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Abstract 

Neurological injuries and diseases are a leading cause of disability  
worldwide, underscoring the urgent need for effective therapies. 
Neural regaining and enhancement therapies are seen as the 
most promising strategies for restoring neural function, offering 
hope for individuals affected by these conditions. Despite their 
promise, the path from animal research to clinical application is 
fraught with challenges. Neuroengineering, particularly through 
the use of biomaterials, has emerged as a key field that is paving 
the way for innovative solutions to these challenges. It seeks to 
understand and treat neurological disorders, unravel the nature 
of consciousness, and explore the mechanisms of memory and 
the brain’s relationship with behavior, offering solutions for 
neural tissue engineering, neural interfaces and targeted drug de-
livery systems. These biomaterials, including both natural and synthetic types, are designed to replicate the cellular environment of the 
brain, thereby facilitating neural repair. This review aims to provide a comprehensive overview for biomaterials in neuroengineering, 
highlighting their application in neural functional regaining and enhancement across both basic research and clinical practice. It covers 
recent developments in biomaterial-based products, including 2D to 3D bioprinted scaffolds for cell and organoid culture, brain-on-a- 
chip systems, biomimetic electrodes and brain–computer interfaces. It also explores artificial synapses and neural networks, discussing 
their applications in modeling neural microenvironments for repair and regeneration, neural modulation and manipulation and the in-
tegration of traditional Chinese medicine. This review serves as a comprehensive guide to the role of biomaterials in advancing neuro-
engineering solutions, providing insights into the ongoing efforts to bridge the gap between innovation and clinical application.
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Introduction
Neuroengineering, an interdisciplinary field at the intersection of 
neuroscience and engineering, aims to develop technologies for 
understanding, repairing and enhancing neural systems [1–4]. The 
ultimate goal of neuroengineering is to address neurological disor-
ders and enhance brain function, thereby offering hope to millions 
who suffer from conditions such as Alzheimer’s disease (AD), 
Parkinson’s disease (PD), as well as brain and spinal cord injuries 
[5–11]. The last decades have witnessed much progress in bioma-
terials including polymers [12–17], metals [18, 19] and nonmetallic 
inorganics [20, 21], which has led to rapid progress of pertinent 
medical devices [22, 23] and drug delivery systems [24–26]. In addi-
tion, neuroengineering has made significant progress, taking 

advantage of or stimulated by the development of various bioma-

terials. Biocompatibility is a key issue for an implant [27, 28]. 

Extensive investigations have been made to study cell-material 

interactions [29–31] using a series of advanced techniques such as 
surface patterning [32–37].

However, the complexity and sensitivity of neural tissues pose 

significant challenges to developing effective treatments and 

interventions. Despite substantial progress, neuroengineering 
faces several critical challenges that impede its advancement 

[38–40]. One of the primary hurdles in advancing neuroengineer-

ing is the current inadequate understanding of the complex in-

terplay between the biological, physical and chemical properties 

of brain tissues. The brain’s intricate architecture and complex 
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biochemical environment necessitate the development of biomi-
metic tissues and tunable biomaterials that can accurately repli-
cate the microenvironment required for neural repair and 
regeneration [2, 9, 40]. Several significant strides in this area uti-
lized organ-on-a-chip technology to model neural environments, 
providing a more accurate platform for studying neural repair 
mechanisms [41]. Secondly, biomacromolecules, such as extra-
cellular vesicles, proteins, polysaccharides and DNA, play crucial 
roles in the structure and function of neural tissues [42]. 
However, the interactions of these macromolecules within neu-
ral tissues lack comprehensive support from physical and chemi-
cal theories. Understanding these molecular interactions is vital 
for designing biomaterials that can effectively interface with 
neural tissues. The integrating insights from chemical science 
and biophysics to develop advanced biomaterials can support 
neural function and repair [43–46]. Thirdly, the dynamic activi-
ties within neural tissues, including neuronal electrical activity, 
protein translation and DNA synthesis, are fundamental to life 
and neural function. Studying these dynamic processes requires 
innovative methods, such as the development of in vivo probes 
and advanced imaging techniques, to observe and understand 
these processes in real-time [47]. These tools are essential for 
gaining insights into neural function and dysfunction, paving the 
way for novel therapeutic strategies [48, 49]. Moreover, despite 
advances in our understanding of neural networks, the mecha-
nisms that underlie neural connectivity and information trans-
mission remain elusive. Neuromorphic engineering, along with 
the development of artificial synapses, is critical for accurately 
simulating the fundamental structures and functionalities of 
neural networks. These technologies are designed to replicate 
the connectivity and functionality of neural networks, thereby 
providing a deeper understanding of the brain’s processes for in-
formation processing and transmission [50–55]. Finally, the de-
velopment of treatments for neurological diseases is also 
hindered by the limitations of current pharmacological 
approaches. There is a pressing need for innovative strategies 
that combine biomaterials with therapeutic agents to enhance 
treatment efficacy. By engineering biomaterials capable of deliv-
ering therapeutic agents directly to the site of neural damage or 
disease, we can enhance the efficacy of neurological therapies 
and offer more effective treatment options for patients. The inte-
gration of biomaterials in neuroengineering holds significant 
promise for addressing the complex challenges of brain science. 
By advancing our understanding of brain tissue properties, en-
hancing our ability to model and study neural environments, and 
developing new therapeutic strategies, we can make substantial 
progress in treating neurological disorders and improving neural 
health [56, 57].

In this review, we initially provide an overview of the signifi-
cance of developing innovative biomaterials within the realms of 
neuroscience and neuroengineering. We then comprehensively 
summarize the recent advances in applications of novel biomate-
rials from basic and clinical research for the exploration of neu-
ral active process and therapeutic purposes in neurological 
diseases and injuries, including the use of brain organoids, biomi-
metic simulated inductive materials, neuromorphic devices, hu-
man–computer interactions, as well as the strategies for blood– 
brain barrier (BBB) and sustained drug release (Figure 1). Through 
this comprehensive analysis, the review highlights the potential 
applications of biomaterials, which could revolutionize neuroen-
gineering and significantly advance the treatment of neurological 
injuries and diseases.

Neuroengineering: a fast-developing 
interdisciplinary field
Neuroengineering is a rapidly developing interdisciplinary field that 
focuses on issues related to the interplay among biology, technol-
ogy, materials science and medicine in a revolutionary manner 
with respect to the past [58]. Neuroengineering and neuroscience, 
with their focus on the neural network at the cellular and molecu-
lar levels and the integration of biomaterials, are making significant 
progress. This interdisciplinary approach offers promising applica-
tions for enhancing the recovery of cognitive, sensory and motor 
functions in individuals with neurological disorders, impacting both 
basic research and clinical practice. A rapidly emerging topic within 
this field is ‘biomaterials in neuroscience and neuroengineering’, 
which highlights interdisciplinary efforts aimed at restoring, modu-
lating, and regenerating neurofunction in both healthy individuals 
and patients afflicted by neurological disorders [59].

Neuroengineering and neuroscience
Recent advancements in neuroscience are not only inspiring 
innovations in neuroengineering but are also being reciprocally 
informed by them, fostering a synergistic evolution in both fields. 
The primary challenge in neuroscience lies in deciphering the 
complex systems of the brain and the central nervous system 
(CNS) under both physiological and pathological conditions [60]. 
Neuroengineering, on the other hand, primarily aims at repairing 
and replacing neurofunctional recovery in clinical strategies, 
which puts it in a unique intellectual position to provide experi-
mental and theoretical tools to decode the mysteries of neurosci-
ence, such as translating neural network activities and 
molecular events in the CNS into complicated behaviors, thereby 
promoting the development of neuroscience [61]. With the devel-
opment of a variety of novel technical and computational tools, 
neuroengineering enables a dialogue with the brain and nervous 
system, ranging from primary neuron cultures in vitro and brain 
organoids ex vivo to the CNS of live animals or even humans 
in vivo [62–64]. Moreover, neuroengineering products, such as bio-
sensors, multi-electrode arrays, memristive devices and bidirec-
tional brain–machine interfaces, not only extend our ability to 
communicate with the brain and nervous system by recording 
and analyzing but also push the boundaries into modulating and 
potentially manipulating the electrical activities of neurons and 
the intricate interactions within neural networks [65–68]. More 
specifically, it has been indicated that neuroengineering has 
three primary areas of interest with respect to studying neurosci-
ence [69]: (i) to quantitatively investigate the mechanisms under-
lying cognitive, sensory and motor systems encoding and 
information processing with novel technological tools at various 
scales. This approach spans from the genetic level to synaptic 
interactions, from cellular activities to network dynamics, and 
extends to the comparison between biological neural systems 
and their artificial counterparts; (ii) to functionally modulate, 
manipulate, and even perform reverse engineering of the CNS at 
cellular, synaptic and molecular levels; (iii) to design and imple-
ment innovative biomaterials and devices aimed at repairing the 
CNS and even replacing parts of the brain under pathological 
conditions, particularly in non-fatal TBI, spinal cord injuries and 
neurodegenerative diseases [70–78].

Neuroengineering and biomaterials
Biomaterials represent a critical field of research in neuroengineer-
ing. They are novel, engineered substances that are designed to in-
teract directly with living systems, or as components of complex 
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devices or systems, to facilitate therapeutic or diagnostic proce-
dures for neurological injuries and diseases. The gratifying 
advancements of biomaterials are revolutionizing the methodolo-
gies through which neuroengineering interfaces with the nervous 
system. The integration of novel biomaterials in neuroengineering 
has advanced the field of neuroscience, transcending traditional 
morphological and functional studies to focus on the repair, re-
placement, modulation and manipulation of the CNS. This evolu-
tion is particularly significant in the context of cognitive, sensory, 
and motor functions.

Theoretically, biomaterials can be classified into biodegradable 
and non-biodegradable types. Biodegradable biomaterials, such as 
drug carriers, delivery systems and tissue scaffolds, are designed to 
degrade after serving their intended purpose [79]. In contrast, non- 
biodegradable biomaterials, including neural electrodes and CNS 
shunts, are engineered to maintain functionality over an extended 
period, potentially indefinitely [80–88]. In recent years, there has 
been a significant increase in interest towards the development of 
novel biomaterials for neuroengineering applications. This includes 
materials such as silicones, lipids, natural polymers and synthetic 
polymers. These biomaterials have been developed in various forms 

to accommodate specific applications within the field [89–93]. 
However, there are still several challenges that must be addressed 
in the next decade [69, 94]. Firstly, it is crucial to optimize the physi-
cal, chemical and biological properties of novel biomaterials to de-
velop the next-generation interfaces that facilitate seamless 
integration between artificial systems and the nervous system [95]. 
Secondly, there is a critical need to develop flexible and wireless im-
plantable neural bioelectronics that possess biocompatibility, mini-
mal invasiveness, longevity and scalability. These devices should be 
capable of performing neural stimulation, modulation and manipu-
lation [96, 97]. Thirdly, the development of a new generation of 
‘organ-on-a-chip’ systems is imperative for neuroregeneration, 
with a focus on replicating the microenvironment of nerve tissue to 
facilitate the study and promotion of neural repair processes. 
Fourthly, the development of smart biomaterials with sub- 
nanoscale precision is essential to facilitate bidirectional communi-
cation and to induce specific molecular, synaptic and cellular reor-
ganization within neural networks. This approach aims to achieve 
accurate and precise manipulation of the CNS, which is driven by 
both endogenous factors and material properties. Figure 2 presents 
the close relationship between biomaterials and neuroengineering.

Figure 1. The application of biomaterials in neuroengineering. (A) Brain organoids: 3D printing has been applied to make human brain tissue. Matrigel 
helps grow these tissues. Specially treated mouse stem cells in a gel bead turn into nerve cells more effectively. (B) Organ-on-a-chip: the ‘brain on a 
chip’ combines brain-like tissue with tiny chips to mimic the human brain. It helps scientists’ study how the brain develops and reacts to diseases and 
drugs outside the body. (C) Neuromorphic devices: These devices copy how neurons and synapses work, creating artificial networks that can advance a 
new type of computing. (D) Biomimetic simulated inductive materials: Patterns on glass with gold are made by using a special process. Adding tiny 
particles and molecules to this pattern improves how well electrodes pick up nerve signals. These materials also mimic the body’s environment to help 
nerve cells grow. (E) BBB and sustained release drugs: advanced materials like nanomedicines and special gels are applied to help drugs get past the 
brain’s protective barrier and release slowly. (F) Human–computer interaction: This area focuses on using safe and smart materials to create new ways 
to diagnose and treat brain-related diseases. (Created with BioRender.com.)
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Applications of biomaterials for 
neuroengineering
Brain organoids: ‘brain-on-a-chip’
The ‘brain-on-a-chip’ system offers a promising approach to neu-
ral regeneration in living organisms by mimicking the critical 
spatiotemporal microarchitecture of neural-neural and/or 
neural-glial communications, as well as neural ECM [98, 99]. The 
integration of this novel system, which recapitulates neural cells 
on organ-level structures and functions, offers unprecedented 
benefits across a spectrum of applications in both basic research 
and clinical practice. These benefits include the development of 
human in vitro models for both healthy and diseased brains, en-
abling in-depth investigations into the fundamental mechanisms 
and developmental patterns of CNS development and neurologi-
cal diseases. Furthermore, it facilitates drug development by 
streamlining toxicity screening and therapeutic target identifica-
tion, and it holds promise as a potential alternative to traditional 
animal testing methodologies. Scientists propose that the im-
plantation of a ‘brain-on-a-chip’ system may offer innovative 
possibilities by modulating the differentiation of NSCs and pro-
moting neural regeneration, thereby potentially enhancing neu-
ral function in patients with neurological injuries and diseases 
(Figure 3) [100]. The combination of neuroengineering and chip 
research primarily concentrates on critical aspects such as axo-
nal growth, the integrity and function of the BBB, the develop-
ment of neurospheres, and the engineering of three-dimensional 
or layered neural tissues (Table 1) [101–107].

3D printing
Most recently, the focus of basic and clinical research on regulating 
microenvironments has been primarily on synthetic substrates, 
from 2D cell cultures to 3D bioprinting cell and organoid cultures 
(Figure 4A) [166–170]. The 3D multicompartment organotypic 
microphysiological systems representative of the BBB have been de-
veloped. In vitro neurovascular unit systems offer a promising 

platform for investigating the intricate interactions between neu-
rons and the cerebral spinal fluid (CSF) compartment. These sys-
tems incorporate a realistic blood-surrogate supply and venous 
return mechanism, which is essential for mimicking the in vivo en-
vironment. Additionally, they often include circulating immune 
cells and the choroid plexus, key components of the neurovascular 
unit that play significant roles in maintaining CNS homeostasis. 
These systems successfully recapitulate all three critical brain bar-
riers, including the BBB, brain–CSF barrier and blood–CSF barrier. 
This comprehensive replication is essential for studying the com-
plex interactions between the brain’s vasculature, the cerebrospinal 
fluid, and the immune system, as well as for evaluating the perme-
ability and transport mechanisms across these barriers. 
Impressively, these novel technological platforms represent a con-
vergence of multiple disciplines, including advanced microfluidics, 
cell culture techniques, analytical instrumentation, bioinformatics, 
control theory, neuroscience and drug discovery methodologies. 
They also incorporate 3D mapping technologies to visualize the dis-
tribution of nanoparticles within the vascular and perivascular 
regions at the cellular level, providing a detailed understanding of 
nanoparticle dynamics in these critical areas [171]. Moreover, these 
sophisticated in vitro systems are capable of replicating critical neu-
robiological processes, including chemical communication, molec-
ular trafficking, cellular uptake and the penetration of the BBB 
through receptor-mediated transcytosis. Besides, they also can 
model inflammatory responses within the brain, providing a com-
prehensive platform for studying neuroinflammatory conditions 
and the transport of substances across the BBB [172, 173].

Matrigel
The BBB is a highly specialized and selectively permeable inter-
face that is composed of a unique arrangement of endothelial 
cells, astrocytic endfeet and pericytes. This intricate structure 
forms a critical barrier that isolates the CNS from the systemic 
circulation. The BBB plays a pivotal role in bidirectionally 

Figure 2. The close relationship between biomaterials and neuroengineering. The close relationship between biomaterials and neuroengineering is a 
pivotal area of research, as it involves the development and application of biomaterials designed to interact with the nervous system. This 
interdisciplinary field is crucial for creating innovative solutions for neurological disorders and injuries, including (i) neural regeneration, stimulation, 
modulation and manipulation; (ii) brain-on-a-chip systems; (iii) brain–computer interface.

4 | Regenerative Biomaterials, 2025, Vol. 12, rbae137  



regulating the trafficking of ions, molecules, and cells between 
the brain and the blood. This regulation is essential for maintain-
ing the precise chemical environment and homeostasis within 
the CNS, which is crucial for proper neuronal function and over-
all brain health [174]. However, the BBB capacity to restrict the 
entry of peripheral inflammatory cytokines, immune cells and 
neurotoxic factors into the to restrict the CNS may become se-
verely impaired under various pathophysiological conditions, 
such as trauma and neurological diseases [175]. The innovative 
microfluidic ‘BBB-on-a-chip’ platform offers a cutting-edge tool 
for investigating the BBB function with mechanical and biochem-
ical modulation (Figure 4B) [176]. This platform, integrated with 
microfluidic technology, incorporating advanced microfluidic 
technology, facilitates real-time monitoring and analysis of hu-
man NSC-derived neurons, astrocytes, oligodendrocytes and a 
functionalized microvascular barrier in a designed physiological 
niche. It offers advantages such as the capacity for high- 
throughput screening, precise control over fluid velocity, low cell 
consumption, long-term culture and high integration on an 
organ-level basis [177–179].

The polydimethylsiloxane (PDMS) elastomer is widely utilized 
owing to its high resolution, flexibility, optical transparency and 
biocompatibility [180]. In some ‘BBB-on-a-chip’ systems, a porous 
membrane is integrated between two layers of PDMS, thereby 

partitioning the channel into distinct compartments (Figure 4C) 
[181]. Similar to Transwell models, cells are cultured on either 
side of the membrane, with the fluid composition and flow rate 
being independently adjustable [182]. In the advancement to-
wards 2.5D cell culture systems, several ‘BBB-on-a-chip’ models 
have integrated hydrogels as supportive matrices. The design of 
the lumen in ‘BBB-on-a-chip’ systems primarily employs two 
techniques to isolate liquids from the hydrogel. The phase guide 
technique, widely utilized in commercial organ-on-a-chip plat-
forms, exemplified by the OrganoPlate® from Mimetas Company, 
involves the injection of a hydrogel into one channel of an inter-
connected multichannel device [183, 184]. The presence of a 
phase guide in the initial channel retains the hydrogel within 
that channel, thereby creating a direct interface with the adja-
cent channel, where endothelial cells are cultured. In this con-
text, the fluidic chamber for cell culture is composed of several 
biomaterials, including the hydrogel and the substrate that sup-
ports the microfluidic device [185–191]. To prevent the mixing of 
materials, an alternative strategy involves the direct creation of a 
lumen within the hydrogel, employing techniques such as vis-
cous fingering or needle molding [192, 193]. An alternative ap-
proach involves the introduction of gold nanorods into a collagen 
hydrogel, enabling the direct writing of channels via the applica-
tion of a laser beam. This process thermally denatures collagen 

Figure 3. Brain-on-a-chip overview. (A) The reprogramming of human somatic cells into induced hiPSCs facilitates the differentiation into various 
neuronal types while preserving essential topological features of the brain, including its 3D architecture, adequate heterogeneity and modular 
connectivity. Consequently, this approach enables the in vitro cultivation of interconnected neurospheroids and assembloids. (B) Coupled to 
microtransducers, these systems are capable of recording the electrophysiological activity of the biological structures and monitoring other pertinent 
parameters, including neurotransmitter concentrations and fluctuations in metabolic activity. Furthermore, such devices should possess bidirectional 
functionality, enabling them to modulate electrophysiological activity through the application of either excitatory or inhibitory stimuli. (C) An accurate 
biological model of the brain, such as this, can be utilized not only for fundamental scientific research but also for drug screening, enabling the 
development of personalized and patient-specific therapies. Additionally, it facilitates the study of the pathogenesis of brain disorders in vitro, thereby 
aiding in the identification of potential therapeutic solutions. Reproduced from Ref. [108] with permission of Frontiers, © 2022.

Regenerative Biomaterials, 2025, Vol. 12, rbae137 | 5  



T
ab

le
 1

. T
h

e 
b

io
m

at
er

ia
ls

-b
as

ed
 ‘b

ra
in

-o
n

-a
-c

h
ip

’ s
ys

te
m

 a
n

d
 t

h
ei

r 
ap

p
li

ca
ti

on
.

B
ra

in
-o

n
-a

-c
h

ip
C

el
l t

yp
e

B
io

m
at

er
ia

ls
In

te
gr

at
ed

 s
en

so
rs

/e
le

ct
ro

d
es

C
u

lt
u

re
 t

im
e

N
eu

ro
n

-b
as

ed
EM

-H
C

C
PD

M
S

—
34

 h
 [1

09
]

h
D

R
G

N
s

Po
ly

st
yr

en
e

M
ic

ro
el

ec
tr

od
e 

ar
ra

y
23

 d
 [1

10
]

h
EC

N
s

PD
M

S
M

ic
ro

el
ec

tr
od

e 
ar

ra
y

14
 d

 [1
11

]
ER

-H
C

C
 g

li
al

 c
el

ls
 f

ro
m

 r
at

 b
ra

in
PD

M
S

—
20

 d
 [1

12
]

iP
SC

-N
SC

s,
 iP

SC
-n

eu
ro

n
s 

an
d

 iP
SC

-d
er

iv
ed

 a
st

ro
cy

te
s

O
rg

an
oP

la
te

—
7 

d
 [1

13
]

m
EC

N
s

PD
M

S
—

7 
d

 [1
14

]
h

N
SC

 li
n

es
 f

ro
m

 b
ot

h
 h

ea
lt

h
y 

an
d

 P
D

 p
at

ie
n

t
Pe

li
ca

n
—

24
 d

 [1
15

]
O

li
go

d
en

d
ro

cy
te

-b
as

ed
m

ES
C

s
PD

M
S

—
14

 d
 [1

16
]

rD
R

G
N

s 
O

PC
s 

fr
om

 P
0 

to
 P

2 
ra

t 
b

ra
in

PD
M

S
—

39
 d

 [1
17

]
Pr

im
ar

y 
n

eu
ro

n
s 

fr
om

 t
h

e 
E1

6 
em

b
ry

on
ic

 r
at

 f
or

eb
ra

in
, a

s 
w

el
l a

s 
ol

ig
od

en
d

ro
cy

te
s 

an
d

 a
st

ro
cy

te
s 

fr
om

 t
h

e 
ce

re
b

ra
l 

h
em

is
p

h
er

es
 o

f 
P0

–P
2 

ra
t 

p
u

p
s

PD
M

S
—

29
 d

 [1
18

]

Pr
im

ar
y 

co
rt

ic
al

 O
PC

s 
fr

om
 P

2 
to

 P
4 

ra
ts

; D
R

G
 n

eu
ro

n
s 

fr
om

 
P4

 r
at

s
PD

M
S

M
ic

ro
el

ec
tr

od
e 

ar
ra

y
12

 d
 [1

19
]

D
R

G
N

s 
fr

om
 E

15
 e

m
b

ry
on

ic
 r

at
 o

r 
E1

3 
em

b
ry

on
ic

 m
ou

se
 

O
PC

s 
fr

om
 P

1 
m

ou
se

 b
ra

in
PD

M
S

El
ec

tr
od

es
24

 d
 [1

20
]

O
PC

s 
fr

om
 P

1 
m

ic
e;

 D
R

G
 n

eu
ro

n
s 

fr
om

 E
13

 m
ic

e
C

ar
b

on
 b

la
ck

 
co

n
ta

in
in

g 
PD

M
S

B
lu

e 
LE

D
 a

rr
ay

24
 d

 [1
21

]

A
st

ro
cy

te
-b

as
ed

Pr
im

ar
y 

co
rt

ic
al

 n
eu

ro
n

s 
fr

om
 E

18
 r

at
s;

 c
er

eb
ra

l c
or

ti
ca

l 
as

tr
oc

yt
es

 f
ro

m
 P

0 
to

 P
2 

ra
ts

PD
M

S
—

15
 d

 [1
22

]

m
EC

N
s 

as
tr

oc
yt

es
 f

ro
m

 P
1 

to
 P

2 
m

ou
se

 c
or

ti
ca

l r
eg

io
n

s
PD

M
S

—
28

 d
 [1

23
]

A
st

ro
cy

te
s 

fr
om

 a
d

u
lt

 r
at

 b
ra

in
s

PD
M

S
H

ig
h

-s
p

ee
d

 p
re

ss
u

re
 s

er
vo

5 
d

 [1
24

, 1
25

]
Pr

im
ar

y 
as

tr
oc

yt
es

 f
ro

m
 m

ic
e

N
A

A
n

 e
le

ct
ri

ca
l s

ti
m

u
la

ti
on

 s
ys

te
m

, 
co

m
p

ri
si

n
g 

tw
o 

el
ec

tr
od

es
 p

os
it

io
n

ed
 

ce
n

tr
al

ly
 w

it
h

in
 t

h
e 

cu
lt

u
re

 c
h

am
b

er
, 

is
 u

ti
li

ze
d

 f
or

 t
h

e 
d

is
ch

ar
ge

 o
f 

el
ec

tr
ic

al
 s

ig
n

al
s

Le
ss

 t
h

an
 1

 d
 [1

26
]

M
ou

se
 a

st
ro

cy
te

s
N

A
—

Le
ss

 t
h

an
 1

 d
 [1

27
]

M
ic

ro
gl

ia
-b

as
ed

Pr
im

ar
y 

m
ic

ro
gl

ia
l c

el
ls

 f
ro

m
 P

1 
to

 P
2 

ra
ts

 a
n

d
 m

ic
e;

 m
u

ri
n

e 
N

9 
m

ic
ro

gl
ia

 c
el

l l
in

e
PD

M
S

—
1 

d
 [1

28
]

Pr
im

ar
y 

h
ip

p
oc

am
p

al
 n

eu
ro

n
s 

fr
om

 E
17

 r
at

 p
u

p
s;

 m
ic

ro
gl

ia
l 

ce
ll

s 
fr

om
 p

os
tn

at
al

 r
at

 p
u

p
s

PD
M

S
—

14
 d

 [1
29

]

ER
-H

C
C

 m
ic

ro
gl

ia
l c

el
ls

 f
ro

m
 P

3 
to

 P
6 

ra
t 

or
 m

ou
se

 c
or

te
x

PD
M

S 
b

on
d

ed
 t

o 
 

p
ol

y-
D

-l
ys

in
e 

 
p

at
te

rn
ed

 g
la

ss

—
7 

d
 [1

30
]

H
u

m
an

 m
ic

ro
gl

ia
l c

el
ls

 f
ro

m
 f

et
al

 b
ra

in
 t

is
su

e
PD

M
S

—
9 

d
 [1

31
]

M
u

ri
n

e 
m

ic
ro

gl
ia

l c
el

l l
in

e 
B

V
2;

 C
6 

ce
ll

s 
fr

om
 r

at
 

b
ra

in
 g

li
om

a
PD

M
S

—
2 

d
 [1

32
]

A
d

u
lt

 m
al

e 
ra

t
Si

li
co

n
-p

ar
yl

en
e 

h
yb

ri
d

O
p

en
 a

rc
h

it
ec

tu
re

 e
le

ct
ro

d
e 

ar
ra

y
28

 d
 [1

33
]

Sy
n

ap
se

Pr
im

ar
y 

h
ip

p
oc

am
p

al
 c

el
ls

 f
ro

m
 P

1 
to

 P
2 

ra
ts

PD
M

S
—

17
 d

 [1
34

]
Pr

im
ar

y 
ra

t 
co

rt
ic

al
 n

eu
ro

n
s 

an
d

 a
st

ro
cy

te
s

PD
M

S
M

ic
ro

el
ec

tr
od

e 
ar

ra
y

27
 d

 [1
35

]
Pr

im
ar

y 
h

ip
p

oc
am

p
al

 n
eu

ro
n

s 
fr

om
 P

0 
to

 P
2 

ra
ts

PD
M

S
—

42
 d

 [1
36

]
rE

C
N

s
PD

M
S

—
28

 d
 [1

37
]

m
EC

N
s 

an
d

 E
M

-H
C

C
PD

M
S

—
21

 d
 [1

38
]

ER
-H

C
C

PD
M

S
—

17
 d

 [1
39

]
m

EC
N

s 
an

d
 s

tr
ia

ta
l n

eu
ro

n
s 

fr
om

 E
15

.5
 m

ci
e,

 a
n

d
 

H
dh

C
A

G
1
4
0
/þ

or
 H

dh
Q

1
1
1
/þ

m
ic

e
PD

M
S

—
18

 d
 [1

40
]

m
EC

N
s 

an
d

 s
tr

ia
ta

l c
el

ls
 f

ro
m

 E
14

 m
ic

e
PD

M
S

—
15

 d
 [1

41
]

iP
SC

s 
fr

om
 h

u
m

an
 p

ri
m

ar
y 

ly
m

p
h

oc
yt

es
PD

M
S

—
42

 d
 [1

42
]

h
ES

C
s

PD
M

S
—

55
 d

 [1
43

]

(c
on

ti
n

u
ed

)

6 | Regenerative Biomaterials, 2025, Vol. 12, rbae137  



T
ab

le
 1

. 
(c

on
ti

n
u

ed
)

B
ra

in
-o

n
-a

-c
h

ip
C

el
l t

yp
e

B
io

m
at

er
ia

ls
In

te
gr

at
ed

 s
en

so
rs

/e
le

ct
ro

d
es

C
u

lt
u

re
 t

im
e

B
B

B
H

u
m

an
 b

ra
in

 e
n

d
ot

h
el

ia
l c

el
l l

in
e 

h
C

M
EC

/D
3

PD
M

S
El

ec
tr

od
es

 f
or

 T
EE

R
 m

ea
su

re
m

en
t

7 
d

 [1
44

]
b

.E
n

d
3 

en
d

ot
h

el
ia

l a
n

d
 C

8D
1A

 a
st

ro
cy

te
 c

el
l l

in
es

PD
M

S
El

ec
tr

od
es

 f
or

 T
EE

R
 m

ea
su

re
m

en
t

7 
d

 [1
45

]
b

.E
n

d
3 

en
d

ot
h

el
ia

l c
el

l l
in

e
PD

M
S

El
ec

tr
od

es
 f

or
 T

EE
R

 m
ea

su
re

m
en

t
4 

d
 [1

46
]

b
.E

n
d

3 
en

d
ot

h
el

ia
l a

n
d

 C
8D

1A
 a

st
ro

cy
te

 c
el

l l
in

es
PD

M
S

El
ec

tr
od

es
 f

or
 T

EE
R

 m
ea

su
re

m
en

t
7 

d
 [1

47
]

b
.E

n
d

3 
en

d
ot

h
el

ia
l c

el
l l

in
e

PD
M

S
El

ec
tr

od
es

 f
or

 T
EE

R
 m

ea
su

re
m

en
t

6 
d

 [1
48

]
B

M
EC

s 
an

d
 a

st
ro

cy
te

s 
fr

om
 P

1-
P2

 m
ic

e
PD

M
S

El
ec

tr
od

es
 f

or
 T

EE
R

 m
ea

su
re

m
en

t
4 

d
 [1

49
]

B
r-

B
en

d
5 

m
u

ri
n

e 
en

d
ot

h
el

ia
l b

ra
in

 c
el

ls
PD

M
S

El
ec

tr
od

es
 f

or
 T

EE
R

 m
ea

su
re

m
en

t
5 

d
 [1

50
]

b
.E

n
d

3 
en

d
ot

h
el

ia
l a

n
d

 C
8D

1A
 a

st
ro

cy
te

 c
el

l l
in

es
PD

M
S

—
14

 d
 [1

51
]

b
.E

n
d

3 
en

d
ot

h
el

ia
l,

 C
8D

1A
 a

st
ro

cy
te

 a
n

d
 m

ou
se

 p
er

ic
yt

e 
ce

ll
 li

n
es

PD
M

S
El

ec
tr

od
es

 f
or

 T
EE

R
 m

ea
su

re
m

en
t

21
 d

 [1
52

]

C
D

34
þ

ce
ll

s 
fr

om
 h

u
m

an
 u

m
b

il
ic

al
 c

or
d

 b
lo

od
, h

u
m

an
 

C
D

4þ
C

D
45

R
O
þ

T
h

1 
ce

ll
s,

 in
cu

b
at

ed
 w

it
h

 p
er

ic
yt

e-
co

n
d

i-
ti

on
ed

 m
ed

iu
m

PD
M

S
—

6 
d

 [1
53

]

iP
SC

-E
C

s,
 p

er
ic

yt
es

 a
n

d
 a

st
ro

cy
te

s 
fr

om
 t

h
e 

h
u

m
an

 b
ra

in
PD

M
S

—
7 

d
 [1

54
]

H
u

m
an

 B
M

EC
 li

n
e 

T
Y

10
, h

B
PC

 li
n

e 
an

d
 h

A
st

O
rg

an
oP

la
te

—
9 

d
 [1

55
]

H
u

m
an

 b
ra

in
 e

n
d

ot
h

el
ia

l c
el

l l
in

e 
h

C
M

EC
/D

3 
h

u
-

m
an

 a
st

ro
cy

te
s

PD
M

S
El

ec
tr

od
es

 f
or

 T
EE

R
 m

ea
su

re
m

en
t

4 
d

 [1
56

]

b
.E

n
d

3 
en

d
ot

h
el

ia
l c

el
l l

in
e 

U
87

 g
li

ob
la

st
om

a 
ce

ll
s

IP
-D

iL
L 

p
h

ot
or

es
in

El
ec

tr
od

es
 f

or
 T

EE
R

 m
ea

su
re

m
en

t
5 

d
 [1

57
]

d
h

B
M

EC
s 

(B
C

1 
an

d
 iP

S1
2 

ce
ll

 li
n

es
 f

ro
m

 h
ea

lt
h

y 
h

u
m

an
, 

K
W

01
 c

el
l l

in
e 

fr
om

 M
S 

p
at

ie
n

t 
an

d
 A

D
6 

ce
ll

 li
n

e 
fr

om
 

A
D

 p
at

ie
n

t)

PD
M

S
El

ec
tr

od
es

 f
or

 T
EE

R
 m

ea
su

re
m

en
t

6 
d

 [1
58

]

h
C

M
EC

/D
3 

ce
ll

 li
n

e;
 R

eN
ce

ll
 V

M
 h

u
m

an
 N

PC
s 

w
it

h
 f

am
il

ia
l 

A
D

 m
u

ta
ti

on
s

PD
M

S
—

16
 d

 [1
59

]

H
U

V
EC

s 
A

C
M

PD
M

S
—

5 
d

 [1
60

]
R

at
 b

ra
in

 e
n

d
ot

h
el

ia
l c

el
l l

in
e 

R
B

E4
 A

C
M

PD
M

S
—

4 
d

 [1
61

]
H

U
V

EC
s,

 r
at

 b
ra

in
 a

st
ro

cy
te

 c
el

l l
in

e 
C

T
X

-T
N

A
2 

an
d

 m
u

ri
n

e 
m

et
as

ta
ti

c 
b

re
as

t 
ca

n
ce

r 
ce

ll
 li

n
e 

M
et

-1
PD

M
S

—
4 

d
 [1

62
]

H
u

m
an

 b
ra

in
 e

n
d

ot
h

el
ia

l c
el

l l
in

e 
h

C
M

EC
/D

3 
p

ri
m

ar
y 

h
u

-
m

an
 a

st
ro

cy
te

s
PD

M
S

—
4 

d
 [1

63
]

H
U

V
EC

s,
 h

u
m

an
 b

ra
in

 e
n

d
ot

h
el

ia
l c

el
l l

in
e 

h
C

M
EC

/D
3,

 
rE

C
N

s 
an

d
 a

st
ro

cy
te

s 
fr

om
 P

0 
to

 P
2 

b
ra

in
 c

or
ti

ce
s

PD
M

S
—

14
 d

 [1
64

]

h
U

V
EC

s,
 r

EC
N

s,
 a

st
ro

cy
te

s
PD

M
S

—
10

 d
 [1

65
]

A
C

M
, a

st
ro

cy
ti

c 
co

n
d

it
io

n
ed

 m
ed

iu
m

; b
.E

n
d

3,
 b

ra
in

-d
er

iv
ed

 e
n

d
ot

h
el

ia
l c

el
ls

.3
; B

M
EC

s,
 b

ra
in

 m
ic

ro
va

sc
u

la
r 

en
d

ot
h

el
iu

m
 c

el
ls

; B
V

2,
 m

ou
se

 m
ic

ro
gl

ia
 c

el
l l

in
es

; C
6,

 g
li

om
a 

ce
ll

 li
n

es
; C

8D
1A

, m
ar

in
e 

ce
re

b
el

la
r 

m
ic

ro
gl

ia
 c

el
l 

li
n

es
; C

T
X

-T
N

A
2,

 r
at

 a
st

ro
cy

te
 c

el
l l

in
es

; D
R

G
, d

or
sa

l r
oo

t 
ga

n
gl

io
n

; E
, e

m
b

ry
on

ic
; E

M
-H

C
C

, h
ip

p
oc

am
p

al
 c

el
ls

 d
er

iv
ed

 f
ro

m
 e

m
b

ry
on

ic
 m

ic
e;

 E
R

-H
C

C
, h

ip
p

oc
am

p
al

 c
el

ls
 f

ro
m

 e
m

b
ry

on
ic

 r
at

; h
A

st
, h

u
m

an
 a

st
ro

cy
te

; h
B

PC
; 

h
u

m
an

 b
ra

in
 p

er
ic

yt
e 

ce
ll

; h
B

M
EC

s,
 h

u
m

an
 b

ra
in

 m
ic

ro
va

sc
u

la
r 

en
d

ot
h

el
iu

m
 c

el
ls

; h
C

M
EC

-D
3,

 h
u

m
an

 c
er

eb
ra

l m
ic

ro
va

sc
u

la
r 

en
d

ot
h

el
ia

l c
el

ls
, D

3;
 h

D
R

G
N

s,
 h

u
m

an
 d

or
sa

l r
oo

t 
ga

n
gl

io
n

 n
eu

ro
n

s;
 h

EC
N

s,
 c

or
ti

ca
l n

eu
ro

n
s 

fr
om

 h
u

m
an

 e
m

b
ry

os
; h

ES
C

s,
 h

u
m

an
 e

m
b

ry
on

ic
 s

te
m

 c
el

ls
; h

N
SC

, h
u

m
an

 n
eu

ro
ep

it
h

el
ia

l s
te

m
 c

el
l;

 h
U

V
EC

s,
 h

u
m

an
 u

m
b

il
ic

al
 v

ei
n

 e
n

d
ot

h
el

ia
l c

el
ls

; I
P-

D
iL

L,
 IP

-D
ip

-i
n

 la
se

r 
li

th
og

ra
p

h
y;

 iP
SC

s,
 in

d
u

ce
d

 p
lu

ri
p

ot
en

t 
st

em
 

ce
ll

s;
 L

ED
, l

ig
h

t 
em

it
ti

n
g 

d
io

d
e;

 m
EC

N
s,

 c
or

ti
ca

l n
eu

ro
n

s 
fr

om
 m

ou
se

 e
m

b
ry

os
; m

ES
C

s,
 m

ar
in

e 
em

b
ry

on
ic

 s
te

m
 c

el
ls

; N
9,

 m
ar

in
e 

m
ic

ro
gl

ia
 c

el
l l

in
es

; N
A

, n
ot

 a
va

il
ab

le
; N

PC
s,

 n
eu

ra
l p

ro
ge

n
it

or
 c

el
ls

; N
SC

s,
 n

eu
ra

l s
te

m
 c

el
ls

; 
O

PC
s,

 o
li

go
d

en
d

ro
cy

te
 p

re
cu

rs
or

 c
el

ls
; P

, p
os

tn
at

al
; P

D
, P

ar
ki

n
so

n
’s

 d
is

ea
se

; P
D

M
S,

 p
ol

yd
im

et
h

yl
si

lo
xa

n
e;

 R
B

E4
, r

at
 b

ra
in

 v
as

cu
la

r 
en

d
ot

h
el

iu
m

 c
el

l l
in

es
; r

D
R

G
N

s,
 r

at
 d

or
sa

l r
oo

t 
ga

n
gl

io
n

 n
eu

ro
n

s;
 r

EC
N

, c
or

ti
ca

l n
eu

ro
n

s 
fr

om
 r

at
 e

m
b

ry
os

; R
eN

ce
ll

 V
M

, h
u

m
an

 n
eu

ra
l p

ro
ge

n
it

or
 c

el
l l

in
es

; T
EE

R
, t

ra
n

s 
ep

it
h

el
la

l e
le

ct
ri

c 
re

si
st

an
ce

; T
h

1;
 T

 h
el

p
er

 1
 c

el
l;

 T
Y

10
, h

u
m

an
 b

ra
in

 m
ic

ro
va

sc
u

la
r 

en
d

ot
h

el
iu

m
 c

el
l l

in
es

; U
87

, h
u

m
an

 g
li

om
a 

ce
ll

 li
n

es
.

Regenerative Biomaterials, 2025, Vol. 12, rbae137 | 7  



fibers with high spatial and size resolution [194]. However, bar-
riers also face limitations in brain-on-a-chip applications due to 
their intrinsic hydrophobicity, which may lead to non-specific 
adsorption of proteins and hydrophobic analytes [195]. To ad-
dress this issue, an ultrathin porous parylene-C membrane has 
been developed for the chip, featuring an optimized pore size and 
arrangement, enhanced porosity (up to 25%), precise thickness 
(down to 300 nm) and controlled surface etching. These charac-
teristics increase surface roughness, thereby promoting direct 
cell adhesion under varying flow conditions (Figure 4D) [196]. In a 
murine BBB-on-a-chip model, a nanofabricated membrane has 
demonstrated a high correlation coefficient (0.98) between the 
BBB permeability of a range of hydrophobic and hydrophilic 
drugs and their respective in vivo values [197]. Furthermore, 
microfluidic BBB models have been validated for their ability to 
closely mimic the in vivo BBB, exhibiting a dynamic environment 
and comparable permeability coefficients in response to hista-
mine exposure within a relatively thin cultured membrane 
[145, 198].

Microcapsule
Various biomaterials play a crucial role in the fabrication of 
microfluidic chips and significantly influence key factors, such 
as the flow dynamics within neural networks, the size of neuro-
spheroids, and the reprogramming and differentiation of neural 
stem cells [199]. Axonal sprouting and outgrowth from the proxi-
mal stumps, as well as the establishment of new connections 
with the distal stumps, represent primary challenges in the field 
of neural regeneration. To address these challenges, numerous 
studies have focused on designing microfluidic chips that pro-
mote axonal growth. These chips employ innovative strategies to 
provide directional guidance cues for axons and to stimulate the 

formation of axon branches. For example, microchannels or 
microgrooves designed for spatial neural guidance, with dimen-
sions ranging from tens of nanometers to 10 microns in width, 
can effectively direct axonal growth and facilitate the formation 
and development of axons [200–204]. Furthermore, biodegrad-
able guide channels fabricated from poly(lactic-co-glycolic) acid 
(PLGA) have been demonstrated to significantly influence glial 
growth factors and Schwann cells, thereby impacting peripheral 
nerve regeneration [200]. Surprisingly, the latest microfluidic pro-
tocols have enabled the visualization and quantification of axon 
growth on a chip-based platform [205–207]. These guidance cues 
establish an artificial neural microenvironment conducive to ax-
onal regeneration [207]. Furthermore, the successful regenera-
tion of axons is also indicated by the formation of axon branches, 
which is a critical aspect of the neural repair process. A substan-
tial body of evidence from basic research supports the reliability 
and sensitivity of various biomaterial-based microdot array chip 
protocols in promoting axonal branching in artificial microenvir-
onments, demonstrating the effectiveness of these protocols in 
terms of both spatial and temporal aspects (Figure 4E) [208–213].

Biomimetic simulated inductive materials
The traumatic damage of the nervous system, such as TBI, spinal 
cord injuries and peripheral nerve injuries, as well as neurode-
generative conditions like AD, pose remarkable challenges, as 
current methods for neural repair and regeneration remain inad-
equate [214, 215]. Neural function regaining based on neural re-
pair and regeneration is the most promising therapeutic strategy 
for such neurological injuries and diseases. The clinical effective-
ness of traditional microsurgical techniques, such as tensionless 
epineural sutures and autologous nerve grafting, is still limited 
due to factors such as nerve length availability and the 

Figure 4. Schematic diagram of 3D bioprinting and ‘BBB-on-a-chip’ systems. (A) 3D bioprinting technologies for neural tissue bioprinting. Reproduced 
from Ref. [105] with permission of AIP Publishing, © 2022. (B) The BBB model development and ‘BBB-on-chip’ design. Reproduced from Ref. [176] with 
permission of MDPI, © 2021. (C) Tree dimensional sketch of a porous PDMS membrane specifying the adopted terminology: pore size (PS), pore to pore 
distance (P-P), thickness (T) and area (W1 × W2). Reproduced from Ref. [181] with permission of Nature Publishing Group, © 2018. (D) Top view and 
60�tilted representative SEM images of a UPP membrane with 3 µm pore size and 300 nm thickness. White arrows demonstrate the ultrathin thickness 
of the membrane (�300 nm) (scale bar¼10 and 4 µm, respectively). Reproduced from Ref. [196] with permission of John Wiley and Sons, © 2020. (E) 
Brief procedure to micro-contact printing for fabricating microdot arrays. Reproduced from Ref. [212] with permission of Frontiers, © 2016.
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development of unfavorable neural complications such as neu-
roma formation and Wallerian degeneration [216, 217].

Scientists have discovered that induced pluripotent stem cell 
(iPSC) differentiation plays a crucial role in neural repair and re-
generation, including the repair and replacement of defective 
and damaged tissues. During this process, the microenvironment 
surrounding the cells, which includes the extracellular matrix 
(ECM), cytokines and tissue-specific cells collectively referred to 
as a niche, is one of the critical factors. Specifically, the biological 
functions of neurons and glia in the living CNS are dynamically 
and bidirectionally regulated by their microenvironment, which 
encompasses physical, chemical and biological signals. These 
signals are imparted by neighboring cells and the ECM [218–220]. 
Dysregulated neural microenvironment is increasingly recog-
nized as a major obstacle to neural repair and regeneration in 
neurological damage and diseases and has also been identified as 
a key factor in the progression of several neurological diseases 
and injuries. These aberrant microenvironments can be accu-
rately recapitulated ex vivo using biomaterials-associated 
designs, tailored for patient-specific applications [221, 222]. By 
applying a variety of novel biomaterial technologies to mimic the 
complexity of the in vivo neural microenvironment in vitro, re-
search on neural cell behavior has been revolutionized. This ap-
proach enables researchers to direct a specific neural (stem) cell 
type towards a desired phenotype, such as a particular state of 
differentiation, metabolism, proliferation, survival or functional-
ity, thereby facilitating the study of neurological diseases and in-
juries. Recently, the focus of both basic and clinical research in 
microenvironmental regulation has primarily centered on syn-
thetic substrates, ranging from 2D cell cultures to 3D bioprinting 
of cells and organoids [223].

Patterned materials
Micropatterning, which is a conventional approach, lays the 
groundwork and provides seminal insights for synthetic sub-
strates in 2D cell cultures (Figure 5A) [224–227]. Specifically, 

micropatterning enables the precise deposition of ECM proteins 
onto glass surfaces. Subsequently, non-adhesive regions are in-
troduced to compartmentalize cells, thereby confining single or 
multiple cells to adhesive islands of predefined sizes and shapes. 
Typically, non-adhesive regions are created on gold-coated sub-
strates using PDMS elastomeric stamps, which can either release 
or induce the formation of protein-resistant polymer brushes. 
Alternatively, these regions can be formed by polymerizing 
non-adhesive precursors through a photomask [228, 229]. 
Subsequently, the cell-repellent pattern is immersed in a solu-
tion containing ECM-like proteins, such as fibronectin, collagen I 
and laminin. This process facilitates the transformation of the 
remaining areas into adhesive patterns through protein absorp-
tion. Consequently, cell spreading is restricted on the small, iso-
lated islands, which narrows the distance between focal 
adhesions and induces a more relaxed cytoskeletal state 
(Figure 5B and C). Typically, these 2D substrates have been uti-
lized to elucidate the mechanical control underlying the balance 
between epidermal stemness and differentiation, endothelial 
proliferation and apoptosis, and the differentiation of mesenchy-
mal stem cells (MSCs) [226, 230, 231]. However, 2D cell cultures 
on rigid, uniform surfaces do not accurately represent the physi-
ological environment and are incapable of replicating the com-
plex cascade of genetic, environmental, biochemical and 
physical events that transpire during neurodevelopment and in 
neuropathological conditions [232]. Alternatively, 3D culturing of 
stem cells, neural progenitors, neurons, and glia within engi-
neered biomaterials has shown superior biomimetic characteris-
tics compared to 2D culture systems by effectively recapitulating 
both cell-cell and cell-ECM interactions [233–237]. Therefore, tra-
ditional 2D cell cultures are no longer regarded as the premier 
approach in the field of neuroengineering. Instead, the research 
focus has shifted towards examining neural cells under physio-
logical in vitro conditions. This involves utilizing a complex and 
soft 3D environment enriched with multiple ECM components, 
diverse neural cell types and soluble growth factors, all of which 

Figure 5. Schematic diagram of micropatterning. (A) Micropatterning provides the opportunity to independently control various aspects of the cellular 
environment, including substrate composition, mechanical properties, geometry and topography. Certain micropatterning techniques are also capable 
of modulating these variables in a dynamic manner. Reproduced from Ref. [224] with permission of the Company of Biologists, © 2021. (B) Fabrication 
procedure of the RGD nanopattern using block copolymer micelle nanolithography. Reproduced from Ref. [241] with permission of Elsevier, © 2020. (C) 
Scheme of protocol for transferring carboxyl-rich micro-patterns onto glass coverslips. Reproduced from Ref. [229] with permission of Public Library of 
Science (PLoS), © 2019.
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are designed to emulate the natural cellular niches [238]. 
Notably, 3D culture systems offer several novel advantages, in-
cluding the ability to modulate stiffness within the physiological 
range, undergo rapid and non-toxic gelification reactions, incor-
porate biodegradable or labile crosslinks that promote physical 
network remodeling, and exhibit enhanced cell adhesiveness 
[239]. These properties contribute to the disruption of the culture 
patterns in vitro. Neural cells cultured within 3D systems 
typically exhibit a departure from the tumor-like behaviors 
characteristic of 2D cultures, instead transitioning into a growth- 
arrested state. They acquire apico-basal polarity and self- 
organize to form structures that more closely resemble native 
tissue architecture [240]. Furthermore, the primary role of ECM 
stiffness and mechanotransduction in the transition from 2D to 
3D cultures is also implicated in neural cell fate determination. 
This process is facilitated by the progressive addition of fibrillar 
collagen, which influences cellular behavior.

Surface-modified materials
Acupuncture, a vital component of Traditional Chinese Medicine 
(TCM), involves stimulating specific anatomical points using 
techniques such as needling, moxibustion, cupping and acupres-
sure. This practice has a long history, spanning thousands of 
years in China and other Asian countries. Acupuncture serves as 
a complementary therapy for a broad spectrum of conditions, 
encompassing pain, itching, nausea and vomiting, fatigue, neu-
ropathy, anxiety, depression, obesity, sleep disturbances and 
extending to neurological injuries and diseases [242–244]. 
Traditional acupuncture needles are commonly crafted from 
materials such as gold, silver, copper or stainless steel. 
Nevertheless, advancements in biomaterial science have led to 
the introduction of alternative materials that possess superior 

conductivity. These materials are utilized not only in the con-
struction of traditional acupuncture needles but also in the de-
velopment of aciform sensors, which are capable of measuring 
various signals and neurotransmitters. Early research has inves-
tigated the application of acupuncture needles as biosensors for 
the detection of lactate. In these studies, the sensing membrane 
of the needle was coated with a polymer by immersing it in a 
polymer solution [245]. However, because the modification is per-
formed through adsorption, controlling the membrane thickness 
on the needles remains a challenge. More importantly, the poly-
mer coating applied during the modification process is prone to 
detaching from the needle body upon insertion. Furthermore, the 
rough surface and unstable infrastructure of these modified nee-
dles also compromise their reproducibility and stability. 
Therefore, there is a pressing need for the development of novel 
acupuncture needles that feature a stable and thin membrane. A 
variety of innovative biomaterials have been developed to serve 
this purpose [246–248]. In a pioneering study, homogeneous and 
stable layers of gold (Au) nanoparticles and graphene were suc-
cessfully deposited on the tip surface of acupuncture needles. 
This represented the inaugural application of an electrochemical 
method to modify the surface of acupuncture needles with nano-
materials, resulting in the fabrication of a graphene-modified 
acupuncture needle. This needle was introduced as a robust 
sensing interface for electroanalytical applications, offering en-
hanced sensitivity and selectivity for the determination of local 
pH levels and dopamine concentrations (Figure 6A) [245]. 
Another study reported on the modification of an acupuncture 
needle with an iron-porphyrin functionalized graphene compos-
ite, which was utilized for the real-time monitoring of nitric oxide 
(NO) release at acupoints. The functionalized needle facilitated 

Figure 6. Schematic diagram and application of surface-modified materials. (A) The fabrication process for the preparation of the G-an and the 
detection of DA by the G-an. Reproduced from Ref. [245] with permission of Springer Nature, © 2015. (B) (i) Schematic diagram of the FGPC/AuNPs/ 
acupuncture needle. (ii) Schematic diagram of real-time NO measurement in acupoint ST 36 stimulated by L-arginine. Reproduced from Ref. [249] with 
permission of Springer Nature, © 2017. (C) Schematic diagram of real time and in vivo monitoring of 5-HT by means of the PEDOT/CNTmodified 
acupuncture needle. Reproduced from Ref. [250] with permission of Springer Nature, © 2016. (D) Schematic representation of construction of 
nanocomposite hydrogel. Reproduced from Ref. [257] with permission of Springer Nature, © 2021.
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specific and sensitive detection, as well as real-time monitoring 
of nitric oxide (NO) in vivo, owing to the favorable catalytic prop-
erties of iron-porphyrin and the exceptional conductivity of gra-
phene (Figure 6B) [249]. Additionally, they introduced an 
extremely stable microsensor by modifying the surface of acu-
puncture needles with carbon nanotubes (CNTs) stabilized using 
poly(3,4-ethylenedioxythiophene) (PEDOT). This modification 
was applied to the tip surface of the needles for the purpose of 
real-time monitoring of serotonin (5-HT) levels in vivo (Figure 6C). 
Furthermore, the modified needle exhibited high selectivity for 
the detection of various inflammatory mediators and electroac-
tive molecules [250]. Raman spectroscopy, an analytical tool in 
chemistry, offers molecular structural fingerprints through the 
analysis of vibrational modes. The design and fabrication of 
nanostructures with surface-enhanced Raman scattering (SERS) 
activity have positioned SERS as an analytical tool capable of 
ultrasensitive detection, suitable for qualitative or semiquantita-
tive analysis [251]. Gold nanoshell-coated acupuncture needles, 
combined with polystyrene, can absorb SERS-active nanomateri-
als for the detection of interstitial fluids upon body insertion 
[252]. The novel SERS-active needles, integrated with glucose oxi-
dase (GOx) as a signal converter, 4-mercaptobenzoic acid (4- 
MBA) as a signal reporter and microporous polystyrene, can de-
tect glucose concentration in vivo. This approach may serve as a 
universal strategy for in vivo SERS detection of small biomole-
cules, utilizing SERS-active needles integrated with appropriate 
enzymes and corresponding reporters [251].

An essential aspect of acupuncture involves the manual ma-
nipulation of needles post-insertion to induce a ‘Qi’ response. 
However, a significant challenge in acupuncture is the reliance 
on subjective patient feedback for needle manipulations, as there 
are currently no quantitative, objective standards. To address 
this clinical issue, some researchers have made attempts. For in-
stance, a force sensor, specifically the Nano-17 titanium model, 
was affixed to the acupuncture needles to measure various rota-
tional frequencies and lifting-thrusting movements following the 
insertion of the needles into phantom tissue [253]. Furthermore, 
the development of porous acupuncture needles with hierarchi-
cal micro- and nanoscale conical pores on their surface has dem-
onstrated increased efficacy in psychiatric treatments and a 
reduction in pain sensation levels when compared to conven-
tional needles [254].

Acupoint injection therapy and acupoint catgut embedding ther-
apy represent innovative approaches wherein herbal extracts, liq-
uid medications or absorbable biomaterial sutures are introduced 
into acupoints to elicit prolonged therapeutic effects [251, 255]. 
Nanoparticle-based drug delivery systems constitute a promising 
strategy for enhancing the targeting and delivery efficiency of phar-
maceuticals while minimizing adverse effects. A prior study pre-
pared biodegradable poly(D, L-lactide-co-glycolide) nanoparticles 
loaded with bee venom (BV-PLGA-NPs), demonstrating a more sus-
tained analgesic effect when compared to traditional bee venom 
injections at acupuncture points [256]. In the practice of acupoint 
catgut embedding therapy, commonly utilized thread types encom-
pass medical catgut, absorbable surgical sutures and medicated 
sutures. Drawing inspiration from the utilization of nanobiomateri-
als in TCM, nanosilver threads have been incorporated into acu-
point catgut embedding therapy. Nanosilver, owing to its 
antibacterial properties, demonstrates superior efficacy in reducing 
inflammatory responses compared to traditional catgut [251]. 
Intriguingly, several studies have reported on the feasibility of em-
bedding acupoint nanocomposite hydrogels, such as nanoparticles 
combining triptolide with human serum albumin and 2-chloro-N 

(6)-cyclopentyl adenosine, for the treatment of rheumatoid arthritis 
(Figure 6D) [257]. Other hydrogels have been designed for treating 
myocardial ischemia-reperfusion injury [258]. Furthermore, hydro-
gel and cryogel biomaterials, fabricated from glycol chitosan and 
incorporating a novel biodegradable Schiff base crosslinker along 
with dysfunctional polyurethane, have been developed to promote 
healing in diabetic skin wounds [259].

Microenvironmental simulation of induced materials
Hydrogels, as innovative biomaterials, exhibit potential as synthetic 
substrates for 3D cell and organoid cultures [260–268]. The applica-
tions of these materials have expanded significantly, attributable to 
their versatile and highly tunable properties, as well as advance-
ments in biomaterial technologies [269–276]. Hydrogels play a sig-
nificant role in neuroengineering and regenerative medicine, 
facilitating the formation of a favorable ECM protein composition, 
as well as desired levels of stiffness, viscoelasticity, substrate topog-
raphy (e.g. roughness and curvatures), and fibrosity (Figure 7) [82, 
223, 277–280]. These capabilities make hydrogels valuable tools for 
studying cell behavior in vitro and for developing therapeutic strate-
gies in vivo.

Hydrogels can be categorized into synthetic hydrogels, including 
poly(acrylamide) and poly(ethylene glycol) and natural polymer 
hydrogels, such as type I collagen, fibrin, hyaluronic acid (HA) and 
alginate. Hydrogel networks are commonly synthesized and modi-
fied through various polymerization and crosslinking reactions. 
These processes commence with either synthetic monomers or 
macromers, or with natural polymers that have been modified, 
resulting in 3D polymeric meshes that are stabilized by covalent 
bonds and physical entanglements [281]. The mechanical proper-
ties of hydrogels can be modulated by adjusting the polymer den-
sity and/or the crosslinker concentration. The ability to tune 
mechanical and biocompatible properties, coupled with their high 
water content, makes the physical characteristics of in vitro hydro-
gels analogous to those of the in vivo ECM [282]. Among synthetic 
hydrogels, those based on polyethylene glycol (PEG) are particularly 
versatile and biocompatible, making them well-suited for use in 3D 
cell culture systems [283]. PEG-based hydrogels can be functional-
ized with a variety of functional groups, which facilitates diverse 
polymerization reactions for the crosslinking of hydrogels. This 
modification allows for the incorporation of protease-sensitive and 
adhesive peptides [284]. Multi-arm PEGs provide precise control 
over the degree of crosslinking and biofunctionalization [220, 285, 
286]. Methacrylated HA hydrogels are functionalized with both 
methacrylate and maleimide groups. These hydrogels are cross-
linked by protease-degradable oligopeptides through Michael-type 
reactions and subsequently UV photopolymerized to form a cross-
linked network after cell encapsulation [287, 288]. Moreover, HA 
hydrogels enable the independent co-presentation of various adhe-
sive motifs, including N-cadherin and arginine-glycine-aspartic 
acid (RGD). alginate hydrogels, upon incorporation with RGD pepti-
des and low molecular weight PEG spacers, exhibit viscoelastic 
properties [289]. Interestingly, while alginate is non-degradable 
within mammalian cells, the substrate still permits stress relaxa-
tion and the exertion of traction forces by cells. This is due to the 
presence of weak, ionic crosslinks between alginate chains, which 
are susceptible to modification by cellular forces. Furthermore, sci-
entists have developed a functional pH-responsive immunoregula-
tion-assisted neural regeneration strategy that offers a delivery 
system mediated by microenvironment-responsive immunological 
regulation, providing an alternative for the treatment of acute SCI 
[290]. Table 2 provides a summary of hydrogel-based biomaterials 
and their applications in neuroengineering, specifically for the 
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cultivation of 3D neural cells and organoids in both in vitro and 
in vivo settings.

Others
In addition to the biomaterials previously discussed, conductive 
polymers, graphene, CNTs, and piezoelectric scaffolds have 
emerged as promising candidates for neural repair and regenera-
tion. Their appeal lies not only in their unique physical and 
chemical properties but also in their biomaterial attributes, such 
as processing flexibility, the ability to promote neurite sprouting 
and outgrowth, and the potential for functionalization with 
chemically or biologically relevant molecules (Table 3).

Neuromorphic devices
Artificial synapse and artificial neural network
The development of a high-density parallel artificial synapse and 
neural network that can process large amounts of complex infor-
mation while consuming minimal power in varied realistic envi-
ronments is a top priority for researchers worldwide. To this end, 
scientists are investigating a range of biomaterials, encompass-
ing both organic and inorganic substances, to augment the effi-
ciency and integration of artificial synapses and neural networks 
[389, 390]. Due to their unique electrical, optical, mechanical, 
magnetic, thermal and chemical properties, nanomaterials have 
been extensively utilized in the development of artificial synap-
ses and neural networks. These nanomaterials, such as nanopar-
ticles, CNTs, nanowires, graphene and its derivatives, as well as 
2D materials, have shown significant potential in the advance-
ment of artificial synapses and neural networks (Figure 8A). 
Numerous studies have documented the defining characteristics 
of nanomaterials utilized in the construction of these systems 

[389–391]. These features include: (i) nanoconfinement effects for 
ensuring their electrical properties; (ii) the capacity to emulate 
biological synapse functionalities, encompassing short-term 
memory, long-term memory, and spike-timing-dependent plas-
ticity (STDP); (iii) energy consumption characteristics that emu-
late those of biological synapses result in minimal energy 
expenditure; (iv) ultrathin channels that facilitate rapid heat dis-
sipation; (v) the ability to support high-density integration, an es-
sential factor in the development of practical and functional 
computation systems; and (vi) additional benefits including sta-
bility, stretchability, flexibility, biocompatibility and transpar-
ency. Taken together, these attributes are crucial for the 
development of advanced materials suitable for various applica-
tions, particularly in the field of bioengineering and wearable 
technologies. Table 4 provides a comprehensive summary of the 
characteristics of artificial synapses and neural networks that 
are based on biomaterials. It also details their synaptic behaviors, 
highlighting the relationship between material properties and 
functional performance.

Neuromorphic computing
Emerging neuromorphic sensory computing through inotropic 
devices has proposed a promising platform for simulating the 
sensing and computing functions of living organisms. This ap-
proach highlights representative concepts of both low-level and 
high-level sensory computing and introduces significant material 
and device breakthroughs [430]. In recent work, we reported on 
the utilization of lead-free perovskite CsBi3I10 as a photoactive 
material for the fabrication of organic synaptic transistors featur-
ing a floating-gate structure, marking a novel approach in the 
field [431]. The devices are capable of sustaining an Ilight/Idark ratio 

Figure 7. The classification and their properties of hydrogels. Natural hydrogels, such as collagen, chitosan, cellulose, gelatine, hyaluronic acid and 
alginate, are derived from biological sources and are known for their biocompatibility and biodegradability. They exhibit porosity, which is beneficial 
for cell infiltration and nutrient exchange, and have swelling properties that can be controlled by their chemical structure. Synthetic hydrogels, 
including PEG, PIC, PAA and PVA-based materials, offer customizability, controlled degradation rates and a wide range of mechanical properties. They 
can be engineered to be responsive to various stimuli, such as temperature, pH and light, and provide reproducibility and scalability in production. The 
choice between natural and synthetic hydrogels depends on the specific requirements of the application, with natural hydrogels often preferred for 
their biocompatibility and biodegradability, while synthetic hydrogels offer more control over their properties and can be tailored to specific needs.
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Table 2. Biomaterials with hydrogel method and their application in neuroengineering for 3D neural cell and organoid cultures in vitro 
and in vivo.

Biomaterials Cell type Applications

Natural polymer hydrogels
Type-I collagen [291] Embryonic rat NSCs and NPCs Functional synapses and neural network 

formation in a 3D matrix
Type-I collagen/hyaluronic matrix [292–295] Rat DRG Promotion of axon regeneration

Embryonic and adult mouse NSCs Enhancement of NSCs and NPCs survival, 
proliferation and differentiation

Human EnSCs hEnSCs-derived motor neuron differentiation
Gingiva-derived GMSCs Promotion of development or differentiation 

towards NCSCs and/or SCPCs
Type-V collagen/LAM [296] Rat sciatic nerves Promotion of Schwann cell spreading and 

proliferation, as well as neurite outgrowth
Alginate [297–299] Adult rat NSCs First demonstration of the influence of 

mechanical modulus on NSC differentiation in 
a 3D scaffold

Murine ESCs Improvement of early neural differentiation
Alginate/GG/LAM [300] Human iPSC-derived NPCs Facilitation of cell differentiation
Chitosan [301–303] Embryonic rat NSCs Demonstration of the role that substrate topology 

plays in regulating the differentiation and 
proliferation of NSCs in chitosan hydrogels

NSC-34, PC12 Promotion of cell differentiation towards a 
specific type of neuron

Hyaluronic acid [304–306] Ventral midbrain-derived mouse NSCs The distinct mechanical properties, such as 
stiffness and elasticity, significantly influence 
the differentiation of NPCs into astrocytes 
or neurons

Human iPSC-NPCs Facilitation of neurite outgrowth and 
spontaneous neural differentiation

Gelatin [307–312] Human iPSC-derived neural cells Gelatin-based hydrogel for building spinal 
cord organoids

Rat primary cortical neural cells Gelatin-based GelNB-PEGdiSH for generating 
compliant free-standing neural constructs

BMSCs and NSCs Increasing the NSCs differentiation towards 
neurons and oligodendrocytes

NSCs and MSCs Promotion of cell proliferation, migration and 
differentiation

Murine BMSCs Promotion of cellular viability, neural 
differentiation and neurotrophin secretion

Fibrin [313] Adipose tissue-derived MSCs Promotion of cell proliferation and differentiation 
into neurons

Synthetic polymer hydrogels
Mixture of PEG and PLL [314–316] Mouse postnatally isolated NSCs Mechanical modulation of crosslinked hydrogels 

(PEG/PLL) that impacts NSC migration and 
differentiation

Human ESCs-derived NPCs,  
endothelial cells, MSCs and microglia/ 
macrophage precursors

Neural construction with diverse neuronal and 
glial populations, interconnected vascular 
networks and ramified microglia

MoS2/GO/PVA [317] NSCs Promotion of NSCs into neuron differentiation 
and inhibition of astrocyte development with 
high anti-inflammatory effect in vitro

PVA-SA-VAPs [318] NPCs Facilitation of NPC differentiation into neurons, 
astrocytes and oligodendrocytes

PVOH-Ca [319] Human ESCs-derived  
neuroepithelial organoids

Human ESC-derived neuroepithelial organoids

IKVAV-RADA16 SAPs [320] Primary mouse NSCs SAP 3D culture for neural tissue
Rat NSCs Encapsulated NSCs support and glia astrocytes 

formation reduction
Fmoc-SAPs [321] Mouse cortical NPCs Cell transplantation
SDF1-SAPs [322] Human iPSCs Tissue-specific hydrogels for neural repair
RADA16-RGD [323] Human ADSCs Promotion of spinal cord injury repair
UCMSC-bFGF-ECM-HP [324] UCMSCs UCMSC-bFGF-ECM-HP hydrogel for neural 

regeneration
PEDOT [325] NSCs Promotion of neuronal regeneration
CS-PANI [326] Rat ADSCs, PC12 cells Neural priming of ADSCs
Porcine DNM microspheres [327, 328] Schwann cells and PC12 cells, primary NSCs 

and NPCs
Favorable viability and adhesive properties, cell 

extension promotion and proliferation 
enhancement

(continued)
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Table 2. (continued)

Biomaterials Cell type Applications

Products
Cellink Bioink ® [329] Human iPSCs-derived NSCs 3D bioprinting for human iPSC-derived NSC 

differentiation
MatriGrid ®/ NeuroGrid® [330] Primary rat cortical neurons, iPSCs Neural cell applications
HyStem ® [331] Human iPSCs 3D bioprinting for human iPSC differentiation

A, alanine; ADSCs, adipose mesenchymal stem cells; bFGF, basic fibroblast growth factor; BMSCs, bone marrow-derived mesenchymal stem cells; CS, chitosan; D, 
aspartic acid; DNM, decellularized peripheral nerve matrix; DRG, dorsal root ganglion; G, glycine; GG, gellan gum; GO, graphene oxide; ECM, extracellular matrix; 
EnSCs, endometrial stem cells; ESCs, embryonic stem cells; GMSCs, mesenchymal stem cells; HP, heparin-poloxamer; iPSCs, induced pluripotent stem cells; LAM, 
laminin; MSCs, mesenchymal stem cells; MoS2, molybdenum sulfide; NCSCs, neural crest stem-like cells; NPCs, neural progenitor cells; NSCs, neural stem cells; 
PANI, polyaniline; PEDOT, poly(3,4-ethylenedioxythiophene; PEG, poly(ethylene glycol); PLL, poly(L-lysine); PVA, polyvinyl alcohol; PVOH-Ca, poly(vinyl alcohol)- 
calcium salt; R, arginine; RGD, arginine-glycine-aspartate; SAPs, self-assembling peptides; SCPCs, Schwann cell precursor-like cells; SDF1, stromal cell-derived 
factor-1; UCMSCs, umbilical cord mesenchymal stem cells.

Table 3. Other biomaterials and their application in neuroengineering for neural cell cultures in vitro.

Biomaterials Cell type Applications

Conductive polymers
PPy (DBS) [332] Human NSCs Facilitating differentiation of human NSCs into neurons 

with long neurites and great branching
PPy-PLLA [333] PC12 Adjusting the alignment of cellular neurites along the fiber 

axis or in response to electropotential gradients
CS/PPy-PLLA/PCL [334] PC12 Promoting cell differentiation and axon outgrowth
PLLA fibers/PPy nanoparticles coated 

with laminin, fibronectin, colla-
gen [335]

PC12 Enhancing neurite adhesion, alignment and elongation

PEDOT-PSS and DMSO-PEDOT-PSS [336] NG108-15 Supporting neurite sprouting
Oligo-EDOT-PCL [337] iNSCs Enhancing the differentiation of NSCs into neurons by 

promoting neurite elongation and branching
Carbon nanotubes
MWCNT-PEGDA [338] NSCs Promoting NSC proliferation and early neuronal 

differentiation
PU/Silk-MWCNTs [339] S42 and PC12 Promoting neural growth, proliferation, differentiation and 

spontaneous neurite outgrowth
PLGA/MWCNTs [340] PC12; DRG; 

Schwann cells
Supporting the cellular response of nerve cells, including 

cell proliferation, differentiation, neurite outgrowth and 
myelination by the application of electrical stimulation

PCLF-graphene-CNT-MTAC [341] PC12 Promoting cell growth, neurite extension, proliferation
Hierarchical helical carbon nanotube  

fiber [342]
Artificial ligament Bone-integrating anterior cruciate ligament replacement

Piezoelectric scaffolds
PVDF [343, 344] Rat spinal 

cord neurons
Promoting neurite growth and branching

PC12 Inducing neuritogenesis of PC12 cells
PVDF-TrFE [345, 346] NSCs Promoting neuronal differentiation

DRG Stimulating neurite outgrowth
PVDF-TrFE/BaTiO3 [347] SH-SY5Y Enhancing ultrasound-mediated cellular viability, 

differentiation and neurite growth
PLLA [348–352] PC12 Promoting cellular adhesion and differentiation

SH-SY5Y Promoting cellular viability, proliferation, glucose and lactic 
acid metabolism, as well as guiding neurite outgrowth

Chick DRG and rat 
Schwann cells

Guiding neurite elongation and Schwann cell migration 
along the proper alignment of fibers

iNSCs Promoting cellular adhesion, growth, proliferation and 
guiding neurite outgrowth

GO-coated PLLA [353] PC12 and 
Schwann cells

Promoting proliferation and NGF-dependent differentiation 
and proliferation

Graphene-based materials
Graphene films [354] Murine hippocampal  

cells
Boosting of neurite sprouting and outgrowth

Laminin-coated graphene films [355] NSCs Promoting biocompatibility, adhesion, proliferation and 
differentiation towards neurons and astrocytes

rGO PLCL microfibers [356, 357] NSCs Regulating the differentiation of NSCs into neurons and the 
subsequent formation of dense neural networks

3D-graphene foams [358, 359] NSCs Enhancing NSCs differentiation towards astrocytes 
and neurons

Laser-Scribed rGO [360] Rat primary neurons Promoting cellular adhesion, survival and 
neurite elongation

(continued)
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of 103 for 4 h and exhibit excellent stability over a 30-day test pe-
riod, even in the absence of encapsulation. Synaptic functions 
have been successfully emulated. Notably, the combination of 
the organic semiconductor’s favorable charge transport charac-
teristics and the exceptional photoelectronic properties of 
CsBi3I10 enables the realization of synaptic performance at 

operating voltages as low as −0.01 V, a feature that is uncommon 
among floating-gate synaptic transistors (Figure 8B). 
Furthermore, we have constructed artificial neural networks. We 
propose a novel method capable of simulating synaptic weight 
values in a multi-digit format, thereby facilitating complete gra-
dient descent. This approach has been demonstrated through 

Table 3. (continued)

Biomaterials Cell type Applications

Ginseng-rGO sheets [361] NSCs Accelerating the differentiation of NSCs into neurons
Electrospun PCL and graphene  

nanocomposite [362]
MSCs Enhancing differentiation of MSCs into 

dopaminergic neurons
Silk/GO micro/nanofibrous  

scaffold [363]
NG108-15 Enhancing metabolic activity, proliferation and 

neurite outgrowth
FRGO and PRGO powder and film  

scaffold [364]
Neuron Promoting DA differentiation and preventing cell death

Choline-functionalized Injectable GO 
Hydrogel [365]

Neuron Promoting neurite outgrowth, stabilizing microtubule 
networks and enhancing the expression of 
neural markers

3D porous rGO foams scaffold [366] Neuron Supporting the ingrowth of myelinated vGlut2þ axons 
within rGO scaffolds

GO-PLGA hybrid nanofibers [367] NSCs Enhancing neuronal proliferation and differentiation 
in vitro, as well as protecting NSCs from oxidative stress

GO/Polycaprolactone nanoscaffold [368] Neuron Facilitating functional and morphological recovery in 
peripheral nerve regeneration

rGO-GelMA-PCL hybrid nanofibers [369] Neuron Promoting both sensory and motor nerve regeneration, as 
well as facilitating functional recovery in rats

rGO-coated ApF/PLCL scaffold [370] SCs Enhancing SCs migration, proliferation and myelination 
in vitro and promoting nerve regeneration in vivo

Graphene-based materials
P(3HB)/graphene nanoplateletes 

composite [371]
Neuron Promoting neuronal growth and maturation

Hydrogenated graphene [372] Neuron Promoting neuronal adhesion, network maturation and 
neuronal activity modulation

rGO-coated polycaprolactone fibrous 
scaffold [373]

SCs Increasing proliferation and expression of NGF in 
Schwann cells

Chitosan-graphene oxide scaffold [374] Neuron Facilitating the recovery of neurological functions after 
spinal cord injuries

Silk/Gelatin scaffold [375] Neuron Increasing neuronal adhesion, differentiation and 
neurite elongation

Polyurethane-Graphene 
Nanocomposite [376]

Neuron Enhancing neurovascular regeneration and peripheral 
nerve regeneration

Graphene collagen cryogel 
scaffold [377]

Neuron Inducing neuronal differentiation, promoting  
immune-modulatory secretion, and enhancing cellular 
growth and migration in organotypic culture of the 
spinal cord

Graphene/silk fibroin scaffold [378] Neuron Promoting neurite outgrowth
Aminated GO scaffold [379] Neuron Inducing neurite elongation and branching in 

cortical neurons
Electrospun PCL/gelatin/graphene 

nanofibrous mats [380]
P12 Enhancing PC12 cells attachment and proliferation

N-cadherin-graphene oxide-based 
scaffold [381]

Neuron Stimulating neuronal growth and intracellular 
transport processes

GNPs and MWCNTs and chitosan 
scaffold [382]

Neuron Promoting differential neural cell adhesion and 
neurite outgrowth

3D-Printed PCL/rGO Conductive 
Scaffold [383]

Neuron Inducing neural differentiation

Collagen-coated 3D graphene 
foam [384]

MSCs Facilitating differentiation into DA neurons from MSC

rGOaCNTpega-OPF-MTAC composite 
hydrogel [385]

P12 cells Enhancing proliferation and spreading of PC12 cells, as well 
as stimulating neurite development

GOa-CNTpega-OPF hydrogel [386] Neuron Increasing electrical conductivity and stimulating neurite 
development

GO and rGO mat [387] ADSCs Promoting neurogenic differentiation
Graphene-Polyacrylamide 

Hydrogel [388]
Neuron Facilitating the development of synaptic activity

ADSCs, adipose derived stem cells; BaTiO3, barium titante; Cs, chitosan; DA, dopamine; DMSO, dimethyl sulfoxide; DBS, dodecylbenzenesulfonate; DRG, dorsal 
root ganglion; EDOT, oligomers of 4-ethylenedioxythiophene; FRGO, full reduced graphene oxide; GNPs, graphene nanoplatelets; iNSCs, induced pluripotent stem 
cell-derived neural stem cells; MTAC, [2-(methacryloyloxy)ethyl]trimethylammonium chloride; MSCs, mesenchymal stem cells; MWCNT, multiwalled carbon 
nanotubes; NG108-15, analogue neuronal cells; NGF, nerve growth factor; NSCs, neural stem cells; OPF, oligo(polyethylene glycol fumarate); PC12, neuron-like rat 
phaeochromocytoma cells; PCL, poly(caprolactone); PCLF, poly(caprolactone fumarate); PEDOT, poly(3,4-ethylenedioxythiophene); PEGDA, poly(ethylene glycol) 
diacrylate; P(3HB), poly(3-hydroxybutyrate); PLCL, poly (l-lactic acid-co-caprolactone); PLGA, rPoly(lactic-co-glycolic acid); PLLA, poly-L-lactic acid; PPy, 
polypyrrole; PRGO, partially reduced graphene oxide; PVDF, polyvinylidene fluoride; PVDF-TrFE, polyvinylidene fluoride trifluoroethylene; PSS, 
polystyrenesulfonate; PU, polyurethane; rGO, reduced graphene oxide; s42, Schwann cells line; SCs, Schwann cells; SY-SY5Y, neuroblastoma cell line.
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image recognition tests, which exhibit impressive recognition ac-

curacy rates of 91% for supervised learning and 81% for unsuper-

vised learning classifications. These results demonstrate the 

significant potential of floating-gate organic synaptic transistors 

in the realm of neuromorphic computing. Additionally, we have 

developed light-stimulated synaptic transistors utilizing natural 

carotene in conjunction with organic semiconductors [432]. 

In this synaptic transistor, we have successfully realized several 

functions that closely resemble those of biological synapses, 

and we have achieved an ultra-low power consumption of 

3.4 × 10−18 J (Figure 8C).

Human–computer interaction
Despite of neural repair and regeneration, neural modulation 

and manipulation are other therapeutic strategies for neurologi-

cal injuries and diseases. Biomimetic electrodes, peripheral nerve 

interfaces and brain–computer interfaces are the cutting-edge 

frontiers in this framework [433, 434]. Advancements in 

biomaterials-based neural electrodes and interfaces have led to 

the development of unique materials with tailored chemistry, 

shape, size and texture. These features enhance electrical and 

mechanical properties, as well as biocompatibility, resulting in 

improved electrode longevity and performance [435]. A variety of 

biomaterials have been utilized in the construction of electrode 

and interface substrates. Initially, microwires and glass micropi-

pette electrodes were employed to target specific brain regions. 

However, neural prosthetic devices have since evolved to encom-

pass silicon shafts and more intricate micromachined silicon and 

polyimide flexible recording systems. These advanced systems 

enable the monitoring of neuronal networks with improved tem-

poral and spatial resolution [436, 437]. Figure 9 shows the appli-

cation and their characteristics of brain–computer interfaces.  

Table 5 summarizes the biomaterials that have been utilized for 

neural electrodes and interfaces.

Biocompatible materials
The first generation of neural electrodes primarily comprises 
microwires fabricated from conductive metal wires, including 
stainless steel, platinum, gold, iridium and tungsten. However, 
the inherent limitations of microwire electrodes have limited 
their clinical applicability. Transcutaneous wire connections 
pose an increased risk of surgical complications. Additionally, 
the forces and movements associated with tethered electrodes 
can introduce bias in recording, and the microwires are suscepti-
ble to bending during the implantation process. Therefore, 
micro-electromechanical systems (MEMS) electrodes, which can 
be crafted into intricate structures through microfabrication 
techniques, have been introduced as the next generation of neu-
ral electrodes. Silicon MEMS-based arrays, exemplified by the 
Michigan electrode and the Utah array, have transcended the 
technical limitations associated with microwire electrodes. 
These arrays offer significant advantages, including an increased 
number of recording sites, expanded recording layers, and the ca-
pability for long-term recording, all within a relatively compact 
form factor (Figure 10A) [435, 467, 468]. Furthermore, these 
arrays address the challenges arising from the mechanical mis-
match between the rigid, planar nature of silicon electrodes and 
the compliant, curved surfaces of brain tissues [435]. However, 
the potential for these arrays to induce local inflammation has 
garnered significant attention, particularly as their successful 
application in neural recording and stimulation has become 
more widespread.

Intelligent materials
Novel neural prosthetic devices, such as neural interfaces with 
minimal chronic tissue inflammation, have been developed not 
only for neural recording but also for neural stimulation and ma-
nipulation. In the pursuit of enhancing electrode-tissue interac-
tions and minimizing chronic immunological responses, various 
biomaterial-based strategies have been employed to modulate 

Figure 8. Schematic diagram of artificial synapses. (A) Types of 2D materials-based synaptic devices. Reproduced from Ref. [390] with permission of 
John Wiley and Sons, © 2021. (B) (i) Schematic of the CsBi3I10-based organic synaptic transistor. (ii) EPSC triggered by an optical pulse at different VDS 
varied from −0.01 to −1 V. Reproduced from Ref. [431] with permission of American Chemical Society, © 2021. (C) (i) Schematic diagram of dual- 
organic-transistor-based tactile-perception element (DOT-TPE). (ii) The relative changes in current for pressure-sensitive transistors under varying 
pressure conditions, as well as the corresponding postsynaptic current responses of the synaptic transistors, were investigated. Reproduced from Ref. 
[432] with permission of Whiley-VCH, © 2017.
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Table 4. The biomaterials-based characteristics of artificial synapses and neural network and their synaptic behaviors.

Catalog Active biomaterials Ion/dielectric biomaterials Synaptic behaviors

Nanoparticle Pentacene embedded with Au 
nanoparticles

SiO2 PPF, STP, STD, LTP, LTD and STDP 
[392–395]

Self-assembled IZO P-doped nanogranular 
SiO2 films

PPF (�180%) and STP [396–398]

Nanoscale Ag particles in Si medium NA STDP [399]
CNT Single-wall carbon nanotube PEG PPF (120%) and STDP [400]

Single-wall p-type carbon nanotube In-doped Al2O3 PPF (141%) [401]
Single-wall p- and n-type  

carbon nanotube
Al2O3 LTP and LTD [402]

Single-wall carbon nanotube SiO2 LTP, LTD and STDP [403]
Poly (pyromellitic  

dianhydride-co-4,40- 
oxydianiline)

PPF (304%) and STP [404]

Nanowire TiOx NA LTP, LTD and STDP [405]
TiO2 NA STP, LTP and STDP [406]
Sb-doped SnO2 PEO/LiClO4 PPF (430%) and STP [407]

Chitosan PPF (380%) and STP [408]
P3HT PS-PMMA-PS PPF (162%), STP, STD, LTP, LTD and 

STDP [409]
Graphene Twisted bilayer graphene AlOx STP, STD, LTP, LTD and STDP [410, 411]

Graphene oxide SiO2 STP and LTD [412]
IZO KH550-GO PPF (266%), STP, LTP and LTD [413]

2D material Exfoliated 2D multilayer MoS2 flakes PVA PPF (367%) and STP [414]
Exfoliated MoS2 flakes SiO2 STP, STD and LTP [415]
Polycrystalline CVD-grown mono-

layer MoS2

SiO2 LTP, LTD and STDP [416]

Exfoliated quasi-2D α-MoO3 EMIM-TFSI PPF (�114%), STP, STD, LTP and 
LTD [417]

Black phosphorus POx LTP, LTD and STDP [418]
Exfoliated 2D perovskite single crystals NA PPF (�150%), STP, STD and LTP 

[419, 420]
Vertical MoS2 double-layer memristor Cu/Au STDP [421]
2D monolayer MoS2 atomic sheets Au/Au Memristive switching [422]
2D WS2 nanosheet-based memristor Pd/Pt PPF and STDP [423]
MoS2 hBN/Au LTP and STDP [424, 425]

Li LTP [426]
Vertical 2H-MoTe2- and Mo1-xWxTe2 Al2O3/MoTe2 Memristive switching [427]
2D-SnSe film Au/NSTO PPF, LTP, STP and STDP [428]
MoS2/PTCDA NA PPF, LTP, STP and SRDP [429]

ACM, astrocytic conditioned medium; b.End3, brain-derived endothelial cells.3; BMECs, brain microvascular endothelium cells; BV2, mouse microglia cell lines; C6, 
glioma cell lines; C8D1A, marine cerebellar microglia cell lines; CTX-TNA2, rat astrocyte cell lines; E, embryonic; EM-HCC, hippocampal cells derived from 
embryonic mice; ER-HCC, hippocampal cells from embryonic rat; hAst, human astrocyte; hBPC; human brain pericyte cell; hBMECs, human brain microvascular 
endothelium cells; hCMEC-D3, human cerebral microvascular endothelial cells, D3; hDRGNs, human dorsal root ganglion neurons; hECNs, cortical neurons from 
human embryos; hESCs, human embryonic stem cells; hNSC, human neuroepithelial stem cell; hUVECs, human umbilical vein endothelial cells; IP-DiLL, IP-Dip-in 
laser lithography; iPSCs, induced pluripotent stem cells; LED, light emitting diode; mECNs, cortical neurons from mouse embryos; mESCs, marine embryonic stem 
cells; N9, marine microglia cell lines; NA, not available; NPCs, neural progenitor cells; NSCs, neural stem cells; OPCs, oligodendrocyte precursor cells; P, postnatal; 
PD, Parkinson’s disease; PDMS, polydimethylsiloxane; RBE4, rat brain vascular endothelium cell lines; rDRGNs, rat dorsal root ganglion neurons; rECN, cortical 
neurons from rat embryos; ReNcell VM, human neural progenitor cell lines; TEER, trans epithellal electric resistance; Th1; T helper 1 cell; TY10, human brain 
microvascular endothelium cell lines; U87, human glioma cell lines.

Figure 9. The application and their characteristics of brain–computer interfaces. Brain–computer interfaces (BCIs) can be divided into three main 
categories: (1) Noninvasive BCI: This type can decode scalp EEG signals. However, it suffers from fast signal attenuation and difficulty in signal 
extraction. (2) Minimally Invasive BCI: This type decodes cortical surface EEG signals, which have a higher signal-to-noise ratio. (3) Invasive BCI: This 
type decodes intracortical EEG signals, offering advantages such as fast conduction and strong signals, but it carries a risk of infection.
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Table 5. The biomaterials for neural electrodes (arrays) and interfaces and their applications.

Type of composite biomaterial Examples Applications

Neural electrodes (arrays)
Single microwire [435, 438] Glass or polyimide insulated microwires Improving neural recording duration
Microwire array [439, 440] S-isonel- or Teflo)-coated tungsten or 

stainless steel
Improving neural recording duration with 

3D array
Single nanowire FET [441] Quartz/Silicon Neural circuits mapping in acute brain slices
Vertical nanowire array [442, 443] Silicon-on-insulator Intracellular interfacing to neuronal circuits
Michigan electrode [444–447] Silicon w/silicon dioxide/nitride Chronic neural recording
Utah array [448] Silicon coating materials: Parylene-C Long-term stimulation and recording
Other Silicon microelectrode array [449, 450] Silicon-on-insulator wafer, polyimide Encouraging favorable long-term 

biocompatibility reactions at the  
tissue-electrode interface

Flexible array [451, 452] Polyimide-platinum-polyimide,  
silk-supported PI array, silk array

Acute and chronic neural recordings in vivo

RGD nanoarrays [453] RGD peptides on the PEG on the 
glass background

Designing cell-selective nanomaterials 
potentially used in cell screening

Neural interfaces
IPNs of hydrogel [454] PVA/PAA Improving the electrode-tissue interface
Hydrogel/CP [455, 456] Alginate/PEDOT, alginate/Ppy,  

PVA-(Hep-MA)/PEDOT and chitosan/Ppy
Acute neural recording

Hydrogel/CNT [457, 458] PEGDA/SWCNT and agarose/ CNT Chronically implantable neural electrodes 
and long-term neural recording devices

CP/CNT [459–462] PEDOT/MWCNT, Ppy/ SWCNT,  
Ppy/MWCNT, MWCNTs/PEDOT:PSS

Neural recording with improving 
microelectrode stabilities

CNT/Non-conducting polymer [463, 464] MWCNT/PVA, SWCNT/ laminin Minimizing the immune response to 
neural electrodes

Graphene/CP [460, 465] Graphene oxide /Ppy, graphene 
oxide/PEDOT

Biosensing and neural interfacing

Graphene/hydrogel [466] Graphene/PDMAA Neural tissues

CP, conducting polymers; CNT, carbon nanotubes; ECoG, electrocorticogram; FET, field-effect transistor; Hep-MA, heparin methacrylate; IPNs, interpenetrating 
polymer networks; MWCNT, multiwalled carbon nanotubes; NA, not available; PAA; poly(acrylic acid); PDMAA, poly(N,N-dimethylacrylamide); PDMS, 
polydimethylsiloxane; PEDGA, poly(ethylene glycol) diacrylate; PEDOT, poly(3,4-ethylenedioxythiophene); PEG, poly(ethylene glycol); PI, polyimide; Ppy, 
polypyrrole; PSS, poly(styrene sulfonate); PVA, poly(vinyl alcohol); RGD, arginine-glycine-aspartate; SWCNT, single-walled carbon nanotubes.

Figure 10. Schematic diagram of nerve electrodes. (A) Schematic detailing the Utah MEA configuration and schematic detailing the Michigan MEA 
configuration. Reproduced from Ref. [468] with permission of Wiley-VCH, © 2019. (B) (i) Schematic illustration for fabrication of silver nanowire 
(AgNW)-based microelectrodes using a photolithographic process. (ii) SEM images of silver nanowire-based microelectrodes. Reproduced from Ref. 
[479] with permission of American Chemical Society, © 2014. (C) The next-generation neuro-nano interfaces. Reproduced from Ref. [471] with 
permission of John Wiley and Sons, © 2017.
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the immune response at both molecular and cellular levels [469]. 
To achieve better integration and modulate the chronic inflam-
matory response, modifying the physical, chemical and biological 
properties of the neural probe surface has been the primary 
strategy in this context [470–472] (Figure 10B). The biomaterials- 
based surface modifications of neural interfaces include both bi-
ological (e.g. coating with peptides, HA and growth factors) and 
non-biological modifications (e.g. conducting polymers, hydro-
gels and CNTs) [10, 231, 468, 473–478]. The application of neural 
electrodes and interfaces for recording, stimulating and manipu-
lating neural activity still faces several challenges in both in vitro 
and in vivo settings. First and foremost, there is a necessity to de-
sign and develop novel biomaterials that can form seamless neu-
ral interfaces, characterized by a high degree of sensitivity. 
Second, there is a requirement for a high degree of electrode sen-
sitivity, particularly for the detection of single-unit action poten-
tials, which typically exhibit signal amplitudes in the microvolt 
range. Third, long-term stability is imperative. The primary 
obstacles in this field include achieving biocompatibility to pre-
vent immune responses, ensuring the durability of the electrode- 
tissue interface over time and maintaining the fidelity of neural 
signals despite tissue encapsulation and electrode corrosion. 
Fourth, the development of innovative biocompatible biomateri-
als that emulate the characteristics of neural tissue is crucial for 
minimizing inflammation and ensuring long-term functionality. 
To address these challenges, researchers are exploring the prepa-
ration of electroactive nanomaterials, such as silicon nanowires 
and CNTs, as well as the integration of conductive polymer nano-
structures within neural interfaces (Figure 10C). Innovative bio-
materials of this nature may facilitate a significant advancement 
in the realms of neural recording, stimulation and manipulation.  
Table 6 summarizes the advantages of electroactive nanomateri-
als in neural interfaces.

BBB and sustained release drugs
TCM has gained significant attention for its potential in prevent-
ing and treating neurological diseases and injuries, particularly 

through the use of herbs or herbal extracts, acupuncture and cat-
gut embedding. Nanomedicines are drug nanoparticles obtained 
by nanoscale processing of the active ingredients or active sub-
stances of herbal medicines. Nanomedicine carriers primarily en-
compass lipid-based nanoparticles such as liposomes, polymeric 
NPs, inorganic NPs and natural carrier NPs. The application of 
biomaterials in acupuncture aims to extract both biochemical 
and physical signals. For instance, the integration of materials 
like gold nanoparticles, graphene and CNTs into acupuncture 
needles enables the monitoring of neurotransmitter levels in the 
body. Specifically, these enhanced needles can detect dopamine, 
NO and 5-HT. Furthermore, the integration of nanoscale six-axis 
force sensors with acupuncture needles allows for precise mea-
surement of the pressure and twist angle during needle insertion. 
This advancement facilitates more accurate and controlled acu-
puncture treatments. In addition to these developments, innova-
tive therapies have emerged. For example, the incorporation of 
silver nanowires in acupoint catgut embedding therapy has been 
shown to mitigate inflammatory responses and enhance local 
drug delivery. Similarly, the application of bee venom-loaded 
nanoliposomes in acupoint injections has demonstrated the po-
tential in reducing allergic reactions and minimizing toxic side 
effects (Figure 11).

A variety of herbs, herbal extracts, formulas, and decoctions 
have shown beneficial neuroprotective effects, improving neural 
function in various neurological injuries and diseases (Table 7). 
The neuroprotective mechanisms of these herbal compounds are 
diverse, often involving antioxidant and anti-inflammatory activ-
ities that protect neurons from oxidative damage and inflamma-
tion, which are key factors in the pathogenesis of 
neurodegenerative diseases. These natural treatments offer a 
promising avenue for the development of novel therapeutic strat-
egies in neurorehabilitation and the prevention and treatment of 
neurodegenerative diseases. However, the application of TCM is 
significantly hindered by several factors, including complex for-
mulations, single administration methods, poor water solubility, 
low bioavailability, and limited targeting capability. Recently, 

Table 6. The advantages of electroactive nanomaterials in neural interfaces.

Nanomaterials Advantages Representatives

Conducting polymers (i) Entrap and release drugs and biomolecules; (ii) be functionalized with 
bioactive molecules and proteins; (iii) be able to transfer the electrical 
charge from ions in living tissue to electrons in an electrode; (iv) alter 
the electrical, chemical and physical properties of the surface to 
mediate the cellular response.

Ppy, PANI, PT and 
PEDOT [480, 481]

Carbon nanotubes (i) High electrochemically accessible surface area, ranging from 700 
to1000 m2/g; (ii) high mechanical strength, with an elastic modulus of 
approximately 0.64 TPa for an individual nanotube; (iii) excellent 
thermal conductivity, with individual MWNT exceeding 3000 W/m�K; 
(iv) high electronic currents, up to 109 A/cm2.

SWCNTs and MWCNTs 
[482–484]

Graphene (i) High mechanical strength and chemical stability; (ii) high elastic 
modulus, approximately 1.0 TPa; (iii) remarkable thermal conductivity, 
approximately 3000 W/m�K; (iv) high electron mobility, approximately 
200 000 cm2/V�s; (v) excellent electrical conductivity, with a specific 
value to be provided; (vi) low resistivity, approximately 10−6 Ω as a 
substrate at room temperature; (vii) optical transparency, stable 
crystalline structure and a well-defined energy band structure.

Graphene [485–490]

Silicon nanowires (i) Improved sensitivity; (ii) outstanding spatial resolution and SNR due to 
their high surface-to-volume ratio; (iii) smaller neuron-nanowires 
electrode distance, typically less than 50 nm.

2D and 3D NWFETs 
[441, 491–493]

Hybrid nanomaterials (i) Reduced mechanical mismatch at the neural tissue interface; 
(ii) increased stability and biocompatibility; (iii) maintaining the 
functionality of the electrode.

Hydrogel [494, 495]

MWCNTs, multiwalled nanotubes; NWFETs, nanowire field-effect transistors; PANI, poly(aniline); PEDOT, poly(3,4-ethylenedioxythiophene); Ppy, poly(pyrrole); PT, 
poly(thiophene); SNR, signal-to-noise ratio; SWCNTs, single-walled nanotubes.
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biomaterials have increasingly been utilized in the field of neuro-
rehabilitation and the treatment of neurodegenerative diseases 
to address pharmaceutical challenges, owing to their ability to 
mimic the ECM for cell growth and tissue regeneration, scaffold-
ing for cell and drug delivery, excellent biodegradability, tailored 
stiffness and the potential for sustained-release effects [496– 
505]. These advantages may shift the limited modern medicine 
view on TCM application in clinical practice. Therefore, a new 
concept of nano-TCM has been proposed that involves low- 
dimensional materials, bioactive ingredients, bioactive parts, me-
dicinal biomaterials or complex prescriptions smaller than ca. 
100 nm in at least one dimension [251]. Persistent efforts have 
been dedicated to enhancing the physical, chemical and biologi-
cal properties and characteristics of natural TCM, which exhibits 
neuroprotective, anti-inflammatory, and anti-oxidative effects. 
For instance, a previous study formulated panax notoginseng sapo-
nin into a hydrophobic dispersion with slow-release properties. 
Subsequently, panax notoginseng saponin was enclosed within ble-
tilla striata polysaccharide/alginate microspheres to improve the 
encapsulation rate [506]. In another study, a thermosensitive hy-
drogel based on chitosan and gelatin was utilized as a delivery 
vehicle for ferulic acid. This hydrogel, characterized by its porous 
structure, was designed to facilitate a sustained release of ferulic 
acid (Figure 10A) [507]. Additionally, a composite of electrospun 
nanofibers, consisting of polycaprolactone and collagen hydroly-
sate, was developed and loaded with ferulic acid. This composite 

was designed to facilitate a continuous release of ferulic acid and 

to promote cellular proliferation and favorable morphology [508]. 
Furthermore, the investigation of an HA-decorated chitosan 

nanoparticle, loaded with ferulic acid and aerosolized, was con-

ducted as a strategic combination of drug, nanocarrier, and deliv-
ery device for effective control of chronic inflammation [509]. 

Various strategies have been devised to enhance the release and 

delivery of ferulic acid, utilizing nanocomposite platforms that in-

clude nanogels and micelles [510], 3D hybrid scaffold [511], modi-
fied water soluble chitosan and poly (γ-glutamic acid) 

polyelectrolyte multilayers films [512], thermosensitive gelatin/ 

chitosan/glycerol phosphate hydrogel [513], and chitosan-coated 
poly(ε-caprolactone) electrospun biomaterials [514]. Similarly, 

several approaches, such as chitosan microspheres, 3D printed 

alginate-cellulose nanofibers, guanidine-chitosan thermo-sensi-
tive hydrogel, pH-responsive HA-, PLGA-, silica-, graphene-based 

nanoparticles and chitosan/hydroxyapatite cement, as well as 

gelatin nano-fiber and silk fibroin scaffolds, were applied to im-
prove biocompatibility, drug delivery and sustainable release for 

curcumin [515–529], puerarin [530–536], matrine [537, 538], ampelop-

sin A [539], tanshinone IIA [540–546], salvianolic acid B [547–549], 
astragaloside IV [550, 551], magnolol [552–555], scutellarin [556–558], 

honokiol [559–566], borneol [567–573], paeonol [574, 575], tetramethyl-

pyrazine [576, 577], artesunate [578–584], byakangelicol [585] and ber-

berine [586, 587].

Figure 11. The clinical application of nano-TCM. The clinical application of nano-TCM involves the integration of nanotechnology with TCM to 
enhance the therapeutic potential of TCM components. This includes using nanoparticles for targeted and controlled drug delivery, which can improve 
the bioavailability, solubility and stability of TCM extracts. Nanomedicine can also increase the absorption of medicinal components by altering their 
size and surface properties, leading to enhanced efficacy and reduced toxicity. Nano-acupoint applies extremely fine needles made from 
nanomaterials that can be used for acupoint stimulation. These nanoneedles can potentially penetrate the skin with less pain and with higher 
precision than conventional needles. Moreover, equipped with nanosensors, these needles can detect subtle changes in the skin’s electrical properties, 
temperature or the release of biochemical markers. This capability enables real-time monitoring of the body’s response to acupoint stimulation, 
providing valuable feedback that can guide the treatment process.
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Table 7. The catalog of neuroprotective effects in TCM.

Catalog Neurological diseases or animal model Applications

Herbs
Acanthopanax polysaccharides [588] CIRI model in rat Enhancing the antioxidant capacity of brain 

tissue and suppressing the overproduction 
of inflammatory cytokines

Ilex pubescens [589–592] FCI/R and MCAO/R model in rats and mice Enhancing cerebral ischemic tolerance and 
presenting neuroprotective effect

Carthamus tinctorius L. [593, 594] MCAO model in rat Regulating neural apoptosis and MMPs
Dracocephalum moldavica L. [595] MCAO model in rat Presenting anti-oxidation and  

anti-inflammation
Kudiezi injection [596] ACI in patient Inhibiting pro-interleukin production and 

promoting anti-inflammation
Gastrodia [597, 598] MCAO and MCAO/R model in rat Modulating the antioxidant system and 

antiapoptotic genes and protecting the 
permeability of BBB

Sophora japonica [599] Symptomatic hemorrhoids in patients Improving symptoms and decreasing the 
incidence of important clinical events

Ganoderma lucidum [600, 601] LPS-induced BV2 cells Presenting anti-neuroinflammatory  
activities

MCAO/R model in rat Presenting anti-oxidative and  
anti-inflammatory effect

Panax notoginseng [602] Neonatal HI model in rat Reducing neuronal damage, suppressing 
neuronal apoptosis and inhibiting 
astroglial reactive response

Rabdosia rubescens [603, 604] MCAO model in rats and BIT model in mice Stimulating endogenous protective 
mechanisms and alleviating injury to 
nerve cells in the hippocampus and cortex 
of the brain

Rhizoma pinelliae pedatisectae [605] MCAO model in rat Alleviating oxidative neuronal injury, 
inflammatory responses and 
neuronal apoptosis

Herbal extracts
Ferulic acid [606] OBI model in rat Presenting the anti-oxidative and 

protective effects
Cholalic acid/Hyodeoxycholalic acid [607, 608] OGD model in vitro Protecting NVU morphological integrity and 

function in vitro
LPS-treated mice Preventing LPS-induced microglial 

inflammation
Curcumin [609] OGD PC12 model in vitro Increasing cell viability and presenting an 

antiapoptotic effect in vitro
Schisandrin A and B [610] Adult mice Enhancing adult DG neurogenesis and 

improving the survival and maturation of 
DG neurons

Puerarin [611] SAH model in mice Attenuating neurological deficits and 
reducing BBB disruption

Matrine [612] AD model in mice Inhibiting microglial activation and NADPH 
oxidase expression

Ampelopsin A [613] SID model in mice Enhancing neurocognitive and 
neuroprotective effects on intrinsic 
neuronal excitability and 
associated behaviors

Icariside II [614, 615] Human AMSCs Inducing hAMSCs to differentiate into 
dopaminergic neuron-like cells

LPS-treated mice Attenuating LPS-induced 
neuroinflammation

Tanshinone IIA [616] LPS-treated U87 cells Attenuating LPS-induced neurotoxicity and 
neuroinflammation

Salvianolic acid B [617] MCAO model in rat Presenting neural protective effects
Astragaloside IV [618] LPS/MPP and PD model in mice Preventing dopaminergic neurodegeneration 

and inhibiting astrocyte senescence
Salvianolic acid B and puerarin [619] MCAO model in rat Improving neurological function and 

anti-oxidation
Magnolol [620] AD model in mice Improving cognitive deficits, suppressing 

neuroinflammation, amyloid pathology 
and synaptic dysfunction

Scutellarin [621] MCAO model in rat Decreasing oxidative damage and reducing 
apoptotic cell death

Honokiol [622] CRS model in mice Inhibiting proinflammatory cytokines and 
endoplasmic reticulum stress

Borneol [623] MCAO model in rat Presenting long-term improvement of 
sensorimotor functions by reducing loss of 
dendritic spines

(continued)
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Challenges and future perspectives
Biomaterials architectures with  
sub-nanoscale precision
The intricate complexity of the CNS has posed a remarkable 
challenge for researchers for decades. Nevertheless, the extraor-
dinary advances in biomaterials and nanotechnology offer new 
insights, tools, and products to better probe the CNS, compre-
hend its functioning, and cure neurological injuries and diseases. 
The small size of nanomaterials, typically less than 1 μm, facili-
tates their delivery throughout the body and into cells by 

enabling them to cross the plasma membrane. While different 
neural cells, such as neurons, microglia, astrocytes and oligoden-
drocytes, exhibit varying lipid and protein compositions in their 
plasma membranes, nanomaterials are internalized in a size- 
dependent manner. This internalization occurs via endocytosis 
pathways, including clathrinid-mediated endocytosis, caveolae- 
mediated endocytosis and phagocytosis. The surface chemistry 
of nanomaterials significantly influences their effectiveness, as it 
can be tailored to selectively bind to biomolecules present on the 
cell membrane. This selectivity is crucial for targeting either 

Table 7. (continued)

Catalog Neurological diseases or animal model Applications

Paeonol [624] Diabetic rats Preventing neuronal damage, lowering 
demyelination and leukocyte infiltration

Brazilein [625] SNI model in mice Inhibiting the excessive expression of free 
radicals and promoting myelin 
regeneration

Tetramethylpyrazine [626] AD model in mice Alleviating neuronal apoptosis and injury
MLC901 [627] VCIND patients Benefiting the existing impairment in 

executive function
MLC601 [628] TBI patients Improving the clinical neuro-outcome
β-Asaron [629] MCAO model in rat Ameliorating brain damage
Artesunate [630] CIRI model in mice Suppressing oxidative and inflammatory  

processes
Rhizoma drynariae [631] Scopolamine-induced learning and memory 

impairments in mice
Regulating the neuronal apoptotic system 

and oxidative stress
Formula and decoction
Modeifed Shengyu decoction [632] TBI model in rat Reducing the expression of inflammatory 

cytokines and inhibiting the activation of 
microglial cells and astrocytes

Shaoyao-Gancao decoction [633] CIRI model in rat Ameliorating brain damage
Danshen-Chuanxiong-Honghua [634] MCAO model in rat Reversing cognitive impairment and 

providing neuroprotection by inhibiting 
microenvironmental inflammation and 
promoting neurogenesis in the 
hippocampus

Xueshuantong [635] AD mice Enhancing the neuro-functions
Huangjiao granules [636] CIRI model in rat Reducing the degree of neurological deficits
Weinaokang [637] BCCAO model in mice Inhibiting nitrative injury and modulated 

the ultrastructure of CMECs
Gueichih-Fuling-Wan [638] CIRI model in rat Inhibiting cellular apoptosis and 

neuroinflammation
Herbal formula FBD [639] CIRI model in mice Limiting PMNs infiltration and neurotoxicity
Naoxintong [640] OGD/R EA.hy926 cells in vitro Preventing the formation of thrombosis and 

reducing inflammation
Tao-Hong-Si-Wu-Tang [641] MCAO model in rat Inhibiting inflammatory responses, 

preventing the formation of apoptosis and 
suppressing platelet activation

Dengzhan Shengmai capsules [642] AD model in mice Protecting against cognitive defects, 
inhibiting the acceleration of Aβ 
aggregation into fibrils or protofibrils and 
reducing the levels of soluble 
Aβ oligomers

Yokukansan [643] CIRI model in rat Presenting anti-inflammatory 
protective effect

Danggui-Shaoyao-San [644, 645] AD model in mice Ameliorating the amyloidosis and neuronal 
degeneration

CFA model in mice Enhancing descending pain inhibition and 
reducing peripheral long-term 
inflammation

Refined Qingkailing Injection [646] MCAO model in rat Protecting brain tissue and BBB against 
ischemic stroke

Baimai san [647] Diabetic rats Protecting the peripheral neuron

ACI, acute cerebral infarction; AD, Alzheimer’s disease; AMSCs, amniotic mesenchymal stem cells; BBB, blood–brain barrier; BCCAO, bilateral common carotid 
artery occlusion; BIT, brain ischemic tolerance; CMECs, cortical microvascular endothelial cells; CRS, chronic restraint stress; CIRI, cerebral ischemia/reperfusion 
injury; DG, dentate gyrus; EA.hy926, human vein umbilical endothelial cells; FCI/R, focal cerebral ischemia/reperfusion; HI, hypoxic-ischemic; LPS, 
lipopolysaccharide; MCAO/R, middle cerebral artery occlusion/reperfusion; MMPs, matrix metalloproteinases; MPP, 1-methyl-4-phenylpyridinium; NVU, 
neurovascular unit; OBI, oxidative brain injury; OGD, oxygen-glucose deprivation; OGD/R, oxygen-glucose deprivation-peoxygenation; PC12, neuron-like rat 
phaeochromocytoma cells; PD, Parkinson’s disease; PMNs, polymorphonuclear leukocytes; SAH, subarachnoid hemorrhage; SID, scopolamine-induced dementia; 
SNI, sciatic nerve injury; TBI, traumatic brain injury; TCM, traditional Chinese medicine; U87, human astrocytoma cells; VCIND, vascular cognitive impairment 
no dementia.
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normal or diseased brain tissue or CSF. Thus, it is feasible to se-
lectively and efficiently deliver circulating nanomaterials to spe-
cific targets by conjugating cell-specific targeting ligands or 
antibodies to their surfaces. Concurrently, the surface of nano-
materials can be chemically modified, for instance, through 
PEGylation, to enhance their circulation time within the body 
and to avoid rapid clearance by the liver or kidneys. In addition, 
nanomaterials can be synthesized with a variety of compositions, 
both inorganic and organic. These distinct compositions confer 
unique advantages, as they endow the nanomaterials with spe-
cific physicochemical, thermal, electrical, magnetic, mechanical 
and optical properties [648–651].

However, new generations of biomaterials on the sub-nano 
scale have revealed unexpected properties and advantages for 
neuroengineering. The physiochemical surface properties of the 
biomaterials (or ECM) on the sub-nano scale (typically less than 
2 nm) are crucial for controlling stem cell regulatory signals, and 
these signals can direct the fate of stem cells. A previous study 
investigated the influence of sub-nano, nano and submicron sur-
face features on bone marrow MSCs integrin activation and dif-
ferentiation. The results indicated that both pure nanoscale and 
nano-submicron hybrid scales of titanium surface features were 
sufficient for activating integrin-ligand protein interactions. 
However, only the nano-submicron hybrid titanium surface fea-
tures significantly accelerated subsequent osteoblast differentia-
tion. This acceleration was observed in primary mouse bone 
marrow stromal cells and other stem cells [652, 653]. Live cell 
analysis of human bone marrow MSCs on transparent titanium 
surfaces demonstrated that rapid cytoskeletal reorganization in-
duced by nanoscale surface features led to high expression of 
genes associated with the osteoblast phenotype [654, 655]. These 
findings demonstrate the advantages of sub-nano topography on 
stem cell dynamics. Such advantages are not only crucial for un-
derstanding the fundamental aspects of stem cell behavior but 
also provide valuable insights for the smart design of effective 
surface structures. These structures can potentially accelerate 
advancements in the field of neuroengineering [656, 657]. On the 
robust foundation of nano-inspired research, the rational design 
and application of sub-nanoscale biomaterials will likely facili-
tate the development of innovative methodologies and technolo-
gies. This advancement has the potential to significantly push 
the boundaries of neuroengineering [658].

Integration of neuroengineering with 
multidiscipline
Multidisciplinary research holds great promise in revealing the 
complex mechanisms that determine brain function in health and 
disease. In the framework of neuroengineering, the close collabora-
tion of biomaterials with neuroscience, engineering, neurobiology, 
nanotechnology, computation and artificial intelligence (AI) opens 
the door to radical new approaches to understanding brain function 
and treating neurological injuries and diseases [659, 660]. For in-
stance, neuroscience and neurobiology provide the general rules for 
neural change in structure and function in health, neurological in-
juries and diseases. Engineering lays the basic theoretical founda-
tions for selecting appropriate cell sources, performing effective cell 
modification, and using proper supportive matrices. 
Nanotechnology enables the development of innovative tools for 
engineering and manufacturing biomaterials at the atomic and mo-
lecular scales. Moreover, AI algorithms facilitate the analysis and 
inference of big data, allowing for a more applicable understanding 
of complex interactions among innumerable variables in systems 
that involve the synthesis or use of biomaterials [661–663]. 

Therefore, the broader prospects in science and technology, com-
bined with specific and immediate opportunities to enhance our 
understanding of the brain and expand our clinical treatment 
options, converge to create numerous promising avenues for multi-
disciplinary research in the future.

Future biomaterials for precisely targeted 
neuroengineering
In the field of neuroengineering, neural regeneration can be facil-
itated by the implantation of 3D scaffolds. These scaffolds are 
populated with progenitor cells and constructed from a range of 
biodegradable materials, including polymers, hydrogels and HA. 
Such materials enable the targeted integration of cells at CNS 
sites [664–667]. The ‘precise targets’ required for neural regenera-
tion involve the following factors [668–673]: (i) the direction of re-
generative neurite outgrowth post-transplantation must be 
meticulously controlled to ensure effective integration into the 
host brain tissue’s signaling pathways; (ii) the network architec-
ture should be designed to be heterogeneous, aiming to replicate 
the injured site’s architecture to facilitate functional restoration; 
(iii) the neural tissue should be composed of appropriate cell pop-
ulations that mimic the original tissue, thereby promoting the re-
covery of function; and (iv) the innervation of the newly 
developed regenerative neural tissue remains a fundamental 
challenge in engineering fully functional organs or neuronal scaf-
folds, particularly after vascularization. Taken together, play a 
pivotal role in the regeneration and formation of neural circuits. 
They facilitate the integration of iPSCs or primary neurons into 
scaffolds. These scaffolds can be designed with artificial brain 
regions on chips and pre-defined synaptic architectures, which 
are essential for the development of functional neural networks. 
This approach generates a multi-layered network that, upon 
transplantation into the brain, establishes synaptic connectivity 
with a precisely controlled ‘target’ network.

Neurorobotics for personalized precision 
neurorehabilitation
The advancement and integration of neurorobotics, a dynamic and 
rapidly evolving field that integrates the landscape of neuroengin-
eering, robotics and AI, has garnered significant academic attention 
and is poised to revolutionize the field of personalized precision 
neurorehabilitation [674]. This interdisciplinary approach combines 
advanced technologies to develop innovative solutions for neurosci-
ence research, diagnosis, and treatment, with a particular focus on 
enhancing the effectiveness of rehabilitation strategies for individu-
als with neurological conditions. It offers direct brain–machine 
communication [675, 676], robotic assistance in physical therapy 
[677, 678], AI-driven diagnostics and personalized treatment plans 
[679], adaptive learning for real-time therapy adjustments [680, 
681], telerehabilitation for remote patients [682, 683], gamification 
to boost patient motivation [684], and extensive data analysis for 
treatment refinement [685]. Furthermore, neurorobotics also 
employs predictive analytics to optimize recovery and ensures pa-
tient safety through monitoring [686, 687]. However, as this field 
continues to evolve, ongoing research is essential to refine technol-
ogies, ensure safety and efficacy and address ethical considerations 
such as data privacy and autonomy [688].
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