Conversely,
women undergoing the 44-week British Army Officer basic
military training course had decreased resilience and increased
depression (93). Additional carbohydrate improved vigor and
decreased confusion during a day of military activities, but
other mood constructs were not affected and overall energy
status was not measured (188). Supplementary energy during
field exercises in an energy deficit had limited impact on mood
disturbance (182, 189, 190), but the provision of fresh feeding
rather than ration packs, which also resulted in increased energy
intake, attenuated feelings of fatigue during a 12 day field
exercise in energy deficit (35). Although controlled laboratory
trials provide some support for a role of energy deficiency
in mood disturbances (191, 192), psychological stress is a
fundamental component of military training, and combined
with sleep deprivation and the potential for dehydration, mood
disturbances cannot be attributed solely to energy deficit.

ENERGY DEFICIENCY AND
PERFORMANCE

Physical Performance
Muscle strength and power is decreased following specialist
military training courses of 3 days to 8 weeks in energy deficits of
∼500–4,000 kcal·d−1 (4, 46, 48, 58, 80, 81, 89, 95, 175, 189, 193).
Lower limb muscle power, assessed by jump performance, is
decreased by 9–28% (4, 48, 58, 80, 81, 89). Not all studies report
a decrease in lower limb muscle performance (189, 194, 195) and
muscle fatigue and/or damage likely contributes to some of these
effects (29, 46, 196). The maximal weight that can be lifted during
whole-body exercise is decreased by 14–21% (4, 80, 81, 193)
and upper body strength is decreased by up to 10% (48, 95,
189). An impairment in upper body strength and endurance
is not consistently observed (35, 175, 194), but occupational
task performance (repetitive lifting, obstacle course, and wall
building) can still decrease despite maintained upper body
strength (175), demonstrating the importance of testing relevant
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aspects of military occupational performance. It is not possible
to identify the direct role of energy deficit on impaired muscle
performance from these studies, and military activities will result
in some exercise-induced muscle fatigue and damage. Several
days of fasting decreased upper body strength in male soldiers
in the absence of other stressors (197), providing support for an
independent effect of energy deficiency on muscle performance.
A meta-regression demonstrated that muscle performance is
impaired in proportion to the energy deficit, and limiting energy
deficits to absolute values of −5,686 to −19,109 kcal, or ≤ 3% of
body mass, for an entire operation will limit muscle performance
decrements to≤ 2% (198).

There are fewer data on endurance performance parameters.
Decreased aerobic performance is seen after several days of field
exercise in energy deficit (96, 181) but anaerobic performance
is generally protected (96). Longer periods of operational
deployment (6–13 months) result in unchanged (39, 199) or
decreased (5–13%) (116, 200) aerobic capacity, and unchanged
or increased muscle performance (39, 87, 116, 199). Modest
decreases, or even increases in body mass, following deployment
suggests the energy deficit was not severe in these studies. The
delay between the end of deployment and the measurement of
physical performance, the potential for de-conditioning (116,
200) or increased physical training volume (199), differences
in operational role performed (199), and the temporal nature
of combat activity, make studies on deployments difficult
to interpret.

The provision of an additional 1,218 kcal·d−1 during an 8
week British Army combat course attenuated the energy deficit
from ∼500 kcal·d−1 to 150 kcal·d−1 and prevented the loss
in FFM and muscle performance (4). Another study found no
effect of supplementary energy on physical performance and
FFM, although the energy failed to offset the energy deficit
compared with a control group (189). Muscle performance
decreases in proportion to the loss in FFM (4, 80, 193), with
energy deficit resulting in negative whole-body protein balance
(47, 201). Other energy supplementation studies demonstrated
that aerobic performance loss is attenuated following a 5 day
field exercise (96), and performance on military physical fitness
tests is augmented (202) and musculoskeletal injury incidence
is decreased (153, 203) in basic military training. These studies
support energy deficiency as a contributing factor in impaired
muscle performance, and to a lesser extent aerobic endurance,
during military training.

Cognitive Performance
Impaired vigilance, choice and simple reaction time, pattern
recognition, short-term working memory, logical reasoning,
and marksmanship are reported following several days to 8
weeks of specialist military training in energy deficit (173, 176–
180, 182, 204), although other studies report unchanged (35)
or improved (192) cognitive performance. Although impaired
cognitive performance coincided with severe energy deficits (173,
176, 178), and demonstrated recovery with re-feeding (176),
laboratory studies demonstrated that 2 days of isolated energy
deficit only decreases cognitive performance during exercise
(205) and not at rest (191, 206). In contrast, components of

logical reasoning, working memory, visual reaction time, and
vigilance improved in US Army basic military training (185).
Additional energy in the form of carbohydrate supplementation
maintained vigilance during 1 day of sustained simulatedmilitary
activity compared with a placebo (188), and promoted recovery
of Stroop test performance following special forces survival
training (207), although energy status was unreported. Shooting
performance decreased during a 21 day field exercise, and
although energy balance was not measured, decreased IGF-1
suggests an energy deficit (194). Shorter periods (4 days) of
field training in severe energy deficit (∼2,900 kcal·d−1) had no
effect on shooting performance (175) and high energy intakes
did not improve shooting performance (208) or protect against
decrements in other constructs of cognitive performance (182,
209) during field exercises in energy deficit. The multi-stressors
of military training, including sleep deprivation and dehydration,
may contribute to impaired cognitive performance, with sleep
deprivation and energy restriction likely to have independent
effects (210).

ENERGY DEFICIENCY IN FEMALE
SOLDIERS

Most evidence for the effect of low energy availability on health
and performance is in female athletes (9–11, 19), whereas most
of the military studies presented here were conducted in men.
The effect of low energy availability in male athletes is being
increasingly recognized (27, 112), and these military data make
an important contribution to this field. The lack of data on
military women is likely due, in part, to their previous exclusion
from combat roles, and, therefore, lack of exposure to severe
energy deficits. Men make-up most of the military, and women
have only recently been permitted to enter combat roles in
several countries including the UK and US. Women in these
combat roles are likely to experience higher physical demands
(29, 196, 211), have poorer physical performance (211), a higher
incidence of musculoskeletal injuries and stress fractures (121),
and increased risk of reproductive disturbances with low energy
availability (102), compared with men. Better understanding
of the effects of low energy availability on the health and
performance of women in military roles, including combat roles,
is an important area of future study.

CONCLUSIONS

Military personnel are exposed to energy deficits of varying
severities during training and on operational deployment. These
energy deficits are largely experienced by trained soldiers during
specialist military combat training courses and field exercises,
rather than recruits in basic military training. Military training in
energy deficit results in many components of the Triad and RED-
S, notably disturbances to endocrine and metabolic function,
bone turnover, immune function, gastrointestinal health, mood,
and physical and cognitive performance (Figure 1). Military
training is a multi-stressor environment, so it is difficult to isolate
the independent effects of energy status. Energy supplementation
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FIGURE 1 | Potential health and performance effects of military training and operations in energy deficit.

studies suggest that energy deficiency contributes to impaired
metabolic, endocrine, and immune function, and physical
performance. Further randomized controlled trials are required
to better identify the role of feeding and energy deficiency on
health and performance outcomes. Most studies examined the
short-term effects of arduous military training courses, but the
long-term health effects of cyclical phases of energy deficiency
and recovery, characteristic of military training and employment,
require further study. More prospective longitudinal studies are
also important to better understand the effect of energy deficiency
on female soldiers’ health and performance.
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