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Abstract
Inhibition in task switching is inferred from n − 2 task repetition costs: slower response times and poorer accuracy for ABA 
task switching sequences compared to CBA sequences, thought to reflect the persisting inhibition of task A across an ABA 
sequence. Much work has examined the locus of this inhibition effect, with evidence that inhibition targets response selec-
tion processes. Consistent with this, fits of the diffusion model to n − 2 task repetition cost data have shown that the cost is 
reflected by lower estimates of drift rate, suggesting that inhibition impairs information processing efficiency during response 
selection. However, we have shown that the n − 2 task repetition cost is confounded with episodic retrieval effects which 
masquerade as inhibitory costs. The purpose of the current study was to conduct a comprehensive analysis of diffusion model 
fits to new data within a paradigm that controls for episodic interference. Across four experiments (total N = 191 ), we find 
evidence that the reduction of drift rate for n − 2 task repetition costs is only evident under conditions of episodic interfer-
ence, and the cost is absent when this interference is controlled for. In addition, we also find evidence that episodic retrieval 
influences task preparation processes and response caution. These findings provide important constraints for theories of task 
switching that suggest inhibition selectively targets response selection processes.

Keywords Task switching · Inhibition · Episodic retrieval · Diffusion model

Cognitive control refers to the set of cognitive processes 
that allow us to act in a goal-directed manner in the face of 
competing and/or ambiguous stimuli; it supports flexible and 
adaptive behaviour to changing task demands (Miyake et al., 
2000), which is essential for goal-directed behaviour given 
our complex and busy environment. The task switching par-
adigm is an incredibly popular tool for investigating cogni-
tive control processes (for reviews, see Grange & Houghton, 
2014; Kiesel et al., 2010; Vandierendonck, Liefooghe, & 
Verbruggen, 2010). Within this paradigm, participants are 
required to make rapid responses to simple cognitive tasks 
on multivalent stimuli. For example, in the explicitly cued 
task switching paradigm (Meiran, 2014), participants might 
be presented with a digit stimulus and be asked to respond 

to whether the stimulus is odd/even or lower/higher than 5, 
with the currently relevant task being signalled by a task cue 
(e.g. the word “magnitude”).

One cognitive control process thought to assist task 
switching is the inhibition of recently performed tasks (Mayr 
& Keele, 2000). Evidence for such an inhibitory mechanism 
in task switching comes from paradigms in which partici-
pants are required to switch between three tasks (arbitrarily 
labelled A, B, and C). In such paradigms, it is a consistent 
finding that ABA task switching sequences are performed 
slower and with lower accuracy than CBA sequences. This 
so-called n − 2 task repetition cost is thought to reflect the 
persisting inhibition of task A across an ABA sequence: 
when switching initially from task A to task B, the persist-
ing activation of task A interferes with the activation of the 
now-relevant task B; this interference is resolved by applying 
inhibition to task A which allows task B to become selected, 
and this inhibition persists for a short while which makes 
its reactivation on the final trial of the triplet less efficient 
(see Sexton & Cooper, 2017, for a computational model that 
formalises this account).

All raw data, analysis scripts, and computer code for the diffusion 
modelling can be downloaded from https ://osf.io/ahbt3 /.
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Considerable work has been conducted examining what 
influences the n − 2 task repetition cost (see Gade & Koch 
2014; Koch, Gade, Schuch, & Philipp, 2010, for reviews), 
with the aim of understanding what cognitive representa-
tions inhibition acts upon. For example, work has shown that 
inhibition can act upon cue-related processes (Gade & Koch 
2014; Grange & Houghton, 2010; Houghton, Pritchard, & 
Grange, 2009; Scheil & Kleinsorge, 2014), stimulus-related 
processes (Sdoia & Ferlazzo, 2008), and response-related 
processes (Philipp, Jolicoeur, Falkenstein, & Koch, 2007; 
Schuch & Koch, 2003). This basic research programme has 
laid the foundations for utilisation of the n − 2 task repetition 
cost to probe inhibitory control in clinical (e.g. Chen, Feng, 
Wang, Su, & Zhang, 2016; Fales, Vanek, & Knowlton, 2006; 
Foti et al., 2015; Mayr, Diedrichsen, Ivry, & Keele, 2006; 
Moritz, Hübner, & Kluwe, 2004; Whitmer & Banich, 2007) 
and healthy aging (e.g. Lawo & Koch, 2012; Mayr, 2001; 
Pettigrew & Martin, 2016; Rey-Mermet & Gade, 2018; Rey-
Mermet, Gade, & Oberauer, 2017; Schuch, 2016) popula-
tions. As such, the n − 2 task repetition cost has become 
valuable as a marker of cognitive inhibition in typical and 
atypical populations (Mayr, 2007).

The majority of work on inhibition in task switching has 
analysed n − 2 task repetition costs utilising estimates of 
central tendency, such as mean response times and mean 
accuracy (but see Grange & Houghton, 2011; Schuch, 
2016; Schuch & Konrad, 2017, for exceptions). However, 
two recent studies have fitted a version of the Ratcliff diffu-
sion model (Ratcliff, 1978; Voss, Nagler, & Lerche, 2013) 
to n − 2 task repetition cost data (Schuch, 2016; Schuch & 
Konrad, 2017). The diffusion model is an explicit computa-
tional account of the processes that lead to a response time 
in rapid decision-making tasks. As the diffusion model is a 
process model, it provides a richer account of the cognitive 

processes underlying response times than does analysing 
mean performance alone. As such, analysing n − 2 task rep-
etition cost data with the diffusion model arguably can lead 
to deeper insights into the nature of cognitive inhibition dur-
ing task switching.

The purpose of the present article is to conduct a com-
prehensive analysis of diffusion model fits to n − 2 task rep-
etition data within a paradigm that controls for an impor-
tant confound. Specifically, previous work from our lab has 
shown that much of the n − 2 task repetition cost can be 
explained by memory interference during automatic episodic 
retrieval rather than inhibition. This work thus provides an 
important advance from the work of Schuch (2016) and 
Schuch and Konrad (2017) whose paradigm was not able 
to control for this confound. Our results are thus able to 
ascertain which of the findings from Schuch and colleagues 
replicate once episodic interference is controlled.

The remainder of the introduction is structured as follows. 
First, we provide an overview of the diffusion model. Then 
we provide an overview of the findings from Schuch and col-
leagues who applied the diffusion model to n − 2 task repeti-
tion cost data. In the next section, we provide an overview of 
episodic retrieval and how it can explain much of the n − 2 
task repetition cost. We then present our experimental work.

Diffusion modelling

Figure 1 displays a schematic overview of the diffusion 
model. The model assumes that a response in a choice 
response time task is the result of a noisy evidence accu-
mulation process (i.e. a diffusion process) whereby—once 
a stimulus is presented—evidence begins to accumulate in 
a noisy fashion towards one of two response boundaries; 

Fig. 1  Schematic overview of 
trial processing in the diffusion 
model. Figure available at https 
://www.flick r.com/photo s/15071 
6232@N04/46893 54758 2unde 
rCCli cense https ://creat iveco 
mmons .org/licen ses/by/2.0/
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without loss of generality, one boundary represents the cor-
rect response, and the other boundary represents an incorrect 
response. This diffusion process continues until one of the 
two response boundaries is reached. The time taken for the 
diffusion process to reach this boundary reflects the deci-
sional time of the model, and the boundary that is reached 
represents the model’s choice (i.e. whether the model’s 
choice was correct or incorrect). The diffusion model has 
three main parameters, which we discuss below.

Drift rate

The drift rate represents the average rate of evidence accu-
mulation during the diffusion process: higher values of drift 
rate reflect more efficient and rapid evidence accumulation 
toward a response. It is important to note that the drift rate 
reflects the average rate of evidence accumulation across all 
trials: stochasticity in the diffusion process leads to a differ-
ent finishing time on each trial, which allows the diffusion 
model to account for response time distributions. Several 
internal (i.e. cognitive) and external factors can affect the 
magnitude of the drift rate, such as the perceptual quality 
of the stimulus itself (Voss, Voss, & Lerche, 2015), task 
difficulty, as well as individual differences such as work-
ing memory capacity and fluid intelligence (Schmiedek, 
Oberauer, Wilhelm, Suß, & Wittmann, 2007). In a tradi-
tional task switching context—that is, when assessing per-
formance differences between immediate task repetitions 
and task switches between two tasks—it has been shown that 
estimates of drift rates are lower on task switch trials (Karay-
anidis et al., 2009; Schmitz & Voss, 2012), likely reflecting 
carryover effects from the previous (now irrelevant) task 
set. The drift rate is also sensitive to the degree of advance 
task preparation undertaken by the participant (Karayanidis 
et al., 2009; Schmitz & Voss, 2012). This is supported by 
the observation that drift rates are lower when participants 
have less time to prepare for the upcoming task (Schmitz 
& Voss, 2012, 2014) and that drift rates are higher when 
there is some degree of predictability to the task sequence 
(Karayanidis et al., 2009; Schmitz & Voss, 2012).

Boundary separation

This parameter estimates the amount of evidence required 
before a response is executed; higher values of this param-
eter lead to slower (but more accurate) responses because 
the diffusion process takes longer to reach a higher bound-
ary. This parameter is thought to be under the control of the 
participant, and can be set to meet speed–accuracy trade-off 
demands; it is thus a measure of the cautiousness of the par-
ticipant. For example, in a task switching context, when the 
task design is predictable, participants are able to anticipate 
when the next trial will be relatively easy (e.g. when they 

expect an immediate task repetition), estimates of bound-
ary separation have been shown to be lower (Karayanidis 
et al., 2009; Schmitz & Voss, 2012). Thus, when participants 
anticipate a task switch, they become more cautious with 
their responding.

Non‑decision time

This parameter captures the average time taken for stimu-
lus encoding and motor responding on correct and error 
responses. However, recent task switching work has also 
suggested that the non-decision time parameter captures task 
preparation more generally, with faster non-decision time 
estimates reflecting more efficient task preparation, as esti-
mates of non-decision time are longer under task switching 
conditions when task preparation was not possible (Schmitz 
& Voss, 2012, 2014).

Diffusion modelling of n − 2 task repetition 
costs

Only two studies to date have utilised diffusion modelling on 
n − 2 task repetition cost data. Schuch (2016) investigated 
n − 2 task repetition costs in healthy aging. There have been 
mixed results when examining age-related differences in the 
n − 2 task repetition cost: whilst some studies have found 
larger n − 2 task repetition costs in older adults (Mayr, 2001; 
Pettigrew & Martin, 2016), other groups have found no dif-
ference in costs (Lawo, Philipp, Schuch, & Koch, 2012; Rey-
Mermet & Gade, 2018). Schuch (2016) addressed this by 
having a group of younger adults (18–26 years) and older 
adults (64–79 years) complete a task switching paradigm. 
Behavioural results showed no statistically significant dif-
ference in n − 2 task repetition costs for response times or 
error rates. However, older adults showed the usual pattern 
of being slower but more accurate overall. The results of the 
diffusion modelling showed that n − 2 task repetition costs 
in younger adults were reflected in the drift rate, with lower 
estimates for drift rate in ABA compared to CBA sequences, 
suggesting inhibition disrupts information processing dur-
ing response selection. No other parameter showed an n − 2 
task repetition cost in younger adults. In older adults (when 
controlling for some outlier participants), the n − 2 task rep-
etition cost was reflected in all three main parameters: ABA 
sequences (compared to CBA sequences) led to lower drift 
rates, lower boundary separation, and longer non-decision 
times. The n − 2 task repetition cost in drift rate was larger 
for older adults compared to younger adults.

Schuch and Konrad (2017) utilised diffusion modelling 
to examine n − 2 task repetition costs in young children 
(9–11 years) compared to young adults (21–30 years). Sim-
ilar to the study of Schuch (2016), there was no statistical 
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difference in the n − 2 task repetition cost in the behavioural 
data (either in response times or accuracy). For the drift rate, 
the results showed that adults had larger overall drift rates 
than children, suggesting more efficient response selection 
in adults. Importantly, adults showed a reduced drift rate in 
ABA compared to CBA sequences (replicating the finding 
of Schuch, 2016), which was not the case for children. For 
boundary separation, children had larger overall estimates 
than adults, suggesting a more cautious mode of responding 
in children. However, there was no clear difference between 
ABA and CBA sequences for either the adults or children on 
this parameter. For non-decision times, children had larger 
estimates than adults overall. Importantly (after control-
ling for outlier participants), children demonstrated longer 
non-decision time for ABA sequences compared to CBA 
sequences, which was not the case for adults.

Interim summary

The results of Schuch (2016) and Schuch and Konrad 
(2017) are interesting for a number of reasons. One impor-
tant aspect of their results worth emphasising is that in both 
studies there were no group differences in behavioural n − 2 
task repetition costs; group differences only emerged when 
analysing fits of the diffusion model. This demonstrates a 
key strength of diffusion modelling: group or experimental 
differences at the latent (i.e. model parameter) level might 
be masked if only analysing behavioural data.

Setting aside the specialist population results (i.e. chil-
dren and older adults), the results for the younger adults in 
both studies are relatively consistent: n − 2 task repetition 
costs appear in drift rates only. This suggests that task inhi-
bition selectively disrupts information processing efficiency 
during response selection. This finding sits well with previ-
ous empirical work which has suggested that task inhibi-
tion leads to a lengthening of response selection processes 
(Schuch & Koch, 2003). For example, Schuch and Koch 
(2003) combined an n − 2 task repetition paradigm with 
a go/no-go task which required participants to withhold a 
response on some trials. As the no-go signal was presented 
at the same time as the imperative trial stimulus, partici-
pants were not required to prepare or execute a response on 
these trials. The motivation for this manipulation was that if 
inhibition is triggered by response conflict between two task 
representations during response selection and/or response 
execution processes, then this conflict would not occur if the 
current trial was a no-go trial. In line with this view, Schuch 
and Koch (2003) found no n − 2 task repetition cost if trial 
n − 1 on an ABA sequence was a no-go trial, suggesting 
that task A did not become inhibited if the response for task 
B was not prepared or executed. From this point of view, 
the reduced drift rate in ABA sequences compared to CBA 

sequences found by Schuch (2016) and Schuch and Konrad 
(2017) reflects the carryover of the inhibition of response-
related representations caused by inter-trial conflict, leading 
to slower and less efficient response selection.

Episodic retrieval contributions to measures 
of inhibition

The n − 2 task repetition cost has been well replicated across 
a wide range of different task designs (see, for example, 
Gade, Schuch, Druey, & Koch, 2014; Koch et al., 2010), 
and has been suggested to be a good measure of cognitive 
inhibition that is robust against non-inhibitory explanations 
(Mayr, 2007). However, recent work from our lab—extend-
ing the work of Mayr (2002)—has shown that a considerable 
portion of the n − 2 task repetition cost is caused by inter-
ference during automatic episodic memory retrieval rather 
than inhibition. This account proposes that elements of a 
just-performed task (such as the perceptual characteristics 
of the cue, of the stimulus, the stimulus location, and also 
the motor response that was executed to this task) become 
bound together into a single memory representation (which 
Hommel refers to as an “event file”; Hommel, 1998, 2004). 
When this task is cued again (for example, in the final triplet 
of an ABA sequence), the most recent trace of this task is 
automatically retrieved from episodic memory (e.g. Logan, 
1988, 2002). This automatic retrieval can lead to facilitation 
of performance if the elements of the retrieved trace match 
those of the currently presented trial (e.g. if the cue, the 
stimulus characteristics, and the required response match); 
however, this retrieval can lead to a relative cost to perfor-
mance if there is a mismatch between the retrieved elements 
and those of the currently presented trial. This episodic mis-
match can thus produce n − 2 task repetition costs if trial 
parameters mismatch across an ABA sequence, leading to 
a mismatch cost.

To assess the contribution of episodic retrieval to the 
n − 2 task repetition cost, Mayr (2002) designed the para-
digm similar to that presented in Fig. 2. On each trial, par-
ticipants need to mentally move a circular stimulus’ location 
according to one of three spatial rules (e.g. “horizontal”, 
“vertical”, or “diagonal”) indicated by a task cue (a hexagon, 
triangle, or square), and make a spatially congruent response 
as to where the stimulus would move to according to that 
rule. Within such a paradigm, binding on a trial would occur 
between the cue presented (e.g. “hexagon”), the stimulus 
location (e.g. “bottom-left”), and the response executed 
(e.g. “top-left”). In such a paradigm, we can control for 
which elements of this episodic trace repeat across an ABA 
sequence. For example, looking at the far-right of Fig. 2, on 
n − 2 response repetitions, all elements of the trial match 
between trial n and trial n − 2 . Thus, on the current trial, the 
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participant will retrieve from episodic memory a trace of the 
vertical task that matches the current trial elements (i.e. the 
cue is the same, the location of the stimulus is the same, and 
the response required is the same). This leads to facilitation 
of response selection. However, for n − 2 response switches, 
there is a mismatch between the trial elements retrieved from 
episodic memory and the elements presented on the current 
trial (i.e. the cue is the same, but the stimulus is in a differ-
ent location, and the required response is different), leading 
to longer response selection time. It is this lengthening of 
response selection time that can lead to n − 2 task repetition 
costs from an episodic retrieval perspective. It is important 
to note that a pure inhibition account of the n − 2 task repeti-
tion cost would predict similar n − 2 task repetition costs for 
episodic matches and episodic mismatches because in both 
cases the relevant task (e.g. the vertical task) was inhibited 
at n − 2.

Mayr (2002) found no statistical difference in the n − 2 
task repetition cost between episodic matches ( n − 2 
response repetitions) and episodic mismatches ( n − 2 
response switches). However, in the subsequent work 
(Grange, Kowalczyk, & O’Loughlin, 2017), we have found 
quite a substantial decrease in estimates of the n − 2 task 
repetition cost for n − 2 response repetitions (episodic 

matches) compared to n − 2 response switches (episodic 
mismatches), a finding we have since replicated numerous 
times (Grange, 2018b; Grange, Kedra, & Walker, 2019; 
Kowalczyk, 2018). Despite this reduction in cost, we often 
find a small “residual” n − 2 task repetition cost remains 
when controlling for episodic retrieval, suggesting some role 
for inhibition in task switching. Based on these results, we 
have suggested that the n − 2 task repetition cost as typically 
measured is a confounded mixture of episodic interference 
effects and inhibition effects; any study wishing to make 
strong claims regarding inhibition needs to utilise a para-
digm that can disentangle these two contributions to the cost.

The current study

The purpose of the current study was to revisit the findings 
of Schuch (2016) and Schuch and Konrad (2017) of impaired 
drift rate for n − 2 task repetitions in younger adults within 
a paradigm that controls for episodic retrieval effects. We 
wished to address whether the findings of reduced drift 
rate for n − 2 task repetitions is caused by inhibition (as 
per Schuch and colleagues’ conclusions) or episodic inter-
ference, or a combination of both. We, therefore, fit the 

Fig. 2  Schematic of the experi-
mental paradigm. The arrows 
represent the spatial transforma-
tion required on each trial; these 
were not shown to participants. 
Time runs from the top to 
bottom of figure. Note that the 
image is not drawn to scale. 
Figure available at https ://www.
flick r.com/photo s/15071 6232@
N04/share s/5413G 0unde rCCli 
cence https ://creat iveco mmons 
.org/licen ses/by/2.0/
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diffusion model to data from four experiments (three previ-
ously reported, and one new experiment) using the paradigm 
that controls for episodic retrieval effects.

General method

All experiments shared a general method, which we describe 
below. We then describe the differences from this general 
method of all experiments. All experiments were approved 
by the Ethical Review Panel at Keele University.

Participants

All participants were students at Keele University who either 
took part in exchange for partial course credit or for cash 
payment (£6). All participants were at least 18 years old, 
understood and spoke English, and had normal or corrected-
to-normal vision. To be included in the final analysis, par-
ticipants’ overall accuracy had to be at least 90%.

Apparatus and stimuli

The task switching paradigm was presented on a standard 
PC with a 17 in. monitor via either E-Prime v.2.0 or Psy-
choPy v.2 (Pierce, 2007). Participants sat approximately 
80 cm from the monitor. Responses were recorded via a 
1-ms precise USB keyboard.

All experiments utilised a version of the task switching 
experiment depicted in Fig. 2. The stimulus frame consisted 
of a black 8-cm square grid presented on either a white or 
a grey background. The cues were either words (“horizon-
tal”, “vertical”, “diagonal”) presented in black Verdana font, 
size 22 or black shapes with no fill (square, hexagon, trian-
gle) approximately 3 cm in width and height. Responses 
were made on the numerical part of the keyboard using the 
1, 2, 4, and 5 keys, which were spatially congruent with 
the response location (e.g. 1 = lower left; 2 = lower right; 
4 = upper left; 5 = upper right). The stimulus was a filled 
circle measuring 1 cm in diameter.

Procedure

The task required participants making rapid mental spa-
tial transformations of the location of the circular stimulus 
according to one of three cued rules (“horizontal”, “verti-
cal”, or “diagonal”), and to make a spatially congruent key 
press to the location that the stimulus would move to accord-
ing to that rule. All data were collected in a single session 
within each experiment. The session lengths varied from 45 
to 60 min, depending on experiment.

Prior to the testing session, participants learned the 
cue–task mappings, and took part in a brief practice block 

consisting of 16 trials. This practice block was repeated 
once if the participant made four or more errors. Each 
trial started with the presentation of the stimulus frame 
for 150 ms. After this time, the cue for the current trial 
appeared either in the centre of the frame, or above the 
frame (depending on experiment), for 150 ms, after which 
the stimulus appeared in one of the four inner corners 
of the frame. The cue and the stimulus remained on the 
screen until the participant made a response. The correct 
response was related to a spatial transformation of the 
stimulus’ position according to the currently relevant rule. 
For example, if the task was “horizontal” and the stimulus 
was presented in the bottom-left, the participant would 
move this stimulus in their mind to the bottom-right, and 
make a spatially congruent response (key = 2). After the 
response was registered, the cue and the stimulus were 
removed from the frame and the next trial began. If, how-
ever, the participant made a mistake, the word “Error!” 
would appear in red font in the cue’s location for 1000 ms. 
Participants were instructed to respond as quickly and as 
accurately as possible; they were instructed to use their 
index finger of their right hand to respond, and to reset 
their finger location to the mid-point of the four response 
keys after each response.

The cue for each trial was selected randomly with the 
constraint that no immediate task repetitions could occur. 
The stimulus location was chosen randomly on each trial.

Design

All experiments had the same design. Each experiment 
manipulated the within-subject factors of Task Sequence 
(ABA vs. CBA) and Response ( n − 2 response repetition 
vs. n − 2 response switch). The dependent variables in all 
experiments were response time (RT) measured in seconds 
and proportion error.

Individual experiment details

Mayr replication

This experiment—hereafter labelled the “Mayr” experi-
ment—was a replication of Mayr’s (2002) experiment, and 
was reported in Grange et al. (2017; Experiment 1) and 
in Kowalczyk (2018). 76 participants met the inclusion 
criterion. This experiment was presented via E-Prime, and 
used word cues presented just above the stimulus frame 
(centred). After the practice block, participants were pre-
sented with four blocks of 120 trials with a self-paced rest 
screen after each block.
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Working memory

This experiment—hereafter labelled the “WM” experi-
ment—was part of an unpublished study (Kowalczyk, 2018) 
examining the relationship between the n − 2 task repetition 
cost and working memory capacity. Participants took part 
in two sessions: in one session participants were presented 
with the task switching paradigm reported here, and in the 
other session participants took part in a battery of working 
memory capacity measures (which we do not report here). 
The order or task presentation was counterbalanced across 
participants. 42 participants met the inclusion criterion. The 
experiment was presented via E-Prime, and used shapes as 
cues. Participants were required to learn arbitrary cue–task 
pairings (e.g. “triangle” cue = horizontal task; counterbal-
anced) before the experiment began. The cues were pre-
sented centrally within the stimulus frame. After the practice 
block, participants were presented with four blocks of 120 
trials with a self-paced rest screen after each block.

Healthy aging

This experiment—hereafter labelled the “aging” experi-
ment—was a component of a study examining the effects 
of healthy aging on the n − 2 task repetition cost (Grange 
et al., 2017). The data analysed here are from the younger 
adult control data. 29 participants met the inclusion crite-
rion. The experiment was presented via PsychoPy using the 
same shape cues as the working memory study. After the 
practice block, participants were presented with eight blocks 
of 60 trials with a self-paced rest screen after each block.

New

Although the previous data sets have sufficient trial numbers 
for diffusion modelling (Voss et al., 2015), we wanted to bol-
ster our findings by conducting a new study with increased 
trial numbers. To this end, we recruited 44 participants to 
take part in a new experiment—hereafter labelled the “new” 
experiment—presented via PsychoPy, using the shape cues 
from the WM and aging studies. After the practice block, 
participants were presented with 8 blocks of 120 trials with 
a self-paced rest screen after each block.

Results

We wished to use an analytical strategy that combined the 
data from all four experiments. To this end, we utilised 
Bayesian multilevel modelling as our main analysis method, 
treating experiment as a random effect. Analysing the data 
from a multilevel perspective allows us to treat each experi-
ment as a random sample from a population of experiments 

examining the effect of episodic retrieval on the n − 2 task 
repetition cost; this allows us to make inferences beyond 
the sample of experiments presented here, something which 
standard fixed effects models (such as ANOVA) do not allow 
us to do. We supplement the multilevel modelling results 
with standard ANOVA for readers more familiar with this 
approach, but our inferences are based on the multilevel 
modelling.

The structure of results is as follows. First, we describe 
how we prepared our behavioural data for analysis and dif-
fusion modelling. We then report the analysis of the behav-
ioural data (i.e. RTs and error rates) to assess the effect of 
episodic retrieval on n − 2 task repetition costs in the cur-
rent data. We then describe the parameterisation and fitting 
procedure of the diffusion models, before formally assessing 
the goodness of fit of the models to our data. We then detail 
the inferential analysis of the diffusion model parameters.

Data preparation

The statistical programming language R (R Core Team, 
2017) was used together with various packages for data 
preparation, data analysis, and graphical visualisation. Spe-
cifically, we used the packages dplyr (Wickham & Francois, 
2016), tidyr, (Wickham, 2018), ggplot2 (Wickham, 2009), 
trimr (Grange, 2018a), afex (Singmann, Bolker, Westfall, & 
Aust, 2018), and brms (Bürkner, 2017).

The first two trials from each block were removed, as 
these cannot be classified as ABA or CBA sequences. For 
the response time analysis, error trials and the two trials fol-
lowing an error were removed. For the error analysis, just the 
two trials following an error were removed. Response times 
were trimmed by removing all RTs faster than 250 ms and 
slower than 5000 ms. Note that allowing RTs up to 5000 ms 
could be considered quite a liberal trimming approach; 
indeed, it is different (and more liberal) than how we 
trimmed our data in the original studies (e.g. Grange et al., 
2017). However, it is important when modelling response 
time distributions that we do not trim too many data points 
from the tail of the distribution. In the next section, we show 
that this trimming procedure produces typical outcomes in 
the analysis. In Appendix 2, we explore whether a stricter 
response time trimming procedure alters the outcome of the 
analysis, and find that the results are qualitatively the same.

Behavioural analysis

Before fitting the diffusion model, we assessed whether our 
modified trimming procedure altered the inferences previ-
ously made in the behavioural data, that is, we wished to 
assess the contribution of episodic retrieval to the n − 2 
task repetition cost in the response time and error data. To 
achieve this, we fit separate Bayesian multilevel models to 
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the RT and error data, which we describe below. This analy-
sis was supplemented by standard mixed-factorial ANOVA 
with the within-subject factors Sequence (ABA vs. CBA) 
and Response ( n − 2 response repetition vs. n − 2 response 
switch), and the between-subject factor of Experiment 
(Aging vs. Mayr vs. New vs. WM); this ANOVA summary 
table can be seen in Table 1.

Overview of Bayesian multilevel modelling

Bayesian multilevel modelling was conducted on both the 
response time and the error data, separately. In each analysis, 
four models were fit to the data, with each model differing in 
the inclusion of fixed-effect predictors of the dependent vari-
able. Model 1 predicted the dependent variable from just a 
main effect of Sequence; Model 2 predicted the DV from just 
a main effect of Response; Model 3 predicted the DV from 
the inclusion of main effects of Sequence and Response; 
and Model 4 predicted the DV from the inclusion of two 
main effects plus their interaction. Default priors from the 
brms package were used for all models. All models had the 
same random effects structure, which had random intercept 
and slopes for the main effects of Sequence and Response 
for each participant nested within each experiment.1 For the 
RT analysis, a linear Gaussian model was used for the dis-
tribution of the dependent variable, whereas a beta response 
distribution (i.e. a beta regression) was used for the error 
analysis (because proportion error falls within the range [0, 
1]).

Each model was fit to the data running four chains of the 
NUTS sampling procedure from the posterior distribution 
for each parameter. Each chain was set to sample 20,000 
times from the posterior, with the first 10,000 samples being 
treated as burn-in. Visual inspection of the chains showed 
good convergence, and all R̂ were close to 1.

Inference proceeded via model comparison to establish 
which model fits the data best. This was achieved by calcu-
lating the widely applicable information criterion (WAIC) 
for each model, which deals with the trade-off between 
model complexity and goodness of fit. Models with smaller 
WAIC values are to be preferred. We also calculated Akaike 
weights for each model, which provides an estimate of how 
likely each model is to provide superior predictions to new 
data sets in relation to other models in the set being com-
pared. The Akaike weight for model i in relation to all mod-
els in the set J of models being compared is given by

where dWAIC is the difference between model i’s WAIC 
and the best-fitting model’s WAIC. As this is a probability, 
models with weights closest to 1 are to be preferred. Once 
the best-fitting model was established, the posterior distribu-
tions of each population-level (i.e. fixed-effect) parameter 
were explored to make inferences.

Response times

Figure 3 shows the response time data for each experiment. 
As can be seen, in all experiments the n − 2 task repetition 
cost was larger for n − 2 response switches than for response 
repetitions (i.e. an interaction between Sequence and 
Response), replicating our earlier findings (Grange et al., 
2017). Although the magnitude of the overall response speed 
differed by experiment, the main pattern in the data of an 
interaction between Sequence and Response was present in 
all experiments.

The results of the model comparison procedure can be 
seen in Table 2. As can be seen, the best-fitting model was 
the model with two main effects plus their interaction with 
an Akaike weight of 1. The population-level parameters 
from this best-fitting model can be seen in Table 3, and the 
predictions from this model can be seen in Fig. 4a. As is 
clear from the figure and the model parameters, the n − 2 
task repetition cost is larger for n − 2 response switches 
(110 ms, 95% Bayesian credible interval [99 ms, 120 ms]) 
than for n − 2 response repetitions (19 ms [1 ms, 37 ms]), 
thus replicating our earlier findings (Grange et al., 2017).

(1)Weighti =
exp(− 0.5 × dWAICi)

∑

j∈J exp(− 0.5 × dWAICj)
,

Table 1  Frequentist ANOVA summary tables for the behavioural 
effects in the dependent variables (DV) of response time and error

DV Source df F p �2
G

Response time Sequence (S) (1, 185) 133.55 < 0.001 0.02
Response (R) (1, 185) 44.91 < 0.001 < 0.01
Experiment (E) (3, 185) 6.30 < 0.001 0.09
S × R (1, 185) 83.31 < 0.001 0.01
S × E (3, 185) 0.80 0.50 < 0.01
R × E (3, 185) 1.82 0.15 < 0.01
S × R × E (3, 185) 2.42 0.07 < 0.01

Error Sequence (S) (1, 185) 14.38 < 0.001 0.01
Response (R) (1, 185) 7.71 < 0.01 < 0.01
Experiment (E) (3, 185) 9.97 < 0.001 0.09
S × R (1, 185) 61.84 < 0.001 0.03
S × E (3, 185) 1.62 0.19 < 0.01
R × E (3, 185) 0.58 0.63 < 0.01
S × R × E (3, 185) 4.52 < 0.01 < 0.01

1 In brms syntax, the random effect structure was (1 + Sequence 
+ Response|Participant/Experiment).
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Error rates

Figure 5 shows the proportion accuracy data from each 
experiment; the ANOVA summary is in Table 1. The 
accuracy data also showed a consistent pattern of larger 
n − 2 task repetition costs (i.e. poorer accuracy in ABA 
sequences compared to CBA sequences) for n − 2 response 
switches than for response repetitions, that is, there was 
an interaction between Sequence and Response, which 
seemed to be further modulated by experiment. All experi-
ments showed n − 2 task repetition costs for response 
switches, but the pattern of the n − 2 task repetition cost 
for response repetitions differed between experiments: 
the WM experiment showed no cost, the new experiment 
showed a slight cost, but the Aging and Mayr Experiments 
showed an n − 2 task repetition benefit.
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Fig. 3  Mean response times (in seconds, s) for each data set. Error bars denote ± 1 standard error around the mean

Table 2  Model comparison results for the behavioural data. dWAIC 
shows the difference between each model’s WAIC and the best-fitting 
overall model’s WAIC, and Weight refers to Akaike’s weight for each 
model

Dependent vari-
able

Model WAIC SE dWAIC Weight

Response time Interaction (S 
× R)

− 1730 54 0 1

Main effects (S 
+ R)

− 1606 54 124 0

Sequence (S) − 1573 53 157 0
Response (R) − 1528 45 202 0

Error Interaction (S 
× R)

− 4073 51 0 1

Main effects (S 
+ R)

− 4011 52 62 0

Response (R) − 4001 51 72 0
Sequence (S) − 3973 50 100 0



1974 Psychological Research (2020) 84:1965–1999

1 3

The results of the model comparison procedure can be 
seen in Table 2. As with the response times, the model 
with two main effects plus their interaction was the best 
model with an Akaike weight of 1. The population-level 
parameters from this best-fitting model can be seen in 
Table 3, and the predictions from this model can be seen 
in Fig. 4b. Again, the n − 2 task repetition cost is larger for 
n − 2 response switches (0.47 [0.36, 0.58]) than for n − 2 
response repetitions, where numerically there was an n − 2 
task repetition benefit (− 0.094 [0.067, − 0.255]).

Diffusion modelling

The diffusion model was fit to the data using fast-dm-30 
(Voss et al., 2015) which was called via custom scripts pro-
grammed in R.

Model parameterisation and fit procedure

The model was fit separately to each experiment’s data. In 
each experiment, we parameterised the model by allow-
ing drift rate, boundary separation, and non-decision time 
to vary freely across the levels of the factors Sequence 
and Response. The starting point of the diffusion process 
was fixed halfway between the response boundaries (i.e. 
zr = 0.5 ). Following the advice of Voss et al. (2015), we 
fixed the trial–trial variability in drift rate ( sv ) and starting 
point ( szr ) to zero. Trial-to-trial variability in non-decision 
time ( st0 ) was a free parameter, but was not free to vary 
across the levels of the factors Sequence and Response. Non-
decision time was not allowed to differ for responses to the 
upper and lower thresholds (i.e. d = 0).

The model was fit to the data via maximum likelihood, 
which is recommended if trial numbers are relatively low 
(Voss et al., 2015). Table 4 shows the number of trials for 
each level of the design for each study; maximum likelihood 
is recommended if trials numbers are below 100, as is the 
case in three out of four of our experiments.

Goodness of fit assessment

Model fit was assessed via graphical inspection via QQ plots 
and Monte Carlo simulations—both of which are recom-
mended by Voss et al. (2015).

Graphical inspection Graphical inspection of fit works 
by plotting observed data against simulated model predic-
tions from the best-fitting parameters for each participant 
for each condition in each experiment. The data being 
plotted are the overall proportion accuracy, and the 25th, 
50th, and 75th percentiles of the response time distribu-
tions from the participants and the simulated predictions. 

Table 3  Bayesian multilevel 
model parameters for the best-
fitting model for each dependent 
variable for the behavioural data 
analysis

Note that CI refers to lower (L) and upper (U) 95% Bayesian credible intervals

Dependent variable Source Estimate Error L-95% CI U-95% CI

Response time Intercept 1.11 0.02 1.07 1.14
Sequence (CBA) −  0.02 0.01 −  0.03 0.00
Response repetition (switch) 0.07 0.01 0.06 0.09
Interaction −  0.09 0.01 −  0.11 −  0.07

Error rates Intercept −  3.82 0.08 −  3.98 −  3.67
Sequence (CBA) 0.12 0.07 −  0.02 0.26
Response repetition (switch) 0.60 0.07 0.46 0.74
Interaction −  0.56 0.09 −  0.74 −  0.39
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A good fitting model would produce simulated data across 
all moments (i.e. accuracy and response time distribu-
tions) that are close to the observed data; this leads to 
data points being clustered along the main diagonal in QQ 
plots. Appendix 1 provides more details on this method’s 
implementation, as well as the QQ plots.

Monte Carlo simulation The Monte Carlo approach 
establishes a criterion for which participants’ data were 
not fit well by the model. In the context of the fit routine 
reported here, a maximum likelihood value is obtained for 
each participant in each experiment, which represents the 
degree to which the model fits the observed data. Monte 
Carlo simulation allows us to establish a critical value for 
the maximum likelihood values, below which we can con-
sider the model to have not fitted the participant’s data 
well.

The Appendix provides details of this method’s imple-
mentation. The outcome of this procedure was that the 
overall fit was excellent for all studies, as indicated by the 
percentage of participants who had a poor-fitting model: 
0% in the Aging study; 1.35% in the Mayr study; 0% in the 
WM study; and 2.28% in the New study.
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Fig. 5  Mean proportion error for each data set. Error bars denote ± 1 standard error around the mean

Table 4  Mean number of trials per participant per experiment after 
data trimming

Study ABA repetition ABA switch CBA repetition CBA switch

Aging 53 160 54 157
Mayr 55 167 55 168
WM 58 168 56 165
New 113 333 112 328
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Inferential analysis

The results of the diffusion model fits for the diffusion model 
parameters drift rate, boundary separation, and non-decision 
time are shown in Figs. 6, 7, and 8, respectively. To analyse 
these data, we again focus on Bayesian multilevel model-
ling. Each multilevel model had the same random effects 
structure as that reported for the behavioural data; all that 
changed was the dependent variable being entered into the 
analysis. For all models, a linear Gaussian model was used 
for the response distribution. Inference proceeded as for the 
behavioural data: for each diffusion model parameter sepa-
rately, we constructed four multilevel models differing on 
the inclusion of fixed factors and their interaction; model 
selection again used WAIC and Akaike weight.

For the interested reader, the frequentist analysis of these 
data—consisting of a separate mixed-factorial ANOVA for 
each diffusion model parameter, with the within-subject fac-
tors Sequence and Response Repetition, and the between-
subject factor Experiment—are shown in Table 5.

Table 6 shows the outcome of the model comparison for 
all diffusion model parameters separately. For the drift rate 
parameter, the model with two main effects plus their inter-
action was preferred with an Akaike weight of 1. The popu-
lation-level parameters of this model are shown in Table 7, 
and the predictions from this model are shown in Fig. 9. 

This analysis shows a clear n − 2 task repetition cost—that 
is, lower estimates for drift rate for ABA sequences com-
pared to CBA sequences—for n − 2 response switches 
(− 0.204 [− 0.172, − 0.237]) that is altogether absent for 
n − 2 response repetitions (− 0.006 [0.051, − 0.060]). This 
suggests that—in contrast to the findings of Schuch (2016) 
and Schuch and Konrad (2017)—the n − 2 task repetition 
cost found in the drift rate is only apparent during episodic 
mismatches and is altogether absent when episodic matches 
occur.

For the boundary separation parameter, again the model 
with two main effects plus their interaction was preferred, 
but this time the Akaike weight (weight = 0.43) was low; 
the next-best-fitting model was the two main effects model 
(without the interaction) which had an Akaike weight of 
0.37. This selection procedure suggests that whilst the inter-
action model should be preferred, its fit to the data is not 
convincingly superior to that of the two main effects model. 
Examining the population-level parameters of the interaction 
model (Table 7) and its predictions (Fig. 9) shows larger esti-
mates for boundary separation for ABA compared to CBA 
sequences. This increase in boundary separation for ABA 
sequences compared to CBA sequences was slightly larger 
for n − 2 response repetitions (0.139 [0.070, 0.210) than for 
n − 2 response switches (0.095 [− 0.132, − 0.058]), but the 
evidence for this interaction is weak as indicated by the simi-
lar Akaike weight for the interaction and the main effects 
model, as well as the estimate for the interaction parameter 
in the Bayesian multilevel model ( � = 0.04 ) which had a 
95% Bayesian credible interval which included zero (− 0.03 
to  0.12).

For the non-decision time parameter, the two main effects 
plus their interaction model was superior with an Akaike 
weight of 1. Examining the population-level parameters of 
the interaction model (Table 7) and its predictions (Fig. 9) 
shows an n − 2 task repetition cost for n − 2 response 
switches (0.017 [0.010, 0.024]), but an n − 2 task repeti-
tion benefit for n − 2 response repetitions (− 0.019 [− 0.031, 
− 0.007]); this analysis suggests that episodic mismatches 
produce an n − 2 task repetition cost which turns into an 
n − 2 task repetition benefit for episodic matches.

General discussion

The purpose of the present study was to revisit the finding 
of Schuch (2016) and Schuch and Konrad (2017) who fit the 
diffusion model to n − 2 task repetition cost data from task 
switching designs. They found that the n − 2 task repeti-
tion cost was captured by a reduction of drift rate in ABA 
sequences compared to CBA sequences; this work supported 
the idea that inhibition selectively disrupts information pro-
cessing during response selection stages of responding, 

Table 5  Frequentist ANOVA summary tables for the diffusion model 
parameters

Parameter Source df F p �2
G

Drift Sequence (S) (1, 185) 39.39 < 0.001 0.02
Response (R) (1, 185) 27.96 < 0.001 0.01
Experiment (E) (3, 185) 0.82 0.49 0.01
S × R (1, 185) 50.68 < 0.001 0.01
S × E (3, 185) 1.90 0.13 < 0.01
R × E (3, 185) 0.61 0.61 < 0.01
S × R × E (3, 185) 1.98 0.12 < 0.01

Boundary Sequence (S) (1, 185) 25.70 < 0.001 0.01
Response (R) (1, 185) 2.21 0.14 < 0.01
Experiment (E) (3, 185) 14.93 < 0.001 0.15
S × R (1, 185) 0.42 0.52 < 0.01
S × E (3, 185) 0.37 0.77 < 0.01
R × E (3, 185) 0.77 0.51 < 0.01
S × R × E (3, 185) 1.00 0.39 < 0.01

Non-decision Sequence (S) (1, 185) 0.00 0.96 < 0.01
Response (R) (1, 185) 8.82 < 0.01 < 0.01
Experiment (E) (3, 185) 5.51 < 0.01 0.06
S × R (1, 185) 18.00 < 0.01 < 0.01
S × E (3, 185) 0.28 0.84 < 0.01
R × E (3, 185) 1.45 0.23 < 0.01
S × R × E (3, 185) 1.81 0.15 < 0.01
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which fits empirical findings from previous work from this 
group (see, e.g. Schuch & Koch, 2003; Koch et al., 2010). 
However, this work did not control for the effects of episodic 
retrieval, which we have shown can confound measures of 
the n − 2 task repetition cost (Grange et al., 2017).

Summary of results

In the current work, we fit the diffusion model to four data 
sets, all of which controlled for the effects of episodic inter-
ference. It is important to note that across these data sets 
we replicated the behavioural finding of reduced n − 2 task 
repetition costs for episodic matches (i.e. n − 2 response rep-
etitions) than for episodic mismatches (i.e. n − 2 response 
switches) for both response times and error rates. For the 
diffusion modelling—in contrast to the work of Schuch 
(2016) and Schuch and Konrad (2017)—we found n − 2 task 

repetition effects in all three main parameters. We found that 
the n − 2 task repetition cost was reflected by a reduction of 
drift rate in ABA sequences compared to CBA sequences, 
but only under conditions of episodic mismatch (i.e. n − 2 
response switches); there was no n − 2 task repetition cost 
in the drift rate for episodic matches (i.e. n − 2 response 
repetitions). This suggests that—in contrast to the conclu-
sions of Schuch and colleagues—it is not inhibition that dis-
rupts information processing during response selection, but 
rather it is episodic interference. We found that n − 2 task 
repetitions increased estimates of the response boundary, 
which reflects response caution, that is, participants were 
more cautious in their responding for ABA sequences com-
pared to CBA sequences. The model selection procedure 
suggested that this difference was slightly larger for episodic 
matches than for episodic mismatches, but the evidence for 
this interaction was not compelling. For the non-decision 
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time parameter, clear differential effects of episodic retrieval 
were found on the n − 2 task repetition cost: for episodic 
mismatches, there was an n − 2 task repetition cost for this 
parameter, but this turned into an n − 2 task repetition benefit 
for episodic matches. We elaborate on each parameter below.

Drift rate

That the n − 2 task repetition cost for drift rate is modu-
lated by episodic retrieval provides important constraints on 
theories of task inhibition in task switching. Schuch (2016) 
and Schuch and Konrad (2017) interpreted their finding of 
reduced drift rate for n − 2 task repetitions compared to n − 2 
task switches as evidence for inhibition selectively impairing 
information processing during response selection processes. 
Our findings of strong episodic retrieval contributions to the 
drift rate suggest an alternative view, namely it is not the 

carryover of inhibition of response-related representations 
that reduces the efficacy of information processing during 
response selection, but rather it is the interference caused by 
the mismatch between the elements of the retrieved episodic 
trace and the elements of the currently presented trial.

Boundary separation

Although we found an n − 2 task repetition cost for the 
boundary separation parameter, there was no clear modu-
lation of this cost with episodic retrieval. This, therefore, 
suggests that participants were generally more cautious with 
their responding on ABA trials compared to CBA trials. 
This pattern was not found by Schuch (2016) and Schuch 
and Konrad (2017), but in our data it was robust, being pre-
sent in all four data sets (Fig. 7). This parameter is thought to 
be under the control of the participant to balance speed and 
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Table 6  Model comparison 
statistics for the Bayesian 
multilevel modelling of 
diffusion model parameters

Parameter Model WAIC SE dWAIC Weight

Drift Interaction (S × R) − 75.24 52.29 0.00 1.00
Main effects (S + R) 1.54 53.13 76.78 0.00
Response (R) 22.29 48.41 97.53 0.00
Sequence (S) 28.66 55.74 103.9 0.00

Boundary Interaction (S × R) 369.50 103.58 0.00 0.43
Main effects (S + R) 369.82 104.53 0.32 0.37
Sequence (S) 370.99 106.32 1.49 0.20
Response (R) 389.73 102.66 20.23 0.00

Non-decision Interaction (S × R) − 2262.32 65.57 0.00 1.00
Response (R) − 2225.62 66.17 36.70 0.00
Main effects (S + R) − 2224.20 66.00 38.12 0.00
Sequence (S) − 2213.69 67.55 48.63 0.00
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Table 7  Bayesian multilevel 
model parameters for the best-
fitting model for each dependent 
variable for the behavioural data 
analysis

Note that CI refers to lower (L) and upper (U) 95% Bayesian credible intervals

Diffusion model parameter Source Estimate Error L-95% CI U-95% CI

Drift rate Intercept 1.64 0.03 1.58 1.69
Sequence 0.00 0.02 − 0.04 0.05
Response repetition − 0.17 0.02 − 0.21 − 0.13
Interaction 0.20 0.03 0.15 0.26

Boundary separation Intercept 2.36 0.04 2.28 2.44
Sequence − 0.14 0.03 − 0.20 − 0.08
Response repetition − 0.06 0.03 − 0.11 0.00
Interaction 0.04 0.04 − 0.03 0.12

Non-decision time Intercept 0.38 0.01 0.37 0.39
Sequence 0.02 0.01 0.01 0.03
Response repetition 0.03 0.00 0.02 0.04
Interaction − 0.04 0.01 − 0.05 − 0.02
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accuracy requirements (Voss et al., 2013). Although this find-
ing suggests that n − 2 task repetitions lead to more cautious 
responding, the reasons for this increase are not immediately 
clear. One possibility is that it is driven by a shift in response 
caution when the cognitive system registers interference on 
the current trial, either due to episodic interference or per-
sisting inhibition (or both). However, as response caution 
is typically thought to be set by the participant before the 
trial (Voss et al., 2013), this account would suggest that the 
boundary separation can be changed dynamically in response 
to conflict, which remains speculative. Another—again, argu-
ably speculative—account of increased response caution for 
n − 2 task repetitions is that it reflects a violation of partici-
pant expectancy. For example, it has been proposed before 
that the n − 2 task repetition cost could reflect a violation of 
participants’ expectations whereby participants expect CBA 
sequences to be more likely than ABA sequences; thus, when 
presented with an ABA sequence, the violation of expectancy 
leads to a slowing of responding (Koch et al., 2010; Mayr & 
Keele, 2000; Mayr, 2007). However, there is compelling evi-
dence against this account of the n − 2 task repetition cost; in 
particular, n − 2 task repetition costs are observed even when 
participants are fully aware of the upcoming task sequence 
(e.g. Mayr, 2009). More work is thus required to explore 
what leads to an increase in response caution for n − 2 task 
repetitions.

Non‑decision time

Whilst Schuch (2016) and Schuch and Konrad (2017) found 
no n − 2 task repetition cost for this parameter, we found an 
n − 2 task repetition cost for episodic mismatches and an 
n − 2 task repetition benefit for episodic matches. The oppos-
ing direction of the n − 2 task repetition cost for episodic 
matches and mismatches (costs for mismatches; benefits for 
matches) might explain why Schuch (2016) and Schuch and 
Konrad (2017) found no n − 2 task repetition cost for the 
non-decision parameter, as the cost and benefit would bal-
ance to a null effect if episodic retrieval is not controlled. 
The standard interpretation of the non-decision time parame-
ter is that it reflects stimulus encoding and motoric response 
time (Voss et al., 2013); however, work in the task switching 
paradigm has also shown that this parameter also reflects 
general task preparation, with larger values reflecting less-
prepared task preparation (Voss et al., 2015). Thus, an n − 2 
task repetition cost for episodic mismatches suggests that 
when the retrieved trace’s elements do not match the ele-
ments of the current trial participants are generally less-well 
prepared for responding. It could also be that the episodic 
mismatch leads to slower stimulus encoding time, which 
would also increase this parameter’s estimate; on episodic 
match trials, stimulus encoding should be facilitated because 
the current trial’s elements (which includes the stimulus and 

its position) match those retrieved from episodic memory, 
priming performance.

Limitations

It is important to note some limitations of our modelling 
work and—potentially—the conclusions we draw from it.2 
One potential concern is that the diffusion model assumes 
that the decision component (e.g. response selection) and 
the non-decision component (e.g. motoric responding) are 
discrete stages which do not occur in parallel. The concern 
raised by a reviewer was that this independence might be 
violated in our paradigm given its spatial-responding. Given 
the task requires the participant to move their finger to the 
spatially congruent response key, there is the possibility that 
the participant can lift their finger and move it (i.e. engage 
in motoric aspects) before completion of response selection. 
This would violate the assumptions of the diffusion model, 
and could explain why we find that the exclusive effect of 
n − 2 task repetitions on drift rate found by Schuch (2016) 
and Schuch and Konrad (2017) spills over into other param-
eters in our study. Whilst this is certainly a possibility, we 
do not think that this issue is unique to our paradigm, so is 
unlikely to explain our results. For example, in typical task 
switching paradigms where just two response keys are used 
(as opposed to four in our study), it is typical in our experi-
ence to observe participants sometimes moving their fin-
gers before a final response is executed. Thus, some degree 
of motoric action is very likely to occur in most choice 
response time tasks. Whilst this remains an interesting topic 
for diffusion model theorists to explore, we do not believe 
that the issue can uniquely explain our results of n − 2 task 
repetition effects in other non-drift parameters.

Another issue raised by a reviewer was that it is perhaps 
not a correct assumption that the drift rate remains con-
stant during trial processing in our paradigm. As the task 
requires the participant to mentally move the stimulus to 
another location and then to categorise this location, the sys-
tem might treat this in a comparable way to a dynamically 
changing stimulus that produces an increasing drift rate the 
closer the (mental) stimulus gets to its shifted location. This 
would violate one of the assumptions of the basic diffusion 
model which has been fitted to our data.

We agree with the reviewer that this remains an interest-
ing possibility. However, all cognitive modelling requires 
making simplifying assumptions which are (very likely) 
wrong in reality (Lewandowsky & Farrell, 2010), but these 
models can still be useful. In the present case, we fit a ver-
sion of the diffusion model which assumes an unchanging 

2 We are grateful to an anonymous reviewer for raising some of these 
concerns.
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drift rate during trial processing as this is the model which 
has been used in previous work on task switching (e.g. 
Schmitz & Voss, 2012; Schuch, 2016; Schuch & Konrad, 
2017). We find quite different results to those found previ-
ously, and we acknowledge that this could be due to a viola-
tion of the simplified model’s assumptions of an unchanging 
drift rate. That our model fits the data incredibly well might 
speak against the possibility that the paradigm we have 
used violates a core assumption of the model. However, we 
should exercise some caution by not over-stating our results 
until this issue has been explored in more detail.

Future work should explore this modelling assumption 
in our current paradigm by developing and fitting diffusion 
models with an increasing drift rate. However, it is important 
to note that it is very likely that even a more complex version 
of the diffusion model would also be an over-simplification 
of the cognitive processes underpinning performance on 
our task. For one, it would not explain how task switch-
ing actually occurs. For this, one would need a richer pro-
cess model, such as the computational model of Sexton and 
Cooper (2017). In previous work (e.g. Grange, 2018b), we 
have suggested that one promising line of research would be 
to explore how the formal computational model of inhibition 
in task switching by Sexton and Cooper (2017) could be 
extended to account for episodic retrieval effects, possibly 
by merging it with the Parallel Episodic Processing model 
of Schmidt, DeHouwer and Rothermund (Schmidt et al. 
(2016)). Modelling our episodic retrieval data in this man-
ner can potentially lead to richer insights into the interplay 
of inhibition and episodic retrieval during task switching 
than any form of diffusion modelling can provide.

Conclusion

These findings provide a challenge to theories of task 
switching that suggest inhibition selectively targets response 
selection and/or response execution processes (Koch et al., 
2010; Schuch & Koch, 2003). Instead, our behavioural data 
support our previous conclusion that once episodic interfer-
ence is controlled, there is a small (often absent) n − 2 task 
repetition cost, suggesting a smaller role for inhibition than 
previously thought. The current work also provides some 
insight into the latent cognitive processes that give rise to the 
complex interaction between n − 2 task repetition costs and 

episodic retrieval effects. For episodic mismatches, the dif-
fusion modelling would suggest that the n − 2 task repetition 
cost is driven by a combination of a reduction in task prepar-
edness and/or less efficient stimulus encoding (as reflected 
by the non-decision time), a reduction in the efficiency of 
information processing during response selection, and an 
increase in response caution on ABA trials relative to CBA 
trials. For episodic matches, the diffusion modelling would 
suggest that we find a small, sometimes non-existent n − 2 
task repetition cost due to enhanced task preparation and/or 
more efficient stimulus encoding (as reflected by the non-
decision time) which is somewhat offset by an increase in 
response caution for ABA trials relative to CBA trials.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Appendix 1: Assessment of model fit

Graphical inspection of fit via QQ plots

Figures 10, 11, 12, and 13 show the graphical representa-
tions of model fits via QQ plots for all four experiments. 
The plots show model predictions against observed data for 
overall accuracy and for the 25th, 50th, and 75th percentiles 
of the response time distributions. Each row represents a 
different experimental condition (i.e. ABA repetition; CBA 
repetition; ABA switch; CBA switch).

The model’s predictions were obtained in the following 
way. Within a single experiment, each participant’s best-
fitting parameters for each condition of the design (i.e. ABA 
repetition; CBA repetition; ABA switch; CBA switch) were 
extracted. Then, for each participant, 1,000 trials were simu-
lated from the diffusion model separately for each level using 
the participant’s parameters (using the construct samples 
call in fast-dm-30). Then the proportion accuracy was cal-
culated for the observed and the simulated data, as were 
the 25th, 50th, and 75th percentiles of the response time 
distribution, and these were plotted against each other. This 

http://creativecommons.org/licenses/by/4.0/
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Fig. 10  Graphical representation of the diffusion model fit to the 
“aging” data set. Each plot shows the observed data for each partici-
pant (each circle) plotted against the predicted data for the model for 
the accuracy (1st column) and for the 25th, 50th, and 75th percentiles 
of the response time distributions (columns 2–4) for four conditions 

(Rows A–D): Row A shows the ABA response repetition condition. 
Row B shows the CBA response repetition condition. Row C shows 
the ABA response switch condition. Row D shows the CBA response 
switch condition. The dotted diagonal line shows the line of perfect 
model fit
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Fig. 11  Graphical representation of the diffusion model fit to the 
“Mayr” data set. Each plot shows the observed data for each partici-
pant (each circle) plotted against the predicted data for the model for 
the accuracy (1st column) and for the 25th, 50th, and 75th percentiles 
of the response time distributions (columns 2–4) for four conditions 

(Rows A–D): Row A shows the ABA response repetition condition. 
Row B shows the CBA response repetition condition. Row C shows 
the ABA response switch condition. Row D shows the CBA response 
switch condition. The dotted diagonal line shows the line of perfect 
model fit
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Fig. 12  Graphical representation of the diffusion model fit to the 
“New” data set. Each plot shows the observed data for each partici-
pant (each circle) plotted against the predicted data for the model for 
the Accuracy (1st column) and for the 25th, 50th, and 75th percentile 
of the response time distributions (columns 2–4) for four conditions 

(Rows A–D): Row A shows the ABA response repetition condition. 
Row B shows the CBA response repetition condition. Row C shows 
the ABA response switch condition. Row D shows the CBA response 
switch condition. The dotted diagonal line shows the line of perfect 
model fit
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Fig. 13  Graphical representation of the diffusion model fit to the 
“WM” data set. Each plot shows the observed data for each partici-
pant (each circle) plotted against the predicted data for the model for 
the Accuracy (1st column) and for the 25th, 50th, and 75th percentile 
of the response time distributions (columns 2–4) for four conditions 

(Rows A–D): Row A shows the ABA response repetition condition. 
Row B shows the CBA response repetition condition. Row C shows 
the ABA response switch condition. Row D shows the CBA response 
switch condition. The dotted diagonal line shows the line of perfect 
model fit
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was then repeated for each participant, for all conditions of 
the design.

All conditions showed a very good fit by the model, indi-
cated by clustering of the data points along the diagonal line 
of perfect fit.

Lower RT quantiles

An anonymous reviewer of the paper suggested that examin-
ing the fit of the model at faster ends of the response time 
distribution allows for a better assessment of fit of the non-
decision time parameter. To facilitate this suggestion, we 

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

10th Percentile

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

20th Percentile

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

30th Percentile

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

40th Percentile

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Observed

P
re

di
ct

ed

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Observed

P
re

di
ct

ed

Fig. 14  Graphical representation of the diffusion model fit to the 
“aging” data set. Each plot shows the observed data for each partici-
pant (each circle) plotted against the predicted data for the model for 
the 10th, 20th, 30th, and 40th percentiles of the response time dis-
tributions (columns 1–4) for four conditions (Rows A–D): Row A 

shows the ABA response repetition condition. Row B shows the CBA 
response repetition condition. Row C shows the ABA response switch 
condition. Row D shows the CBA response switch condition. The 
dotted diagonal line shows the line of perfect model fit
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Fig. 15  Graphical representation of the diffusion model fit to the 
“Mayr” data set. Each plot shows the observed data for each partici-
pant (each circle) plotted against the predicted data for the model for 
the 10th, 20th, 30th, and 40th percentiles of the response time dis-
tributions (columns 1–4) for four conditions (Rows A–D): Row A 

shows the ABA response repetition condition. Row B shows the CBA 
response repetition condition. Row C shows the ABA response switch 
condition. Row D shows the CBA response switch condition. The 
dotted diagonal line shows the line of perfect model fit
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Fig. 16  Graphical representation of the diffusion model fit to the 
“New” data set. Each plot shows the observed data for each partici-
pant (each circle) plotted against the predicted data for the model for 
the 10th, 20th, 30th, and 40th percentiles of the response time dis-
tributions (columns 1–4) for four conditions (Rows A–D): Row A 

shows the ABA response repetition condition. Row B shows the CBA 
response repetition condition. Row C shows the ABA response switch 
condition. Row D shows the CBA response switch condition. The 
dotted diagonal line shows the line of perfect model fit
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provide QQ plots of the model fit at the 10th, 20th, 30th, 
and 40th percentiles for each condition for each data set in 
Figs 14, 15, 16, and 17. As can be seen, the fit of the model 
is very good.

Monte Carlo analysis

For ease of exposition, below we describe the procedure 
for establishing the maximum likelihood criterion for one 
condition in one experiment only. The method is described 
in Voss et al. (2015), but was programmed independently 
in our analysis.
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Fig. 17  Graphical representation of the diffusion model fit to the 
“WM” data set. Each plot shows the observed data for each partici-
pant (each circle) plotted against the predicted data for the model for 
the 10th, 20th, 30th, and 40th percentiles of the response time dis-
tributions (columns 1–4) for four conditions (Rows A–D): Row A 

shows the ABA response repetition condition. Row B shows the CBA 
response repetition condition. Row C shows the ABA response switch 
condition. Row D shows the CBA response switch condition. The 
dotted diagonal line shows the line of perfect model fit
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The method first takes all participants’ parameters for 
the condition, and then calculates the covariance matrix 
for the parameters. Then 1000 new parameter sets are gen-
erated by drawing from a multivariate normal distribution 
defined by the established covariance matrix. 1000 new 
data sets are then generated by taking each new parameter 
set and simulating data using these parameters from the 
diffusion model (again using the construct samples call in 
fast-dm-30). The number of trials to simulate is dictated by 
the average number of trials for that particular condition 
(see Table 4). Thus, each new data set is similar in size to 
our real participant data. Each of the 1000 simulated data 
sets are then fit with the diffusion model using our general 
fitting procedure reported in the main body of the paper. 
The maximum likelihood value of each fit is obtained and 
stored.

This procedure thus produces 1000 maximum likeli-
hood values of diffusion model fits to data similar in 
structure (and with similar generating parameters) as our 
observed data. The 5% quantile of this distribution is then 
used as the criterion below which we consider a fit in our 
real data to be poor quality. The procedure then finds all 
participants in our fitting procedure who have maximum 
likelihood values lower than this criterion, and tags them 
as poor-fitting. Because the overall number of poor-fit-
ting participants was very low (see main text), we did not 
remove any participants from the analysis.

Appendix 2: Stricter response time outlier 
criterion

In this supplementary analysis, we checked the extent 
to which the primary findings were due to our choice of 
response time outlier criterion. Recall in the main analy-
sis we excluded all RTs slower than 5 sec. We chose this 
value to ensure that the tail of the majority of participants’ 
response time distributions were retained to inform the mod-
elling. However, it might be that our results depended upon 
this choice of outlier criterion, which is more lenient than 
typically found in the task switching literature.

We addressed this possibility by repeating our model-
ling after using a stricter RT trimming criterion. Response 
times were considered outliers if they were slower than 2.5 
standard deviations above each participant’s mean RT for 
each cell of the experimental design. The criterion for fast 
outliers (250 ms) remained the same; we use this trimming 
criterion often (e.g. Grange et al., 2017). In this appendix, 
we first repeat our behavioural analysis to check the main 
findings remained the same before conducting the diffu-
sion modelling.

Table 8  Frequentist ANOVA summary tables for the 2.5 SD trim-
ming supplementary analysis of the behavioural effects in the depend-
ent variables (DV) of response time and error

DV Source df F p �2
G

Response time Sequence (S) (1, 185) 120.77 < 0.001 0.02
Response (R) (1, 185) 46.89 < 0.001 < 0.01
Experiment (E) (3, 185) 6.35 < 0.001 0.09
S × R (1, 185) 71.61 < 0.001 < 0.01
S × E (3, 185) 0.97 0.41 < 0.01
R × E (3, 185) 2.05 0.11 < 0.01
S × R × E (3, 185) 2.23 0.09 < 0.01

Error Sequence (S) (1, 185) 16.25 < 0.001 0.01
Response (R) (1, 185) 7.30 < 0.01 < 0.01
Experiment (E) (3, 185) 13.88 < 0.001 0.12
S × R (1, 185) 49.62 < 0.001 0.03
S × E (3, 185) 1.41 0.24 < 0.01
R × E (3, 185) 0.54 0.66 < 0.01
S × R × E (3, 185) 1.68 0.17 < 0.01

Table 9  Model comparison 
results for the behavioural 
data for the 2.5 SD trimming 
alternative analysis

dWAIC shows the difference between each model’s WAIC and the best-fitting overall model’s WAIC, and 
Weight refers to Akaike’s weight for each model

Dependent variable Model WAIC SE dWAIC Weight

Response time Interaction (S × R) − 1623 66 0 1
Main effects (S + R) − 1521 64 102 0
Sequence (S) − 1485 62 138 0
Response (R) − 1448 56 175 0

Error Interaction (S × R) − 5084 126 0 1
Main effects (S + R) − 5042 127 42 0
Response (R) − 5032 126 52 0
Sequence (S) − 5008 125 76 0
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Behavioural analysis

The frequentist ANOVA for the new analysis can be found 

in Table 8. As in the main text, we focus on the Bayesian 
multilevel regression model comparisons, which can be 
found in Table 9.

As in our main analysis, the best-fitting model for the 
response time analysis was the model with two main effects 
plus their interaction, with an Akaike weight of 1. The pop-
ulation-level predictions from this model can be found in 
Fig. 18a. As can be seen the n − 2 task repetition cost is 
larger for n − 2 response switches (0.108 [0.098, 0.119]) than 
for n − 2 response repetitions (0.021 [0.001, 0.040]). This 
was true for the proportion error analysis, too (Fig. 18b). 
Here, the model with two main effects plus their interaction 
was also the best, with an Akaike weight of 1. The n − 2 task 
repetition cost was 0.544 [0.414, 0.674] for n − 2 response 
switches, being absent for n − 2 response repetitions − 0.049 
[− 0.215, 0.120] for n − 2 response repetitions.

Thus, this stricter trimming method produced similar out-
comes for the behavioural data.

Diffusion modelling

The diffusion model was fit to this newly trimmed data in 
the same way as in the main text. The graphical inspection 
of the model fit via QQ plots is shown in Figs. 19, 20, 21, 
22, which shows that the model fit the data particularly well.

We analysed the best-fitting model parameters in the 
same way as in the main text, via Bayesian multilevel 
regression model comparisons, the results of which can 
be found in Table 10. The population-level predictions of 
the best-fitting model for each diffusion model parameter 
can be found in Fig. 23. For the drift rate parameter, the 
model with the two main effects plus their interaction was 
the preferred model, with an Akaike weight of 1. As in the 
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Fig. 19  Graphical representation of the diffusion model fit to the 
“aging” data set. Each plot shows the observed data for each partici-
pant (each circle) plotted against the predicted data for the model for 
the accuracy (1st column) and for the 25th, 50th, and 75th percentiles 
of the response time distributions (columns 2–4) for four conditions 

(Rows A–D): Row A shows the ABA response repetition condition. 
Row B shows the CBA response repetition condition. Row C shows 
the ABA response switch condition. Row D shows the CBA response 
switch condition. The dotted diagonal line shows the line of perfect 
model fit
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Fig. 20  Graphical representation of the diffusion model fit to the 
“Mayr” data set. Each plot shows the observed data for each partici-
pant (each circle) plotted against the predicted data for the model for 
the accuracy (1st column) and for the 25th, 50th, and 75th percentiles 
of the response time distributions (columns 2–4) for four conditions 

(Rows A–D): Row A shows the ABA response repetition condition. 
Row B shows the CBA response repetition condition. Row C shows 
the ABA response switch condition. Row D shows the CBA response 
switch condition. The dotted diagonal line shows the line of perfect 
model fit
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Fig. 21  Graphical representation of the diffusion model fit to the 
“New” data set. Each plot shows the observed data for each partici-
pant (each circle) plotted against the predicted data for the model for 
the accuracy (1st column) and for the 25th, 50th, and 75th percentiles 
of the response time distributions (columns 2–4) for four conditions 

(Rows A–D): Row A shows the ABA response repetition condition. 
Row B shows the CBA response repetition condition. Row C shows 
the ABA response switch condition. Row D shows the CBA response 
switch condition. The dotted diagonal line shows the line of perfect 
model fit
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Fig. 22  Graphical representation of the diffusion model fit to the 
“WM” data set. Each plot shows the observed data for each partici-
pant (each circle) plotted against the predicted data for the model for 
the Accuracy (1st column) and for the 25th, 50th, and 75th percen-
tiles of the response time distributions (columns 2–4) for four condi-

tions (Rows A–D): Row A shows the ABA response repetition con-
dition. Row B shows the CBA response repetition condition. Row C 
shows the ABA response switch condition. Row D shows the CBA 
response switch condition. The dotted diagonal line shows the line of 
perfect model fit
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Table 10  Model comparison 
statistics for the Bayesian 
multilevel modelling of 
diffusion model parameters for 
the 2.5 SD trimming alternative 
analysis

Parameter Model WAIC SE dWAIC Weight

Drift Interaction (S × R) 426.58 79.08 0.00 1.00
Main effects (S + R) 483.92 79.06 57.34 0.00
Sequence (S) 511.80 80.57 85.22 0.00
Response (R) 512.55 72.81 85.97 0.00

Boundary Interaction (S × R) 1001.12 119.09 0.00 0.76
Main effects (S + R) 1003.49 119.73 2.37 0.23
Response (R) 1012.81 118.34 11.69 0.00
Sequence (S) 1013.70 122.30 12.58 0.00

Non-decision Interaction (S × R) − 1987.30 69.08 0.00 1.00
Response (R) − 1948.15 68.93 39.15 0.00
Main effects (S + R) − 1947.44 68.70 39.87 0.00
Sequence (S) − 1931.42 70.61 55.89 0.00
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Fig. 23  Population-level (i.e. fixed effect) predictions from the best-fitting Bayesian multilevel model for each diffusion model parameter for the 
standard deviation trimming analysis. Error bars denote 95% Bayesian credible intervals around the mean estimates
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main analysis, the n − 2 task repetition cost was large for 
n − 2 response switches (− 0.272 [− 0.315, − 0.228]), and 
absent for n − 2 response repetitions (− 0.025 [− 0.098, 
0.049]). For the boundary separation parameter, the model 
with two main effects plus their interaction was the best 
model, with an Akaike weight of 0.76. The n − 2 task 
repetition cost was larger for n − 2 response repetitions 
(0.180 [0.070, 0.292]) than for n − 2 response switches 
(0.070 [0.019, 0.121]). For the non-decision time param-
eter, the best model was again the one with two main 
effects plus their interaction with an Akaike weight of 1. 
The was an n − 2 task repetition cost for n − 2 response 
switches (0.019, 0.010, 0.027), but an n − 2 task repetition 
benefit for n − 2 response repetitions (− 0.022 [− 0.037, 
− 0.007]).

These findings confirm those of our main analysis.
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