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Abstract

The genetic risk for prostate cancer has been governed by a few rare variants with high pen-

etrance and over 150 commonly occurring variants with lower impact on risk; however, most

of these variants have been identified in studies containing exclusively European individuals.

People of non-European ancestries make up less than 15% of prostate cancer GWAS sub-

jects. Across the globe, incidence of prostate cancer varies with population due to environ-

mental and genetic factors. The discrepancy between disease incidence and representation

in genetics highlights the need for more studies of the genetic risk for prostate cancer across

diverse populations. To better understand the genetic risk for prostate cancer across diverse

populations, we performed PrediXcan and GWAS in a case-control study of 4,769 self-iden-

tified African American (2,463 cases and 2,306 controls), 2,199 Japanese American (1,106

cases and 1,093 controls), and 2,147 Latin American (1,081 cases and 1,066 controls) indi-

viduals from the Multiethnic Genome-wide Scan of Prostate Cancer. We used prediction

models from 46 tissues in GTEx version 8 and five models from monocyte transcriptomes in

the Multi-Ethnic Study of Atherosclerosis. Across the three populations, we predicted 19

gene-tissue pairs, including five unique genes, to be significantly (lfsr < 0.05) associated

with prostate cancer. One of these genes, NKX3-1, replicated in a larger European study. At

the SNP level, 110 SNPs met genome-wide significance in the African American study while

123 SNPs met significance in the Japanese American study. Fine mapping revealed three

significant independent loci in the African American study and two significant independent

loci in the Japanese American study. These identified loci confirm findings from previous

GWAS of prostate cancer in diverse populations while PrediXcan-identified genes suggest

potential new directions for prostate cancer research in populations across the globe.

Introduction

In the past two decades, genome-wide association studies (GWAS) have evolved as a critical

method to detect and characterize genomic loci affecting susceptibility to various polygenic
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disorders. As this important method to detect genetic associations has grown, individuals of

non-European ancestries have made up less than 22% of all GWAS. Individuals of African,

East Asian, and Latin American ancestries made up 2.03%, 8.21%, and 1.13%, respectively [1].

These populations are similarly poorly represented in GWAS of prostate cancer. Individuals of

European ancestries make up over 85% of discovery GWAS, while individuals of African, East

Asian, and Latin American ancestries make up less than 11%, 3%, and 1%, respectively [2].

Individuals of African American or Latin American ancestries are far more diverse due to

more recent genetic admixture compared to individuals with East Asian ancestries [3]. This

means that individuals who identify as Latin American or African American may have

genomes composed of linkage disequilibrium (LD) blocks from Africa, Europe, and the Amer-

icas. Admixture and difference in population structure can lead to complexities in studying

genetic associations within diverse populations. Nonetheless, these populations need to be

studied to better understand disease risk across the globe. The lack of representation of non-

European populations in GWAS can lead to further health disparities from non-transferable

findings across populations. Since allele and haplotype frequencies differ across populations,

susceptibility to disease will vary with these frequencies [4]. Elucidating this susceptibility has

grown increasingly important since many disease risk prediction models lose performance

accuracy across populations [5]. Having accurate models to predict disease risk is especially

important for prostate cancer since disease risk is noticeably different across populations.

Prostate Cancer is the most commonly diagnosed cancer and second leading cause of can-

cer death among African American men; one in seven black men will be diagnosed with pros-

tate cancer in his lifetime compared to one in nine white men [6]. Risk factors for prostate

cancer include age, family history of disease, and African ancestries. The genetic component of

prostate cancer is made of rare variants with high penetrance and many common variants

with lower penetrance [7, 8]. Adding to the complexity of this analysis, prostate cancer is a

remarkably heterogeneous phenotype with various molecular and physical classifications [9].

While prostate cancer susceptibility is increased in African Americans, prostate cancer risk is

poorly understood in individuals of East Asian ancestries. The age adjusted incidence rate of

prostate cancer in East Asian Americans is nearly three times that of native East Asian individ-

uals [10]. Better understanding of how alleles specific to East Asian populations influence pros-

tate cancer risk could reveal new underlying disease biology. Latin American individuals are

the least studied of the three populations. The lack of representation could be due to low rates

of incidence of prostate cancer in Central and South America; however, Latin American coun-

tries are estimated to have the second highest increase in risk for the disease by 2040 [11].

Of the 67 published prostate cancer GWAS in the National Center for Biotechnology Infor-

mation (NCBI) GWAS Catalog, only 16 studies included individuals of non-European ances-

tries [12]. These GWAS have identified 8q24 as a region carrying susceptibility loci for

prostate cancer. While some fine-mapping of this region has been done in diverse populations,

transcriptome-wide association studies (TWAS) of prostate cancer have not been conducted

across diverse populations [13, 14]. TWAS serves as a systematic method for integrating

expression quantitative trait loci (eQTL) data from GWAS [15–17]. Since TWAS uses gene

expression as an intermediate phenotype, it has a functional advantage over GWAS. One of

the largest GWAS published up to this point that included over 140,000 individuals of Euro-

pean ancestries was the Prostate Cancer Association Group to investigate Cancer-Associated

Alterations in the Genome (PRACTICAL) Consortium [8]. Two of the largest gene-based

association studies specific to prostate cancer were TWAS of the PRACTICAL GWAS sum-

mary statistics [18, 19]. While these studies provided insight into genes associated with pros-

tate cancer in European subjects, they provided little insight into genes affected by ancestry-

specific SNPs in diverse populations. Moreover, broader and more accurate genotype and
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gene expression imputation panels have been created since the studies in diverse populations

were published.

We seek to better understand the genetic architecture of gene expression for prostate cancer

in African American, Japanese American, and Latin American populations. To do this, we per-

formed a standard case-control GWAS across 4,769 African American subjects, 2,147 Latin

American subjects, and 2,199 Japanese American subjects. We used a deterministic approxi-

mation of posteriors for GWAS (DAP-G) to fine-map the 8q24 susceptibility region [20]. In

addition to GWAS, we performed TWAS using PrediXcan across 46 tissues from GTEx ver-

sion 8 and five models from the Multi-Ethnic Study of Atherosclerosis. We replicated our data

in an S-PrediXcan application to the PRACTICAL summary statistics [15, 21]. All scripts and

notes for this study can be found at https://github.com/WheelerLab/Prostate-Cancer-Study.

Methods

Genotype and phenotype data

Phenotype and genotype data for all individuals in this study were downloaded from the NCBI

database of Genotypes and Phenotypes (dbGaP) accession number phs000306.v4.p1. Our proj-

ect was determined exempt from human subjects federal regulations under exemption number

4 by the Loyola University Chicago Institutional Review Board (project number 2014). Partici-

pants were mainly self-reported ethnicities of African Americans, Japanese Americans, or

Latin Americans. Cases of cancer within these men were identified by annual linkage to the

National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) regis-

tries in California and Hawaii. Whole genome genotypying was performed on Illumnia

Human 1M-Duov3_B and Human660W-Quad_v1_A array platforms surveying 1,185,051

and 592,839 single nucleotide polymorphisms (SNP), respectively [22, 23]. The final associa-

tion analyses included 4,769 African American subjects (2,463 cases and 2,306 controls), 2,147

Japanese American subjects (1106 cases and 1093 controls), and 2,199 Latin American subjects

(1081 cases and 1066 controls) (Table 1).

Quality control and imputation

After we downloaded the data from dbGaP, we divided the subjects into three groups of their

self-reported ethnicities. Standard genome-wide quality control was performed separately on

each of the three groups using PLINK [24]. In each group, we removed SNPs with genotyping

rates < 99%. We then removed SNPs significantly outside of Hardy-Weinberg Equilibrium

(P< 1 × 10−6). We also filtered out individuals with excess heterozygosity, removing individu-

als at least three standard deviations from mean heterozygosity. We then used PLINK to calcu-

late the first ten principal components of each study when merged with three populations

Table 1. Population characteristics: Genotype and phenotype data from the three populations went through standard genome-wide quality control and genotype

imputation.

Population African American Japanese American Latin American

Pre-QC Individuals 4874 2199 2147

Post-QC Individuals 4769 2199 2147

Cases 2463 1106 1081

Controls 2306 1093 1066

Pre-QC SNPs 1,199,187 657,366 657,366

Post-QC SNPs 1,077,583 540,326 539,366

Post-Imputation SNPs 15,394,464 4,623,264 7,010,834

https://doi.org/10.1371/journal.pone.0236209.t001
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from HapMap phase 3 [25]. The first three principal components of each group were used to

confirm self-identified ethnicity (S1 Fig).

Following the confirmation of ethnicity, filtered genotypes were imputed using the Univer-

sity of Michigan Imputation Server [26]. All three groups of genotypes were imputed sepa-

rately using minimac4 and Eagle version 2.3 for phasing. For the Japanese American

population, 1000 Genomes Phase 3 version 5 (1000G) was used as a reference panel [27].

Both the African American and Latin American groups were imputed with 1000G and the

Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) [28].

Genotypes for all three populations were filtered for imputation accuracy and minor allele fre-

quency (MAF). SNPs with r2 < 0.8 and MAF < 0.01 were removed from the analysis. The

union of genotypes imputed with 1000G and CAAPA in African American and Latin Ameri-

can populations were used for downstream analysis. r2 and MAF filtering took place before the

merging of genotypes. For SNPs in the intersection of the two imputation panels, the SNP

imputed with CAAPA was selected for the GWAS and PrediXcan analysis due to LD similarity

between the CAAPA reference panel and the populations studied. The number of SNPs and

individuals in each ethnicity at various steps throughout quality control and imputation are

reported in Table 1.

Genome-wide association study

We performed a traditional case-control GWAS of prostate cancer using a logistic regression

in PLINK. The first ten principal components were used as covariates to account for global

population structure. P< 5 × 10−8 was used as the P-value threshold to denote genome-wide

significance. Independent loci were determined and analyzed using deterministic approxima-

tion of posteriors for GWAS (DAP-G), an integrative joint enrichment analysis of multiple

causal variants [20]. SNPs were clustered into groups with both a cluster posterior inclusion

probability (PIP) and an individual SNP PIP. SNPs in the same cluster were identified as

linked, and each group of SNPs was considered a locus independent of others. Pairwise LD cal-

culations of r2 were calculated in PLINK [24].

PrediXcan and S-PrediXcan

We used the gene expression imputation method, PrediXcan, to predict genetically regulated

levels of expression for each individual across the three populations [15]. We predicted expres-

sion using five models built from monocyte transcriptomes of self-identified European

(CAU), Hispanic (HIS), African American (AFA) individuals in the Multi-Ethnic Study of

Atherosclerosis (MESA). The two other MESA models were built from combined African

American-Hispanic (AFHI) data, and all three populations (ALL) [29]. Additionally, we also

predicted expression using the 46 multivariate adaptive shrinkage (mashr) models built from

46 tissues in the Gene-Tissue Expression Project (GTEx) version 8 [30, 31]. Ovary, uterus, and

vagina were excluded from the total tissues. In the GTEx version 8 prediction models, only tis-

sues from individuals with European ancestries were used. All gene expression prediction

models may be found at http://predictdb.org/. We tested the predicted expression levels for

association with the case-control status of individuals in each ethnic population using the first

ten principal components as covariates. Significant gene-tissue association were determined

after performing an adaptive shrinkage using the R package ashr to account for multiple test-

ing [32]. The adaptive shrinkage calculated a local false sign rate (lfsr) for each test. Gene-tissue

pairs with lfsr< 0.05 were considered significant. We chose lfsr over traditional false discovery

rate because lfsr accounts for both effect size and standard error for each gene-tissue pair. To

confirm significant gene-tissue findings, we used COLOC to investigate colocalization
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between the GWAS and eQTLs [33]. We followed up these finding using the summary statis-

tics version of PrediXcan, S-PrediXcan [21]. We applied the same GTEx prediction models to

the PRACTICAL summary statistics, which included over 20.3M SNPs [8].

Results

Genome-wide association studies

To better characterize the genetic architecture underlying prostate-cancer across non-Euro-

pean populations, we performed a case-control GWAS of prostate cancer across 15M SNPs in

nearly 5,000 self-identified African American individuals. Additionally, we performed GWAS

across 4.6M SNPs in a nearly 2,200 Japanese American individuals and 7.0M SNPs in 2,147

Latin American individuals. Notably, this GWAS includes imputed SNPs from 1000G and

CAAPA, two reference panels not available at the time of the original genotyping and GWAS

of this case-control study [22, 23, 27, 34].

In our GWAS of 4,769 self-identified African American individuals, we found 110 SNPs to

be significantly associated (P< 5 × 10−8) with prostate cancer. Of these 110 SNPs, 108 of them

were located at a previously identified region of chromosome 8 (Fig 1A). Of the SNPs on chro-

mosome 8, rs76595456 was the most significantly associated at P = 1.01 × 10−15. The minor

allele (T) of rs76595456 is a SNP found only in individuals of recent African ancestries (Fig 2).

Four independent clusters were identified by DAP-G on chromosome 8 at 8q24 (Fig 1C).

Of the four clusters, two contained SNPs meeting genome-wide significance, one led by

rs76595456 (PIP = 0.942) and the other led by rs72725879 (PIP = 0.994) (S1 Table).

rs72725879 was also significant in the Japanese American GWAS (Fig 1B and 1D). Two of 110

SNPs (rs10149068 & rs8017723) were found at a novel locus on chromosome 14. These two

SNPs on chromosome 14 are linked (r2 = 0.989) and identified as one locus.

The GWAS of 2,199 Japanese American individuals identified 123 SNPs as genome-

wide significant. Every genome-wide significant SNP was located at the 8q24 region of

chromosome 8 (Fig 1B). rs1456315 was the most significantly associated SNP in this study

(P = 1.40 × 10−13). We identified six distinct clusters of SNPs with DAP-G (Fig 1D). Two of

the six clusters contained SNPs meeting genome-wide significance with PIP > 0.5. rs1456315

had not only the lowest P-value, but also the highest PIP (PIP = 0.990) in the Japanese Ameri-

can GWAS (Fig 2). rs1456315 was found to be marginally significant in the African American

GWAS (P = 1.29 × 10−7). rs1456315 and rs72725879 are linked (r2 = 0.815) in the Japanese

American GWAS population and have similar allele frequencies across East Asian populations

while rs1456315 and rs72725879 are less linked (r2 = 0.448) in the African American GWAS

population and have divergent allele frequencies across African populations (Fig 2). r2 values

between SNPs were calculated using PLINK in each individual case-control study. D0 values

were calculated using the 1000G African reference population (AFR) in LDlink [27, 37]. The

GWAS of 7M SNPs in 2,147 Latin American individuals identified no genome-wide significant

SNPs. chr13:106685795 was the most associated SNP (P = 4.41 × 10−7), located on chromo-

some 13 (S2 Fig).

Gene-based association studies

We used the gene expression imputation tool, PrediXcan to predict gene expression from

genotypes using models built from transcriptomes of 46 tissues in version 8 of GTEx [17, 30].

We also predicted gene expression using five models built from monocyte transcriptome

of diverse populations in MESA [29]. After predicting the genetically regulated level of expres-

sion for each gene using each of these models, we tested the predicted gene expression for
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association with the phenotype status of each subject using the first ten principal components

as covariates.

In our application of PrediXcan to the 4,769 African American individuals, we predicted

expression of 489,459 gene-tissue pairs. We identified two gene-tissue pairs with lfsr < 0.05

and nine gene-tissue pairs with lfsr < 0.10 across all GTEx version 8 mashr prediction

models (Table 2; Fig 3). EBPL was the gene in all nine of the gene-tissue pairs. The two

most significantly associated gene-tissue pairs by lfsr were found in cerebellar hemisphere

(lfsr = 0.0423) and cervical spinal cord (lfsr = 0.0485). The gene-tissue pair with the

lowest P-value was KLK3, a gene encoding for prostate-specific antigen, in Tibial Artery

(P = 3.31 × 10−6), but the lfsr was not significant (lfsr = 0.921). No gene-tissue pairs in the

MESA prediction models significantly associated with prostate cancer in the African Ameri-

can population (S3 Fig).

Fig 1. Fine-mapping of the top prostate cancer GWAS signals in African Americans and Japanese Americans. (A &

B) depict a LocusZoom plots of GWAS results from African American and Japanese American populations, respectively

[35]. The most significant SNPs in both GWAS were in the same chromosome 8 region. (A) is plotted using 1000G AFR

2014 LD, and (B) is plotted using 1000G ASN 2014 LD. The y-axis is the −log10(P) while the x-axis is location on

chromosome 8 measured in megabases (Mb). Color represents the LD r2. (C & D) depict the GWAS −log10(P) compared

to DAP-G SNP posterior inclusion probabilities (PIP) for the African American and Japanese American populations,

respectively [20]. Each point on the plot represents one SNP in each GWAS. The color of each point represents the

independent cluster the SNP was assigned to in its respective population. Grey points represent those that were not

clustered by DAP-G.

https://doi.org/10.1371/journal.pone.0236209.g001
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Fig 2. Global allele frequencies of SNPS significantly associates with prostate cancer. A depiction of the global

minor allele frequencies rs76595456 (A), rs72725879 (B), and rs1456315 (C). (A) rs76595456 represents the most

significantly associated SNP in the African American GWAS. The minor allele, T, is found only in populations of

recent African ancestries. (B) rs72725879 represents the only SNP to be identified by DAP-G in a cluster in both the

African American and Japanese American GWAS. (C) rs1456315 represents the most significantly associated SNP in

the Japanese American GWAS. rs1456315 (C) is found in strong LD with rs72725879 (B) (r2 = 0.815) in the Japanese

American GWAS population. rs1456315 and rs72725879 are not linked in the African American GWAS population (r2

= 0.448). This figure was adapted from one generated using the Geography of Genetic Variants Browser [36]. SNP

position on chromosome 8 is labeled using hg19 coordinates from 1000G.

https://doi.org/10.1371/journal.pone.0236209.g002
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Table 2. PrediXcan significant genes significant (lfsr< 0.05) gene-tissue pairs from PrediXcan analysis. lfsr represents the local false sign rate as calculated using adap-

tive shrinkage [32]. P(PRACTICAL) represents P-value for the gene-tissue pair in the S-PrediXcan analysis of the PRACTICAL summary statistics. Beta(PRACTICAL)

represents the effect direction and size predicted from S-PrediXcan. “NA” means that the gene was not tested in the PRACTICAL summary statistics.

Population Gene Tissue lfsr P Beta P (PRACTICAL) Beta (PRACTICAL)

African American EBPL Brain_Cerebellar_Hemisphere 0.0423 5.25E-05 -0.022 0.3 0.006

African American EBPL Brain_Spinal_cord_cervical_c-1 0.0485 4.94E-05 -0.032 0.551 0.005

Japanese American PLCL1 Adrenal_Gland 0.0448 9.72E-07 0.752 0.419 -0.068

Japanese American PLCL1 Artery_Aorta 0.0435 9.72E-07 0.738 0.419 -0.067

Japanese American NKX3-1 Brain_Caudate_basal_ganglia 0.0472 1.05E-05 -0.208 3.61E-25 -0.288

Japanese American FAM227A Brain_Nucleus_accumbens_basal_ganglia 0.042 9.13E-06 -0.211 NA NA

Japanese American NKX3-1 Brain_Putamen_basal_ganglia 0.0475 1.05E-05 -0.212 1.70E-46 -0.215

Japanese American FAM227A Brain_Putamen_basal_ganglia 0.0379 8.21E-06 -0.183 NA NA

Japanese American NKX3-1 Brain_Substantia_nigra 0.0209 3.80E-06 -0.238 1.18E-20 -0.288

Japanese American FAM227A Esophagus_Mucosa 0.0444 9.80E-06 -0.206 NA NA

Japanese American NKX3-1 Heart_Left_Ventricle 0.0469 1.05E-05 -0.202 3.61E-25 -0.28

Japanese American FAM227A Heart_Left_Ventricle 0.0434 9.22E-06 -0.222 NA NA

Japanese American NKX3-1 Liver 0.0468 1.05E-05 -0.198 3.61E-25 -0.274

Japanese American PLCL1 Lung 0.0485 9.72E-07 0.797 0.419 -0.072

Japanese American NKX3-1 Muscle_Skeletal 0.0413 8.02E-06 -0.147 3.61E-25 -0.375

Japanese American PLCL1 Nerve_Tibial 0.031 1.40E-06 0.44 0.537 -0.033

Japanese American FAM227A Pituitary 0.0418 9.09E-06 -0.178 NA NA

Japanese American FAM227A Prostate 0.045 1.00E-05 -0.186 NA NA

Japanese American COQ10B Thyroid 0.0418 2.29E-07 -1.138 0.298 0.13

https://doi.org/10.1371/journal.pone.0236209.t002

Fig 3. Prostate cancer PrediXcan results for GTEx predicted genes in African American and Japanese American populations. (A & B) are Manhattan

plots of the PrediXcan results using GTEx version 8 mashr gene expression prediction models for the respective African American and Japanese American

populations. Each point represents a gene-tissue test for association with prostate cancer via PrediXcan. The y-axis represents the −log10(P) of the gene-

tissue test, and the x-axis plots chromosome number. The size of the dot is inversely proportional to its lfsr.

https://doi.org/10.1371/journal.pone.0236209.g003
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We used PrediXcan to impute and associate gene expression with prostate cancer across

270,813 gene-tissue pairs in GTEx version 8 from 2,199 Japanese American individuals. We

found seventeen gene-tissue pairs to be significantly associated with prostate cancer in this

population (Table 2). Of these seventeen gene-tissue pairs, four unique genes were identified:

PLCL1, NKX3-1, FAM227A, COQ10B. The most significantly associated gene-tissue pair by P-

value was COQ10B in Thyroid (P = 2.28 × 10−7). When we applied PrediXcan to the Latin

American study, we predicted expression of 411,366 gene-tissue pairs in GTEx version 8. No

genes were significantly associated with prostate cancer by lfsr or P-value (S4 Fig).

We attempted to replicate our PrediXcan findings by applying S-PrediXcan to GWAS sum-

mary statistics of the PRACTICAL meta-analysis of over 140,000 individuals of European

ancestries performed by Schumacher et al. [8]. 424,518 gene-tissue pairs were tested from the

summary statistics using GTEx version 8 prediction models. When we compared these sum-

mary level results to our findings, only NKX3-1 replicated with a P-value meeting Bonferroni

significance (P< 1.178 × 10−7). Similar to the findings of our TWAS, the direction of effect

predicted by S-PrediXcan was negative, associating decreased expression of NKX3-1 with pros-

tate cancer (Table 2). Not enough SNPs were not present in the FAM227A prediction model to

reliably predict expression from PRACTICAL summary statistics.

Discussion

Broadly, the findings of this study confirm previously well-established information about the

genetics of prostate cancer in diverse populations; however, our study differs from previous

ones since we performed the first TWAS of prostate cancer in these populations using mashr

prediction models from GTEx version 8 and diverse prediction models from MESA [17, 29].

Two of the main findings of this study were identifying risk loci at chromosome 8q24 and

identifying NKX3-1 as a risk gene for prostate cancer. Prostate cancer risk at 8q24 has been

well characterized to carry SNPs that are population-specific to African Americans [13, 23,

38]. Previously, up to twelve independent risk signals have been identified at 8q24 in European

populations and three significant loci in populations of African ancestries [13, 39] (S2 & S3

Tables).

Our study found four independent clusters of SNPs at this position for the African Ameri-

can study using DAP-G. Two of these four clusters contained SNPs meeting genome-wide sig-

nificance. Han et al. previously identified rs72725879, rs114798100, and rs111906932 to be

three distinct significantly associated loci [13] (S3 Table). All three of these SNPs met genome-

wide significance in our study, however, our DAP-G modeling clustered SNPs differently than

in the forward selection modeling of Han et al. (Fig 1). In both studies, rs72725879 was identi-

fied as an independent risk signal. Han et al. found rs114798100 and rs111906932 to be inde-

pendent risk loci while DAP-G in our study prioritized rs76595456 as risk signal independent

from rs72725879. Interestingly, DAP-G clustered rs114798100 (PIP = 1.21 × 10−5) with

rs76595456 (PIP = .942), and rs111906932 was not assigned to any cluster by DAP-G.

rs76595456 appears to be frequently co-inherited with rs114798100 (D0 = 0.964 in 1000G

AFR) and rs111906932 (D0 = 0.975 in 1000G AFR). The small number of independent signals

identified by DAP-G is unsurprising since DAP-G is a more conservative fine-mapping tool

that assumes a single causal variant is expected a priori. This difference could also be attributed

to sample size since Han et al. had a sample size nearly twice that of our study. Additionally,

we found six clusters in the Japanese American study using DAP-G. Of the 102 SNPs assigned

to clusters by DAP-G in either African or Japanese American population, only rs72725879

overlapped across populations (Fig 2). rs72725879 has previously been implicated in Asian
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ancestry-specific risk to prostate cancer [14], and is in high LD (r2 = 0.815) with rs1456315,

which was the most significantly associated SNP in the Japanese American GWAS.

With respect to our identification of NKX3-1 in the Japanese American TWAS, NKX3-1
was identified across six tissues including both brain and somatic tissue. NKX3-1 is a well

known tumor suppression gene, whose decreased expression has been associated with prostate

cancer [40, 41]. In all six tissues, NKX3-1 expression was predicted with a negative direction of

effect, associating decreased expression with the phenotype. This direction of effect is repli-

cated both in our S-PrediXcan application to the PRACTICAL summary statistics and previ-

ous finding in Japanese populations [42].

rs76595456 is identified as an African ancestry-specific SNP

rs76595456 was the most significantly associated (P = 1.01 × 10−15) SNP in our study. Its

minor risk allele is specific to populations of recent African ancestries (MAF = 0.1150), and it

is absent in both Asian and European populations [27] (Fig 2). The SNP had an individual PIP

of 0.942 and was found in a cluster with seven other SNPs bearing a cluster PIP of 0.995. The

SNP is an intron variant of PCAT2, a well-established prostate cancer associated transcript

[13].

Novel gene associations implicated by TWAS

In our TWAS of prostate cancer across African Americans, we report EBPL as a gene signifi-

cantly associated (lfsr = 0.0423) with prostate cancer in this population. EBPL made up the top

twenty gene-tissue pairs by lfsr (lfsr ranging from 0.0423-0.153). It was the most associated

gene reported across all five MESA gene expression prediction populations by both P-value

(P = 4.67 × 10−6 in AFA) and lfsr (lfsr = .106 in AFHI). The highest gene-tissue COLOC P4

value, the probability that the GWAS and eQTL signal are colocalized, was 0.18. In the S-Pre-

diXcan analysis of the PRACTICAL data, the gene did not replicate. This failure to replicate

could be attributed to difference genetic architecture across the African American test popula-

tion and the European PRACTICAL population.

The TWAS of prostate cancer in the Japanese American population revealed four unique

genes associated with prostate cancer. The previously discussed NKX3-1 is a well-established

tumor suppressor gene whose decreased expression is known to progress the aggressiveness of

the tumor [41, 43]. COQ10B has not been associated with prostate cancer previously according

to the NCBI GWAS Catalog [12]. PLCL1 has been nominally associated with prostate cancer

through a SNP x SNP interaction study [44]. Neither of these genes replicated in the larger

S-PrediXcan analysis. FAM227A provides an interesting situation since it has been previously

identified to be associated with prostate cancer in a GWAS of prostate cancer in Middle East-

ern populations [45]. Additionally, it was the only significant gene-tissue pair to be found in

prostate tissue. SNPs were not present in the PRACTICAL summary stats to generate a reliably

predicted level of expression of FAM227A using S-PrediXcan. Despite having nearly 15 million

more SNPs in the PRACTICAL summary statistics compared to our GWAS and TWAS of Jap-

anese American populations, SNPs were not genotyped or imputed at this location on chro-

mosome 22 in the PRACTICAL study. One of the SNPs in this model, rs16999186, has a

divergent allele frequency across Japanese (MAF = 0.114) and European (MAF = 0.0169) pop-

ulations [27]. Since this frequency in European populations falls near the quality control MAF

threshold in the original PRACTICAL study and below the genotyping threshold for the Euro-

pean-specific designed genotyping array, this SNP could easily be missed in larger studies [8].

FAM227A also lies within approximately 150kB of SUN2 (P = 1.18 × 10−5;lfsr = .108) a gene

marginally significant in our MESA-HIS prediction model. SUN2 has recently been identified
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as a gene whose decreased expression has been significantly associated with prostate cancer in

Japanese populations [46].

Conclusion

In summary, this study of 4,769 African American and 2,199 Japanese American individuals

identifies potential population-specific risk loci for prostate cancer in people of recent African

or East Asian ancestries. Since its minor risk allele is found only in populations of recent Afri-

can ancestries, rs76595456 is suggested as a potentially novel risk SNP to prostate cancer in

African Americans. Furthermore, the identification of FAM227A as a potential susceptibility

gene for prostate cancer in non-European populations highlights growing need for studies of

the genetics of prostate cancer in non-European populations. This study’s principal limitations

were sample size and ancestry matching in gene expression prediction models. Sample sizes of

under 5,000 African American subjects and nearly 2,200 Japanese American subjects pale in

comparison to studies of exclusively European populations that are nearly two orders of mag-

nitude larger. Considering that African American men are nearly twice as likely to die from

prostate cancer as their white counterparts, the need for larger sample sizes of African Ameri-

can subjects cannot be overstated [6]. Regarding the gene expression prediction models used,

the GTEx version 8 prediction models are the most comprehensive set of prediction models to

date; however, they are built exclusively from the transcriptomes of European ancestries indi-

viduals. Where the models provide accuracy and breadth in capturing common eQTLs, they

struggle to predict expression from population-specific eQTLs. The MESA prediction models

used capture some of the diversity across populations, but they too are limited by sample size

(233 African American individuals, 352 Hispanic individuals, and 578 European individuals)

and diversity considering there is no model built from transcriptomes of East Asian subjects

[29]. To better understand the genetic processes that underlie prostate cancer in diverse popu-

lations, more diverse studies are needed.

Supporting information

S1 Fig. Quality control PCA against HapMap. After merging genotypes with those of four

reference populations from version three of the HapMap Project, we performed principal

component analysis of all three study populations separately. African American (A) and Japa-

nese American (B) genotypes are plotted with three populations from HapMap: Chinese in

Beijing and Japanese in Tokyo (ASN), European ancestries in Utah (CEU), and Yoruba people

in Ibadan, Nigeria (YRI). The Latin American genotypes are plotted with Chinese in Beijing

and Japanese in Tokyo (ASN), European ancestries in Utah (CEU), and indigenous people of

North America (NAT).

(TIF)

S2 Fig. Chromosome 13 GWAS & DAP-G results. Genome-wide association studies identi-

fied no genome-wide significant SNPs. (A) depicts a LocusZoom plots of the most associated

GWAS results from Native American population on chromosome 13 [35]. (A) is plotted using

1000G AMR 2014 LD. The y-axis is the -log(P) while the x-axis is location on chromosome 13

measured in megabases. Color represents the LD r2. (B) depicts the results of our GWAS in

comparison to DAP-G cluster and PIP for the Latin American population [20]. Each point on

the plot represents one SNP in our GWAS. The y-axis is -log(P), and the x-axis is the individ-

ual SNP PIP as calculated by DAP-G. The color of each point represents the cluster to which

DAP-G assigned it.

(TIF)
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S3 Fig. MESA PrediXcan Manhattan plots. (A, B, & C) are Manhattan plots of the gene-based

association study using MESA monocyte gene expression prediction models for the respective

African American, Japanese American, and Latin American populations. Each point represents

a gene-tissue test from PrediXcan. The y-axis represents the −log10(P) of the gene-tissue test,

and the x-axis plots chromosome number. The size of the dot is inversely proportional to its lfsr.

(TIF)

S4 Fig. Latin American PrediXcan Manhattan plots. Manhattan plot of the gene-based asso-

ciation study using GTEx version 8 mashr gene expression prediction models for the Latin

American population. Each point represents a gene-tissue test from PrediXcan. The y-axis rep-

resents the −log10(P) of the gene-tissue test, and the x-axis plots chromosome number. The

size of the dot is inversely proportional to its lfsr.

(TIF)

S1 Table. DAP-G clustered SNPs. At chromosome 8q24, DAP-G calculated PIPs for 12,785

SNPs and 3,878 SNPs in the African American and Japanese American populations, respec-

tively. Of these SNPs with a calculated PIP, 223 SNPs (24 SNPs in African Americans and 199

SNPs in Japanese Americans) were placed into a cluster. Of those placed into a cluster, 102

SNPs at chromosome 8q24 met genome-wide significance in either population. Nine SNPs in

the African American study and 93 SNPs in the Japanese American study met genome-wide

significance and were placed into a cluster. Of these 102 clustered SNPs meeting genome-wide

significance, rs72725879 was the only SNP to overlap across populations. This table contains

DAP-G results for the 102 SNPs clustered that met genome-wide significance.

(CSV)

S2 Table. Chromosome 8 SNPs intersecting with NCBI GWAS catalog. A table that includes

all SNPs on chromosome 8 from our African American and Japanese American study that

intersect with SNPs from prostate cancer GWAS summary statistics uploaded to the NCBI

GWAS Catalog [12]. There are twenty-four published papers with results uploaded to the

NCBI GWAS Catalog containing SNPs intersecting with our studies [8, 44, 46–67].

(CSV)

S3 Table. Comparative results to Han et Al. (2016). A table comparing the GWAS results

from four SNPs on chromosome 8 in our study to the same four SNPs in Han et al. (2016).

Two of these SNPs rs76595456 and rs72725879 are prioritized in our study to be independent

loci while Han et al. found rs72725879, rs114798100, and rs111906932 as three independent

risk loci. BP is the chromosomal location using human genome build 19 [13].

(CSV)
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