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Summary of main point: During the first year after infection the half-life of SARS CoV-2 spike 

antibodies increased from three months to two years. Most infected individuals had robust virus-

specific memory B-cell responses 12 months after infection.  
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Abstract 

Background: The possibility of repeat infections with SARS-CoV-2 raises questions regarding quality 

and longevity of the virus-induced immune response.  

Methods: The antibody course and memory B-cell (MBC) response against SARS-CoV-2 proteins, 

influenza virus nucleoprotein (NP) and tetanus toxin (Ttx) were examined in adults with mild to 

moderate SARS-CoV-2 infection in the first year after infection. 

Results: The concentration of SARS-CoV-2 RBD-specific antibodies was low compared with the 

concentration of influenza virus NP-specific antibodies. The SARS-CoV-2 RBD antibody half-life 

increased from 95 days in the first six months to 781 days after 9-12 months. The SARS-CoV-2 NP 

antibody half-life increased from 88 to 248 days. Two thirds of the subjects had SARS CoV-2-specific 

MBC responses 12 months after infection. SARS-CoV-2 antibody levels correlated with the MBC 

frequency at 12 months.  

Conclusions: The low concentration of SARS-CoV-2 spike protein antibodies indicates that re-

exposure to the virus or vaccination are required to use the B-cell immunity to full capacity. The 

existence of a robust SARS CoV-2 MBC response at 12 months in most subjects and the substantially 

increasing antibody half-life provide evidence that the immune response is developing into long-

term immunity. The early antibody reaction and the ensuing MBC response are interdependent. 

Keywords: SARS-CoV-2, COVID-19, antibody course, memory B-cells, antibody half-life 
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Introduction 

 

 Previous infection with SARS-CoV-2 protects approximately 80% of infected individuals from 

repeat infection for at least several months. The level of protection decreases with age and was less 

than 50% among individuals 65 years and older [1]. This argues for a need to further explore the 

magnitude and course of the virus-specific immune response. Previous studies have shown that 

SARS-CoV-2 infection induces a virus-specific IgG antibody response that peaks at 20-24 days after 

infection and subsequently declines [2–4]. It was also reported that in the first 9 months after 

infection the average half-lives of IgG antibodies against the viral nucleoprotein (NP) and spike (S) 

protein were 36-85 and 36-344 days, respectively [2,3,5–11]. At later time points the antibodies 

decayed more slowly indicating different phases of antibody decline [2,9,10,12,13].  

 SARS-CoV-2 infection also induces virus-specific memory B-cells (MBCs). The magnitude of 

the MBC response increases with time from infection and reached a maximum 4-5 months after 

symptom onset [4,7,10,12,14,15]. At 8-9 months after infection, SARS-CoV-2-specific MBCs were 

found in 69.2 to 100% of recovered subjects suggesting that the infection induces robust memory B-

cell responses [4,16].  

To examine the development of the SARS-CoV-2 antibody half-life and to test if the antibody 

and MBC response to SARS-CoV-2 differ from the immune response against more frequently 

encountered natural and vaccine antigens, we measured the concentration of antibodies against 

SARS-CoV-2 RBD and NP, influenza virus NP and tetanus toxin (Ttx) at different time points. We 

calculated the antibody half-life for different time intervals, studied the magnitude of the MBC 

responses a year after infection and determined the relationship of these responses to each other.  
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Material and methods 

 

Participants of the study 

Participants (n = 55) with SARS-CoV-2 infection and uninfected control subjects (n = 15) 

were recruited for the study. In infected individuals, the days post symptom onset (PSO) were 

counted from the first day of symptoms reported or, in the case of asymptomatic infection, the day 

of the first positive RT-PCR. Serum samples were collected 4 or 5 times during the first year PSO. 

Heparinized blood samples were taken at 12 months PSO. Blood samples were obtained after 

informed consent. Sera were stored at -20°C. Heparinized blood samples were examined the same 

day or the day following blood drawing. The study was approved by the Ethics Commission of the 

Medical Faculty at the University of Leipzig (ethical vote 147/20-ek). 

 

Measurement of antibody concentrations 

The concentration of antibodies against the SARS-CoV-2 receptor binding domain (RBD) in 

sera was determined with the Abbott SARS-CoV-2 IgG II Quant assay using the ARCHITECT i2000SR 

system (Abbott, Chicago, U. S. A.). This led to antibody concentrations in arbitrary units (AU)/ml. 

Sera below 50 AU/ml were regarded as negative. To convert the AU values into WHO binding 

antibody units (BAU), AU values were divided by 7 according to information from the manufacturer. 

To determine the SARS-CoV-2 RBD antibody concentration in µg/ml, the human anti-SARS-CoV-2 

spike S1 RBD monoclonal antibody (mAb) CR3022 (Antibodies-online.com) was examined with the 

Abbott SARS-CoV-2 IgG II Quant assay. The measurement showed that 520 Abbott AU were 

equivalent to 1 µg anti-SARS-CoV-2 RBD mAb CR3022. Therefore, the RBD antibody concentrations 

in AU/ml were converted into µg/ml by multiplying 1 AU with 1.92x10⁻³ µg. 
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 IgG antibodies against the SARS-CoV-2 and the influenza virus nucleoproteins (NP) were 

measured by in-house ELISAs as previously described [17,18]. Serial dilutions of the National 

Institute of Biological Standards and Controls (NIBSC) Anti-SARS-CoV-2 Antibody Diagnostic Calibrant 

(code 20/162) and a recombinant mAb against influenza virus NP [19] were used as concentration 

standards. Sera were diluted 1:100 (SARS-CoV-2 NP ELISA) or 1:5000 (influenza virus NP ELISA). 

Standard and serum were incubated for 60 minutes. Plates were washed and HRP-conjugated anti-

human IgG antibody (P0214, Dako, Agilent Technologies, Inc. or no. 109-036-098, Jackson 

Immunoresearch Laboratories, Inc.) was added and incubated for another hour. TMB substrate 

(SeramunBlau® slow2 85) was added for 15 minutes and the reaction was stopped with 1 N H2SO4. 

The optical density (OD) was measured with a Tecan Sunrise photometer at 450 nm wavelength 

(reference wave length 570 nm). Measurements were performed in duplicates. Mean OD values 

were calculated and the OD of the blank was subtracted. Standard curves were created using a four 

parameters logistic (4-PL) regression (SARS-CoV-2 NP) or a polynomial function (influenza virus NP). 

Sera below 34 AU/ml anti-SARS-CoV-2 NP antibody and below 0.78 µg/ml anti-influenza NP antibody 

were regarded as negative. Ttx-specific IgG concentrations were measured in international units 

(IU)/ml with the SERION ELISA classic Tetanus IgG (Virion\Serion GmbH) ELISA kit. 

 

Examination of antigen-specific MBCs 

 PBMCs were isolated from heparinized blood (15 ml) by ficoll density gradient centrifugation 

and resuspended in RPMI-1640 medium containing 20 % fetal calf serum (FCS), penicillin, 

streptomycin, sodium pyruvate, non-essential amino acids, 1 µg/ml R848 (Resiquimod, Sigma-

Aldrich, Merck KGaA) and 0.11 µg/ml interleukin-2 (Proleukin, Novartis AG). Cells were cultured for 5 

days at 3 x10⁶ PBMC in 2 ml medium in a 24 well plate at 37°C and 5% CO2. MBCs were examined by 

ELISpot using 96-well Multiscreen-IP filter plates (Millipore, Merck KGaA). The plates were washed 

for 15 seconds with 35% ethanol and with PBS and coated with 50 µl SARS-CoV NP-maltose binding 
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protein (MBP) fusion protein (2 µg/well), SARS-CoV-2 RBD (1 µg/well [17]), influenza virus NP-MBP 

fusion protein (2 µg/well) or Ttx (5 µg/well, lot 317490, GSK Vaccines). As controls, wells were 

coated with PBS or MBP (1 µg/well). Total numbers of IgG-secreting cells were determined with 

wells coated with mouse anti-human IgG mAb (clone MT91/145, Mabtech AB). The plates were 

incubated overnight at 4°C or for 2 hours at 37°C, washed and blocked for an hour with medium 

containing 20 % FCS. Stimulated cells were added to the antigen-coated wells (300,000 cells) and to 

anti-IgG coated wells (5,000 cells). Plates were incubated at 37°C for 20 hours. 

The next day, plates were washed, alkaline phosphatase (AP)-conjugated goat anti-human 

IgG (no. 109-055-098, Jackson Immunoresearch Laboratories, Inc., diluted 1:5000) was added and 

incubated for 2 hours at 37°C. Plates were washed and NBT/BCIP substrate (AP conjugate substrate 

kit, Bio-Rad Laboratories, Inc.) was added for 5 minutes. Plates were washed with water, dried 

overnight and read with the AID EliSpot/FluoroSpot reader. Uncoated wells were used as negative 

control for SARS-CoV-2 RBD and Ttx. Wells coated with MBP were used as negative control for SARS-

CoV-2 NP and influenza NP, because the antigens contain MBP as fusion protein [18]. Positive MBC 

results were defined as showing at least 10 spots per well and at least 3 times the spots in negative 

control wells [20]. MBCs were measured in duplicates. Mean values were calculated and the 

percentage of antigen-specific MBCs was calculated by the following equation: 

 

MBC (%) = 
(                                                         )   ⁄

                                                  
     

Calculations and statistical methods 

 Antibody concentrations were compared with the paired one-sided Wilcoxon signed-rank 

test. To calculate the antibody half-lives, the data were censored in the following way: Individuals 

with antibody concentrations rising by more than 25 % (RBD: n = 3), antibody negative sera and 12 

month values of vaccinated subjects (n = 4) were excluded. For the anti-Ttx antibody half-life, an 
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unvaccinated subject and 15 individuals who were vaccinated in the preceding 3 years or during the 

study were excluded. For influenza NP-specific antibody half-life calculations, 19 individuals with 

influenza vaccination in autumn/winter 2020/21 were excluded after vaccination.  

The antibody course was described by an exponential decay model. Antibody 

concentrations were log transformed based on the natural logarithm. A linear mixed model was 

applied for the half-life of the whole time period PSO. Correlated random intercept and slope were 

allowed. The half-life between two consecutive observation points were calculated with linear 

regression analysis. Both regression models follow equation (1).  

 

(1)      ln(y) = β0 + β1T 

 

 where y represents the antibody concentration, β0 the intercept, β1 the slope of the curve 

and T the days after symptom onset [21]. In the linear regression model, the mean of the individual 

slopes was taken as the model slope. The half-life was calculated by dividing ln(0.5) by the slopes 

according to equation (2).  

 

(2)    T1/2 =ln(0.5)/β1 

       

95% confidence intervals (CI) of the half-lives were calculated by applying the 95% 

confidence intervals of the slopes in equation (2). 
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The percentage of subjects with MBCs and the frequency of MBCs were determined. 

Participants who were not vaccinated against tetanus were excluded from the analysis of tetanus-

specific MBCs. Comparison of the positivity rate of MBCs in paired samples was performed with the 

mid-p McNemar test. The positivity rates of the SARS-CoV-2 recovered and naïve cohort were 

compared with the Fisher’s exact test. Modified Wald 95% confidence intervals were calculated for 

ELISpot positivity rates. The frequency of MBCs was determined in samples with detectable B-cell 

responses. Paired samples were compared with the Wilcoxon signed-rank test, unpaired samples 

were compared with the Mann-Whitney U test. The relationship between variables was investigated 

using Spearman's rank correlation. The level of significance for the statistical analyses was 0.05. 

R version 3.6.3 and R Studio version 1.4.1106, LibreOffice Calc and Microsoft Excel were 

used for statistical analysis and graphs.  

 

Results 

 

Participants 

The subjects (n = 55) had been infected with SARS-CoV-2 between March and May 2020. 

Fifty-four participants had a positive SARS-CoV-2 RT-PCR at time of diagnosis. One participant was 

enrolled 7 months after clinical diagnosis (Cov-046). The median age of the participants at diagnosis 

was 46 years (range: 21-72 years), 58.2% of the participants were female. The participants had 

asymptomatic infection, mild or moderate disease (see Suppl. Table 1). Blood samples were 

collected 2-10 weeks (mean 1.5 months), 6 (n = 53) or 7 (n = 2), 9 and 12 months PSO. Four 

participants that were vaccinated against COVID-19 during the study were excluded from 

subsequent analyses. Uninfected male and female individuals with negative SARS-CoV-2 RBD 

antibody test (n = 15) were enclosed as control for the MBC response.  
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IgG antibody concentrations 

The concentration of SARS-CoV-2 antibodies varied greatly in the participants. Two to ten 

weeks PSO, the RBD-specific antibody concentration ranged from 0.13 to 26.8 µg/ml. The median 

SARS-CoV-2 RBD antibody concentration 2-10 weeks after infection was 1.54 µg/ml and the mean 

3.6 µg/ml. During the study period, the median RBD antibody titer declined to 0.61 µg/ml. The 

concentration of influenza virus NP-specific antibodies at the first time point was between 2.9 and 

47.1 µg/ml (median 17.2, mean 19.5 µg/ml) and declined during the study to a median of 14.1 µg/ml 

(mean 13.8 µg/ml). The difference between the concentration of the SARS-CoV-2 RBD and influenza 

virus NP-specific antibodies at 0.5-2.6 months PSO was statistically significant (p < 0.0001) (Tab. 1). 

The severity of disease correlated weakly with the SARS CoV-2 RBD-specific antibody concentration 

in the first 9 months. On the average, individuals with systemic symptoms had higher SARS CoV-2 

RBD antibody concentrations than patients with local disease (Tab. 2). The decline of SARS-CoV-2 

RBD and NP antibodies between examinations was statistically significant during the whole study 

period (Suppl. Fig. 1). The RBD- and NP-specific antibody concentrations correlated at all time points. 

Thus, participants with high antibody responses to SARS-CoV-2 RBD tended to have high antibody 

responses to NP as well (Table 2, Suppl. Fig. 2). 

 

Antibody half-lives 

Between the time point of maximum antibody concentration and the measurement at 12 

months PSO, the SARS-CoV-2 RBD-specific antibodies declined with a half-life (T1/2) of 158 days (95% 

CI: 141-181 days). Similarly, the SARS-CoV-2 NP-specific antibodies declined with a T1/2 of 119 days 

(95% CI: 103-141 days). On closer inspection, the antibody half-lives increased during this period. 

The T1/2 of the RBD-specific antibody response was 95 days (95% CI: 83-111 days) from 2-10 weeks to 
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6-7 months PSO, 213 days (95% CI: 180-262 days) from 6-7 to 9 months PSO and 781 days (95% CI: 

452-2881 days) from 9 to 12 months PSO. Similarly, the half-life for SARS-CoV-2 NP IgG antibodies 

increased from 88 days (95% CI: 76-104 days) through 150 days (95% CI: 114-221 days) to 248 days 

(95% CI: 180-399 days). The half-life of antibodies against influenza virus NP for the whole 

observation period was 1367 days (95% CI: 873-3100 days) and the T1/2 of Ttx-specific antibodies was 

11043 days (95% CI: 1790 days - ∞) (Fig. 1).  

 

Memory B-cell responses 

Twelve months PSO, SARS-CoV-2 RBD and NP-specific MBCs were detected in 68.6% (95% CI: 

54.9-79.7%) of the individuals. Influenza virus NP and Ttx-specific MBCs were found in 76.5% (95% 

CI: 63.0-86.1%) and 78.0% (95% CI: 64.5-87.3%) of the subjects, respectively. No SARS-CoV-2-specific 

MBCs were found in the uninfected control group. Influenza virus NP-specific MBCs were found in 

73.3% (95% CI: 47.5-89.3%) and Ttx-specific B-cells in 92.3% (95% CI: 64.2-100.0%) samples from 

uninfected control subjects. In pairwise comparisons, the differences in the frequency of MBCs for 

different antigens were statistically insignificant (p = 0.27-1). Thus, MBCs to SARS-CoV-2 proteins 

were found as frequently as MBCs specific for influenza virus NP and tetanus toxin (Table 2, Suppl. 

Fig. 3). In individuals with measurable MBCs, the median frequency of SARS-CoV-2 RBD-specific 

MBCs was 0.46% and the median of SARS-CoV-2 NP-specific B cells was 0.49% among all activated, 

antibody-secreting cells. The difference was insignificant (p = 0.28). The median frequency of 

influenza virus NP and Ttx-specific MBCs was 0.33% and 0.41 %, respectively. The RBD-specific MBC 

response was slightly more vigorous than the influenza virus NP-specific response (p = 0.02). In the 

group of SARS-CoV-2 naïve individuals, the median frequency of influenza virus NP-specific MBCs 

was 0.54% and the median frequency of Ttx-specific MBCs was 0.385%. The differences to the 

recovered cohort were insignificant (p = 0.21 and 0.85) (Fig. 2). 
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SARS-CoV-2 RBD and NP specific MBC frequencies correlated moderately with each other 

(rho = 0.40, p = 0.03), but did not correlate with the influenza NP or Ttx-specific MBC response (rho = 

-0.13 to 0.13, p = 0.49-0.99) (Table 2 and Suppl. Fig. 4).  

 

Correlation of MBC and antibody responses 

 The maximum SARS-CoV-2 RBD and NP-specific antibody concentrations and the 

concentrations at 6-7 months PSO correlated with the magnitude of the MBC response 12 months 

PSO. Thus, higher SARS-CoV-2 antibody concentrations early in the infection indicated a more 

vigorous MBC response at 12 months after infection. The RBD-specific antibody responses at 9 and 

12 months also correlated with the MBC response. Antibody concentrations and MBC responses to 

influenza NP and tetanus toxin did no correlate (Table 2, Suppl. Fig. 5). 

Discussion 

 

 The goal of the study was to measure the SARS-2 RBD and NP-specific antibody 

concentration at several time points in the first year after infection and the memory B-cell response 

a year PSO, to determine the antibody half-lives and to compare the results among each other and 

with the immune responses to influenza virus NP and Ttx. For the comparison, we determined the 

concentration of SARS-CoV-2 RBD-specific IgG antibodies in µg/ml using the monoclonal RBD-specific 

antibody CR3022 as a concentration standard. The individual concentrations of the serum antibodies 

varied by more than a hundredfold. The mean concentration of SARS-CoV-2 RBD antibodies in the 

first 2-10 weeks (3.6 µg/ml) was similar to that previously found by Ibarrondo et al. (3.48 log10 ng/ml 

or 3.02 µg/ml) [5].  
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 The influenza virus NP-specific IgG antibody concentration was more than 10 times greater 

than the concentration of RBD-specific IgG indicating that the SARS-CoV-2 antibody response is 

relatively weak compared with the antibody response against another respiratory virus. It suggests 

that in principle the immune system is capable to generate markedly higher antibody concentrations 

after appropriate stimulation. The finding also indicates that the participants have considerably 

more influenza NP-specific than SARS-CoV-2 RBD-specific plasma cells in the body. This finding is in 

line with the observation that the frequency of bone marrow residing influenza virus 

haemagglutinin-specific IgG-secreting plasma cells outnumbered the frequency of SARS-CoV-2 S-

specific bone marrow plasma cells in subjects who recovered from SARS-CoV-2 infection [22].  

 Between the first few weeks and 12 months after infection, the SARS-CoV-2 RBD and NP 

antibody concentrations declined significantly. In the first six months, the antibody half-lives 

averaged approximately 3 months. Similar observations have been made by other research groups 

[2,3,5–12,22–26]. During the observation, the antibody decline slowed down. Between 9 and 12 

months PSO, the RBD antibody half-life increased to more than 2 years and the NP antibody half-life 

to 7 months. The half-life values are similar to those that have been reported by Gallais et al. [12]. 

The increasing half-life indicates that predictions about the course of the antibodies must consider 

the time interval between infection and antibody testing. For instance, when the concentration of 

SARS-CoV-2 spike IgG is being measured during the first few weeks after infection, half of these 

antibodies decay in approximately three months. In contrast, when antibody concentrations are 

being determined 9 months after infection, the average antibody titer remains above 50% of that 

concentration for the following 2 years.  

 Even at 9-12 months PSO, the SARS-CoV-2 RBD-specific antibody half-life was shorter than 

the half-lives of influenza virus NP and Ttx-specific antibodies. As the half-life of antibodies to other 

viral infections and vaccine antigens increases over 2-3 years, it is likely that the half-life of SARS-

CoV-2 antibodies will further extend [27]. 
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 The difference in the half-life of SARS-CoV-2 spike and NP-specific antibodies is striking and 

has previously been reported by other research groups [8,10–12]. If IgG antibodies against NP and 

RBD are being catabolized at the same rate - what likely is the case - the longer serum half-life of 

RBD-specific antibodies indicates that the immune system constantly replaces a higher fraction of 

RBD- than NP-specific antibodies.  

 The concentrations of SARS-CoV-2 RBD and NP-specific antibodies in the subjects correlated 

at early and later time points after infection. Thus, in principle the magnitude of the antibody 

response to one of the proteins allows prediction of the level of antibodies against the other protein.  

 Previous studies that examined the SARS-CoV-2-specific MBC response observed that the 

MBC frequency increased during 4-5 months after infection and the frequency of RBD-specific MBCs 

decreased between 6.2 and 12 months after infection [4,7,14,28]. We found SARS-CoV-2-specific 

MBCs in 68.6% of the participants 12 months PSO. The percentage of subjects with detectable SARS-

CoV-2 RBD- and NP-specific MBCs was identical and similar to the percentage of subjects with a 

measurable influenza NP and Ttx-specific MBC response.  

 In the subjects with detectable MBC responses the frequency of SARS-CoV-2 RBD, NP, 

influenza virus NP and Ttx-specific MBCs was comparable. Thus, at 12 months after infection the 

MBC response generated by the SARS-CoV-2 was as robust as the MBC response induced by 

repeated exposure with influenza virus or Ttx. In a related study, Turner et al. reported comparable 

frequencies of SARS-CoV-2 spike protein and influenza virus haemagglutinin-specific MBCs 7 months 

after SARS-CoV-2 infection [22]. The observation that the SARS CoV-2-specific MBC frequency is of 

similar magnitude as the influenza NP and Ttx-specifc MBC response suggests that the MBC 

frequency has reached a physiological optimum. This is different to the antibody response after SARS 

CoV-2 infection that was relatively weak. In vitro, the MBCs rapidly differentiated into antibody-

secreting plasma cells upon activation. This suggests that in persons with MBCs re-exposure to SARS-

CoV-2 or a vaccine will probably induce a swift rise of antibodies. 
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In the study, the SARS-CoV-2 RBD- and NP-specific MBC frequencies correlated closely. Thus, 

individuals with a higher RBD-specific MBC frequency had more circulating SARS-CoV-2 NP-specific 

MBCs and participants with fewer RBD-specific MBCs had less SARS-CoV-2 NP-specific MBCs. 

The determination of the MBC response allowed a comparison between the antibody 

concentration and the extent of the MBC response at 12 months PSO. The maximum SARS-CoV-2 

RBD and NP antibody concentration and the antibody concentration at 6-7 months correlated with 

the magnitude of the MBC responses. This indicates that the extent of the early antibody response is 

predictive of the MBC response at 12 months. It also suggests that the SARS-CoV-2-specific antibody 

and MBC levels are being regulated by a common immunologic mechanism. The strong correlation 

of the SARS CoV_2 MBC frequency and serum antibody concentration is remarkable, because MBC 

frequency and antibody concentration correlate uncommonly. For instance, in our study, the 

influenza NP and Ttx-specific antibody and MBC concentrations did not correlate. Likewise, Amanna 

et al. previously reported that the immune responses to only three of eight viral and vaccine 

antigens correlated significantly [29].   

The low antibody concentration but vigorous MBC response after SARS CoV-2 infection 

indicate that repeated antigen exposure may preferentially boost the antibody response and the 

generation of long-lived plasma cells.  

It has been shown that SARS-CoV-2 vaccination markedly boosts the antibody response in 

infected individuals [28]. This study describes the immunologic situation in which this effect occurs. 

A year after infection the antibody level is comparably low, the spike-protein antibody half-life has 

increased to two years and most SARS-CoV-2 infected individuals have developed a robust virus-

specific MBC response.  
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Figure legends 

Fig. 1. Decay curves and half-life of antibody concentrations. Course and half-life of serum 

antibodies for the whole time period (max-M12) and separate time intervals from maximum values 

to month 6-7 (max-M6), month 6-7 to 9 (M6-M9) and month 9-12 (M9-M12). A: Antibodies against 

SARS-CoV-2 RBD and NP for the whole study period. B: SARS-CoV-2 RBD antibodies from maximum 

values to 6-7 months, 6-8 to 9 months and 9-12 months; C: SARS-CoV-2 NP antibodies from 

maximum values to 6-7 months, 6-8 to 9 months and 9-12 months; D: Course and half-lives of 

influenza virus NP and Ttx-specific antibodies in the study period. The red lines indicate the limit of 

detection of the antibody tests. 

Fig. 2. Frequency of memory B-cells. Frequency of MBCs specific for SARS-CoV-2, influenza virus NP 

and Ttx antigens among all activated, antibody-secreting cells in recovered and naïve participants. 
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Tables 

Table 1: Median and range of SARS-CoV-2 RBD and influenza NP antibody concentrations 

at different time points after infection 

 Antibody concentration 

(µg/ml) 

  

Months PSO1 Median (25-75 IQR)3 Range3 

SARS-CoV-2 RBD   

0.5-2.62 1.54 (0.61-4.45) 0.13-26.8 

6-7 0.75 (0.30-1.53) <0.1-5.53 

9 0.56 (0.19-1.14) <0.1-4.08 

12 0.61 (0.2–1.18) <0.1-4.47 

Influenza virus NP   

0.5-2.62 17.2 (9.8-27.8) 2.9-47.1 

6-7 15.3 (9.7-22.9) 2.7-49.3 

9 12.0 (7.2-19.9) 1.7-45.8 

12 14.1 (6.2-17.8) 0.7-40.3 

1PSO: post symptom onset; 2equivalent to 2-10 weeks; maximum values if two blood 

specimens from this period were examined; 3cut-off SARS-CoV-2 RBD antibodies: 0.1 µg/ml 
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Table 2: Overview of IgG and memory B-cell responses and antibody half-lives 

Correlation of disease severity and antibody concentrations (rho) 

 Max M6 M9 M12 

SARS-CoV-2 RBD 0.30* 0.32* 0.29* 0.20 

SARS-CoV-2 NP -0.01 0.17 -0.09 -0.03 

Correlation of the concentration of SARS CoV-2 RBD and N antibodies (rho) 

 2-10 weeks M6 M9 M12 

SARS-CoV-2 RBD/NP 0.65*** 0.61*** 0.54*** 0.50*** 

Percentage of individuals with antigen-specific memory B-cells 

% positive individuals RBD SARS CoV-2 NP Influenza NP Tetanus toxin 

Infected 68.6 68.6 76.5 78.0 

Uninfected  none none 73.3 92.3 

Correlation of memory B-cell responses (rho) 

 SARS-CoV-2 

NP 

Influenza NP Tetanus toxin  

SARS-CoV-2 RBD 0.40* -0.002 0.04  

SARS-CoV-2 NP - -0.13 0.13  

Influenza NP - - 0.13  

Correlation of antibody and memory B-cell responses (rho) 

 Max/first 

value¹ 

M6 M9 M12 

SARS-CoV-2 RBD 0.60***  0.62*** 0.56*** 0.51** 

SARS-CoV-2 NP 0.53** 0.40* 0.004 -0.02 

Influenza NP 0.21 0.15 0.14 0.29 

Tetanus toxin 0.10 0.06 0.07 0.06 

Max: maximum values; M6, M9, M12: measurement at month 6-7, 9, and 12 post symptom onset. 

Rho: Spearman rank coefficient of correlation. Significance level * p < 0.05, ** p < 0.01, *** p < 

0.001. ¹ Maximum antibody levels were used for SARS-CoV-2 RBD and NP; the first measured 

antibody values were used for Influenza NP and Ttx. 
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Figure 1 
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Figure 2 

 


