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To sustain genomic stability by correct DNA replication and mitosis, cell cycle progression is
tightly controlled by the cyclic activity of cyclin-dependent kinases, their binding to cyclins in the
respective phase and the regulation of cyclin levels by ubiquitin-dependent proteolysis. The
spindle assembly checkpoint plays an important role at the metaphase-anaphase transition to
ensure a correct separation of sister chromatids before cytokinesis and to initiatemitotic exit, as
an incorrect chromosome distribution may lead to genetically unstable cells and tumorigenesis.
The ubiquitin ligase anaphase-promoting complex or cyclosome (APC/C) is essential for these
processes by mediating the proteasomal destruction of cyclins and other important cell cycle
regulators. To this end, it interacts with the two regulatory subunits Cdh1 andCdc20. Both play
a role in tumorigenesis with Cdh1 being a tumor suppressor and Cdc20 an oncogene. In this
review, we summarize the current knowledge about the APC/C-regulators Cdh1 and Cdc20 in
tumorigenesis and potential targeted therapeutic approaches.
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THE ROLE OF CDH1 AND CDC20 IN CELL CYCLE REGULATION

To ensure a correct DNA-duplication and distribution of chromosomes to the daughter cells, the cell
cycle is controlled by a complex interaction of different intra- and extracellular factors with
proliferation-promoting or -inhibiting effects. The correct sequence of cell cycle phases is
regulated by the cyclic activity of cyclin-dependent kinases (Cdk) and their binding to
regulatory cyclins (Figure 1) (Evans et al., 1983; King et al., 1996; Miller and Cross, 2001).
Before forming of the pre-replication complex (pre-RC) at the origin of replication during the
initiation step of DNA replication, the cyclin activity has to be low in G1-phase. DNA replication is
initiated with increasing cyclin activity at the G1/2-transition. The high cyclin activity prevents a
repeated formation of the pre-RC to ensure only one replication round per cell cycle. Finally, a
decreasing cyclin activity allows mitotic exit (King et al., 1996).

The regulation of cyclin activity and thus proceeding in the cell cycle is regulated via synthesis and
degradation of these proteins, phosphorylation, Cdk-inhibition, and the localization of the enzyme
complexes within in the cell. The ubiquitin-dependent proteolysis of cyclins and other regulatory
proteins by the proteasome plays a key role in this context (Hershko and Ciechanover, 1998).

There are two important ubiquitin ligases: the Skp1-, Cullin-, and F-box-protein containing-
complex (SCF-complex) regulating entry into S-phase via degradation of Cdk-inhibitors in G1-
phase, and the anaphase-promoting E3 ubiquitin ligase complex or cyclosome (APC/C) that
mediates the separation of sister chromatids and mitotic exit by the degradation of regulatory
proteins like securin and cyclin B (Harper et al., 2002; Peters, 2006).
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Cell cycle checkpoints are control mechanisms to ensure its
proper progression. The spindle assembly checkpoint (SAC)
plays an important role at the metaphase-anaphase transition
and prevents the separation of chromatids until each
chromosome is correctly attached to the mitotic spindle to
avoid chromosome missegregation (Figure 1). If a cell is not
able to resolve an error detected at this checkpoint it initiates
programmed cell death (apoptosis). A dysfunctional checkpoint
can lead to aneuploidy and tumorigenesis (Greil et al., 2016;
Zhang et al., 2014). Several studies have proven the particular
significance of the SAC for genetic stability (Scully, 2010; Greil et
al., 2016; Lawrence et al., 2015).

An accurate connection of the kinetochores to the
microtubules of the mitotic spindle ensures the correct
separation of the sister chromatids (Foley and Kapoor, 2013).
This interaction is monitored by the SAC to prevent a premature
separation and thus chromosomal instability (Musacchio and
Salmon, 2007; Musacchio, 2015). Single unattached kinetochores
keep the SAC active and mediate the assembly of the mitotic
checkpoint complex (MCC), that inhibits the APC/C and thereby
stabilizes its substrates and prevents chromosome separation and
mitotic exit. The MCC is composed of Mad2, BubR1, Bub3, and
the APC/C-co-activator Cdc20 (Sudakin et al., 2001). The
inhibitory signal from unattached kinetochores leads to a

conformational change of Mad2 and subsequently Cdc20 that
thereby is able to bind BubR1 and Bub3 (Skinner et al., 2008; Han
et al., 2013), can no longer activate the APC/C and thus inhibits
anaphase-entry (Peters, 2006).

A correct arrangement of all chromosomes with bipolar
binding to the mitotic spindle in the metaphase plate leads to
SAC-silencing and facilitates mitotic exit when Cdc20 is released
after MCC-degradation and can activate the APC/C (Zhang et al.,
2007). Thus, the APC/C plays a crucial role in the regulation of
the M/G1-transition. It consists of 13 subunits and its activity is
regulated by the two co-activators Cdc20 and Cdh1 recruiting
specific substrates. Their interaction is regulated by
phosphorylation and temporally related to the M- and G1-
phase (Morgan, 1999; Harper et al., 2002; Peters, 2006;
Sullivan and Morgan, 2007; Pines, 2011; Greil et al., 2016).
Major substrates of the APC/C are the mitotic cyclins A and
B, mitotic kinases such as Aurora A and B and Plk1, proteins
involved in chromosome separation as securin and replication
proteins like Cdc6. The two co-activators Cdc20 and Cdh1
themselves are degraded APC/C-mediated (Figure 1) (Peters,
2006).

APC/CCdc20 mediates separation of sister chromatids by
ubiquitin-mediated degradation of securin. Moreover, it
initiates cyclin B-degradation and thereby leads to Cdk1-

FIGURE 1 | The role of APC/C in cell cycle regulation. The transition between the cell cycle phases is regulated by the cyclic activity of cyclin-Cdk complexes. In
mitotic entry, cyclin B-Cdk1 plays a crucial role. In early prometaphase, chromosomes bind to the mitotic spindle and improperly connected kinetochores lead to SAC-
activation. At first, this partially inhibits substrate recruitment of APC/C activated viaCdc20, but various prometaphase proteins such as cyclin A can be further marked for
degradation by SAC-APC/CCdc20. After correct attachment of all chromosomes to the mitotic spindle, the SAC is inactivated, leading to degradation of additional
proteins such as cyclin B and securin via APC/CCdc20 in metaphase, mediating chromosome segregation and initiating mitotic exit. Cyclin B-degradation leads to Cdk1
inhibition, resulting in dephosphorylation and activation of Cdh1. APC/CCdh1 then initiates the degradation of various proteins during ana- and telophase such as Cdc20,
Plk1, and Aurora A/B. At the end of mitosis, APC/CCdh1 inactivates APC/CCdc20 and regulates anaphase spindle dynamics and cytokinesis. APC/CCdh1 is thus activated
from late mitosis and controls the decision between proliferation and differentiation in G1-phase. In G2-phase, APC/CCdh1 can be activated in response to DNA-damage
to prevent mitotic entry and allow DNA-repair.SAC, spindle assembly checkpoint; APC/C, anaphase promoting complex; Plk, Polo-like Kinase; Cdk, cyclin-dependent
kinase.
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inactivation (Wäsch and Cross, 2002; Peters, 2006; Musacchio
and Salmon, 2007; Schnerch et al., 2012a; Greil et al., 2016;
Schrock et al., 2020). After Cdk1-inactivation, the second
regulator Cdh1 is able to bind and activate the APC/C. It is
active during late mitosis and early G1-phase and controls
different cell cycle-regulators to ensure a stable G1-phase after
mitotic exit and thereby optimal conditions prior to DNA-
replication in the following S-phase and progression in the cell
cycle towards either differentiation or division (Figure 1) (Wäsch
and Cross, 2002; Qiao et al., 2010; Wäsch et al., 2010). Moreover,
APC/CCdh1 is activated during DNA-damage response in G2-
phase to prevent mitotic entry and initiate DNA-repair processes
(Figure 1) (Sudo et al., 2001; Bassermann et al., 2008).

THE ROLE OF CDC20 AND CDH1 IN
TUMORIGENESIS

The strict regulation of cell growth and division within the cell
cycle ensures that each daughter cell receives a complete set of
chromosomes. An incorrect chromosomal separation leads to
aneuploidy and thus possibly to the loss of tumor suppressor
genes or the overexpression of oncogenes (Jallepalli and
Lengauer, 2001). Additionally, an inaccurate DNA-replication
can lead to mutations with subsequent loss of function of tumor
suppressors (Rouse and Jackson, 2002). Mutations in different
cell cycle regulators can consecutively result in various mutations
leading to genomic instability, the main feature of malignant cells
(Negrini et al., 2010). The APC/C-co-activator Cdh1 is
considered a potential tumor suppressor (Wang et al., 2015)
and it is downregulated in different tumor entities (Engelbert
et al., 2008). Heterozygous Cdh1-knockdown (kd) mice have
been shown to develop tumors more frequently (García-Higuera
et al., 2008). Loss of Cdh1 leads to inefficient proliferation, the
accumulation of chromosomal aberrations (Wheeler et al., 2008),
elevated sensitivity to DNA-damage (Ishizawa et al., 2011; de
Boer et al., 2016) and development of various tumor entities
(García-Higuera et al., 2008). After Cdh1-downregulation
different APC/CCdh1–substrates such as cyclin A and B,
Aurora A and Plk1 can accumulate. Persistent residual levels
of the mitotic cyclins A and B at mitotic exit lead to a disturbed
DNA-replication (Diffley, 2004), a delayed subsequent mitotic
entry of cells with incompletely replicated DNA, may cause
disturbed mitosis, stabilization of p53/p21 and finally genomic
instability (Engelbert et al., 2008). However, it is not fully
understood how Cdh1 inactivation leads to genomic instability
(Wäsch and Engelbert, 2005; García-Higuera et al., 2008). The
stabilization of mitotic cyclins in G1-phase may lead to premature
and prolonged S-phase (Diffley, 2004; Greil et al., 2016;
Choudhury et al., 2016). In the following mitosis, the
chromosomes that are defective or not completely replicated
in the disturbed S-phase lead to further aberrations and
ultimately to the malignant transformation of the cell. By
stabilization of the mitotic cyclins A and B in the nucleus,
Cdh1-kd subsequently leads to a reduced accumulation and
chromatin binding of the pre-RC-component MCM4 (Greil
et al., 2016). MCM4-accumulation is not restored after

additional inhibition of Cdk1, thus, other kinases may also
play a role in this context (Wheeler et al., 2008; Greil et al.,
2016). Cdh1-kd may lead to a prolonged S-phase because after
reduced formation of pre-RC complexes, DNA-replication starts
from fewer replication origins in G1-phase (Ayuda-Duran et al.,
2014; Greil et al., 2016). Stabilization of cyclin A and B with
persistent cyclin A and B-dependent Cdk1-activity and cyclin A
and E-dependent Cdk2-activation in G1-phase after stabilization
of the SCF-component Skp2 and degradation of the Cdk-
inhibitors p27 and p21 may contribute to premature S-phase
entry after Cdh1-kd (Bashir et al., 2004; Wäsch and Engelbert,
2005; Yuan et al., 2014). Incomplete DNA-replication after Cdh1-
kd can cause double-strand breaks during chromosome
condensation and segregation (Greil et al., 2016). As a
consequence of this disturbed replication and defective
chromosome segregation, mitotic aberrations occur leading to
anaphase bridges, micronuclei, impaired cytokinesis, and
polyploid cells (Neelsen et al., 2013; Greil et al., 2016).
Tetraploid cells formed by re-fusion of daughter cells after
insufficient division show supernumerary centrosomes that can
either lead to multipolar mitoses or, after clustering to ensure
bipolarity, to merotelic chromosome junctions and lagging
chromosomes (Ganem et al., 2009; Greil et al., 2016). The
APC/C plays a role in this centrosomal clustering and Cdh1-
kd can lead to multipolar mitotic spindles by stabilizing the Eg5
motor protein (Drosopoulos et al., 2014). These disturbed
processes result in either mitotic catastrophe and apoptosis or
accumulation of chromosomal aberrations and tumorigenesis.
Downstream of Cdh1-kd, stabilization of topoisomerase 2α has
also been described, probably contributing to genomic instability
(Eguren et al., 2014). However, the mechanism leading to
genomic instability is currently not fully understood
(Tavormina et al., 2002). Despite increasing genomic
instability, Cdh1-deficient cells can survive and malignant
transformation occurs only after a longer latency period and
additional mutations (García-Higuera et al., 2008; Skaar and
Pagano, 2008).

Interestingly, Cdh1 overexpression may also promote
tumorigenesis: High levels of Cdh1 lead to a prolonged G1-
phase, delayed entry in S-phase and increased degradation of
geminin (Sørensen et al., 2000). Thereby, the pre-RC component
Cdt1 is no longer inhibited, which may lead to repeated DNA
replication rounds and thus to aneuploidy (Wohlschlegel et al.,
2000).

Cdc20 overexpression prevents the SAC from inhibiting the
APC/C, leading to mitotic slippage (Bonaiuti et al., 2018).
Persistent SAC-activation due to an incorrect spindle assembly
may induce mitotic arrest (Kapanidou et al., 2017). Misregulation
of the APC/C may allow cells to pass this cell cycle checkpoint
and to proliferate uncontrolled (Riffell et al., 2009), leading to
chromosomal aberrations (Zhu et al., 2014) and probably
resistance to chemotherapeutic agents that interfere with the
microtubules of the mitotic spindle (Liu et al., 2019). Thus,
Cdc20 acts as an oncogene (Schrock et al., 2020). A
correlation between higher Cdc20 expression and poorer
prognosis has been demonstrated in various malignant tumors
such as breast or non-small cell lung cancer (NSCLC) (Kato et al.,
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2012; Karra et al., 2014). Increased levels of Cdc20 lead to a
dysregulated cell cycle by overwhelming the inhibitory capacity of
the SAC (Izawa and Pines, 2015), thus APC/C-activation despite
an active SAC may cause premature mitotic exit, resulting in
dysregulated proliferation and tumorigenesis (Bonaiuti et al.,
2018). A dysfunction of the APC/C itself can lead to
accumulation of Cdc20 due to its inefficient degradation.
Cdc20 overexpression is accompanied by the overexpression of
various other genes associated with APC/C impairment in diverse
cancers (Zhang et al., 2019), including overexpression of other
APC/C substrates, indicating that impairment of the APC/C and
not specifically Cdc20 overexpression is important for
tumorigenesis.

THE ROLE OF CDH1 IN CELL
DIFFERENTIATION

The APC/CCdh1 is one of the most important cell cycle regulators
in G1/G0-phase, where the decision between entry into a new
division cycle or terminal differentiation after cell cycle exit is
made. Thus, it does not only play a role in maintaining genomic
stability but also in regulating cell differentiation. Its role in
differentiation processes has been described in several cell
types, such as neurons, myocytes and hepatocytes (Wirth
et al., 2004; Li et al., 2007; Delgado-Esteban et al., 2013). In
hematopoietic stem cells (HSC), a tightly controlled cell cycle
regulation is crucial for the balance between differentiation and
self-renewal and impairment can lead to leukemogenesis and
clonal expansion of leukemic blasts. Cdh1-expression is high in
human CD34-positive HSC and declines after initiation of
differentiation and Cdh1-kd inhibits myeloid differentiation,
contributes to B-cell development and the preservation of
immature HSC without affecting proliferation or viability
(Ewerth et al., 2019). The significantly decreased Cdh1-
expression in blasts of acute myeloid leukemia (AML) as
compared to HSC may be a possible cause of their
differentiation block (Ewerth et al., 2016). In contrast, acute
promyelocytic leukemia (APL) blasts are resistant to
differentiation block mediated by low Cdh1-expression. Here,
Cdh1-depletion leads to a marked decrease in cell viability upon
all-trans retinoic acid (ATRA)-induced differentiation (Ewerth
et al., 2016). Thus, low levels of Cdh1 may enhance the
therapeutic effect of ATRA. In APL, the differentiation block
is primarily caused by differentiation genes downregulated via the
PML-RARα fusion gene and modulation of ubiquitination via
APC/CCdh1 appears ineffective. By inducing myeloid
differentiation, ATRA can lead to long-term remissions in
APL, depending on the risk constellation in combination with
other agents (Sanz et al., 2009). In contrast, differentiation by
PMA is controlled by both gene regulation and proteasomal
degradation and PMA-stimulation of non-APL myeloid blasts
leads to an increased Cdh1-expression (Li et al., 2014). After
Cdh1-kd, differentiation in these cells may be delayed by Id2
stabilization but proliferation is not disrupted. In contrast,
differentiation in APL is not perturbed after Cdh1-kd. Thus,
ATRA here possibly leads to differentiated but genomically

unstable cells due to low Cdh1 expression, with a
consequently increased apoptosis rate (Ewerth et al., 2016). In
solid tumor cells, Cdh1-kd led to a higher susceptibility to
replication stress by DNA-damage-inducing chemotherapy
(Wheeler et al., 2008) which may also explain the high efficacy
of anthracyclines in combination with ATRA in APL with low
Cdh1-expression. Cdh1 levels are probably controlled post-
transcriptionally in AML by SCF-mediated proteolysis
(Fukushima et al., 2013). The SCF-subunit Skp2 plays a role
in tumorigenesis and -growth, Skp2-overexpression has also been
demonstrated in AML (Min et al., 2004). In Skp2-kd cells,
elevated Cdh1 levels were detected (Ewerth et al., 2016).

FIGURE 2 | Cancer treatment targeting the APC/C. Due to disturbed
microtubule kinetics after spindle poison treatment with resulting defective
chromosome attachment and free kinetochores, the SAC cannot be satisfied
and the MCC is formed. After binding to Mad2, BubR1, and Bub3 in the
MCC Cdc20 can no longer activate the APC/C. APC/C inhibition leads to
stabilization of securin and cyclin B, preventing chromosome segregation and
mitotic exit. Prolonged mitotic arrest triggers Mcl-1-degradation, thus
caspase activation and apoptosis in mitosis. SAC-deficient malignant cells
may survive treatment with spindle poisons due to residual APC/C activity and
slow cyclin B-degradation. Inhibition of APC/C or the proteasome can prevent
this mitotic slippage, consolidate the mitotic block and enhance the antitumor
effect. Mcl-1 inhibition may additionally promote apoptosis. SAC, spindle
assembly checkpoint; MCC, mitotic checkpoint complex; APC/C, anaphase
promoting complex.
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Conversely, Skp2 is also a Cdh1 substrate: As described above,
Cdh1-mediated Skp2-degradation in early G1-phase leads to
stabilization of the Cdk-inhibitors p21 and p27; after Cdh1
inactivation in late G1-phase, Skp2 stabilization then leads to
degradation of p21, p27, and Cdh1 and to S-phase entry (Bashir
et al., 2004; Wäsch and Engelbert, 2005; Yuan et al., 2014).

THERAPEUTIC APPROACHES TARGETING
THE APC/C

Treatment with spindle poisons like taxanes and vinca alkaloids
which inhibit the assembly of the mitotic spindle belong to the
most common chemotherapeutic approaches in various malignant
solid tumors (Dominguez-Brauer et al., 2015). Paclitaxel stabilizes
the microtubule polymer and protects it from disassembly. It could
be shown that high doses lead to a sustained mitotic arrest after
SAC-activation (Weaver, 2014): due to the suppression of
microtubule dynamics, chromosomes are unable to achieve a
metaphase spindle configuration which prevents the SAC from
being satisfied (Stukenberg and Burke, 2015), leading to
continuous APC/C-inhibition with persistent high levels of
cyclin B and mitotic arrest to provide additional time to repair
the spindle damage (Figure 2). If this attempt fails, SAC-induced
mitotic arrest triggers either apoptosis in mitosis via the
mitochondrial pathway (Topham and Taylor, 2013), leads to
reversion to the G0-phase and dormancy without cell division
or results in mitotic slippage with mitotic exit prior to a successful
cell division and thus to G1-entry of tetraploid cells. These cells
may either die right after G1-entry or re-enter the cell cycle leading
to proliferation of cells with an aberrant genotype (Fujiwara et al.,
2005; Gascoigne and Taylor, 2008). However, other studies have
suggested that therapeutically relevant concentrations of paclitaxel
may not lead to mitotic arrest but to multipolar spindles and thus
to chromosome missegregation and increased cell death in the
interphase that follows the perturbed mitosis (Zasadil et al., 2014;
Zeng et al., 2019). It was shown in several tumor cell lines that
spindle apparatus damage can still result in mitotic exit without
apoptosis in mitosis (Shi et al., 2008). For example in breast cancer
cells, in vivo achievable paclitaxel concentrations led to multipolar
spindles, incorrect chromosome distribution and postmitotic cell
death (Zasadil et al., 2014; Alves et al., 2018).

The mechanism mediating whether a cell survives prolonged
mitosis after spindle damage or enters apoptosis is not fully
understood. A model with two independent competing
signaling pathways is discussed: During mitotic arrest, pro-
apoptotic signals continuously increase while cyclin B levels
decrease. If the cyclin B level falls below the threshold that
allows mitotic escape first, mitotic slippage occurs; if the
threshold for apoptosis initiation is crossed first, mitotic cell
death is initiated (Gascoigne and Taylor, 2008; Topham and
Taylor, 2013). Thus, two mechanisms may contribute to the
survival of tumor cells despite perturbed mitotic spindle
assembly and despite subsequent mitotic arrest and thus to
reduced efficacy of spindle poisons (Gascoigne and Taylor,
2008): a predominance of mitotic slippage or a dysregulation
of the apoptosis signaling pathway.

Nevertheless, tumor cells can escape a SAC-mediated mitotic
arrest by mitotic slippage (Brito and Rieder, 2006; Gascoigne and
Taylor, 2008). Even if the SAC cannot be passed after spindle
damage, residual background APC/C-activity may result in slow
but continuous cyclin B-degradation via the ubiquitin-
proteasome system (Brito and Rieder, 2006; Schnerch et al.,
2012b). If the cyclin B level falls below a critical limit, mitotic
arrest can no longer be maintained although the SAC has not
been satisfied. This prevents initiation of apoptosis after
prolonged mitosis and may reduce the efficacy of spindle
poisons, comparable to a premature mitotic exit due to a
weakened or abolished SAC (Gascoigne and Taylor, 2008).
Consequently, preventing exit from mitosis by APC/
C-inhibition when the SAC is not satisfied should enhance the
antitumor effect (Figure 2). Some data indicate that the APC/C
and its coactivator Cdc20 could be targets for oncological
therapies. Cdc20-kd leads to mitotic arrest and apoptosis in
various tumor cell lines (Huang et al., 2009). In 2014, the
efficacy of direct APC/C-inhibitors was described for the first
time: By binding Cdc20, apcin competitively prevents substrate
recognition. The efficacy of apcin in blocking mitotic exit is
synergistically amplified by proTAME (tosyl-L-arginine methyl
ester), a prodrug that is converted to TAME by an intracellular
esterase and blocks Cdc20 binding to the APC/C at a different site
(Sackton et al., 2014). The combination of both molecules (pT/A)
thus leads to a significant stabilization of APC/C-substrates,
prevents mitotic exit in tumor cells and promotes apoptosis
(Sackton et al., 2014). APC/C-inhibitors have not yet been
tested in clinical trials, but preclinical data suggest a promising
therapeutic approach: For example, it has been shown that
proTAME leads to enhanced mitotic arrest and apoptosis in
paclitaxel-treated cell lines of various solid tumors like ovarian
cancer (Zeng et al., 2010; Giovinazzi et al., 2013; Sinnott et al.,
2014; Raab et al., 2019). pT/A can reduce the viability of
glioblastoma cells (De et al., 2019) and shows also activity in
hematologic neoplasms like multiple myeloma and different
types of non-Hodgkin lymphoma (Lub et al., 2016; Maes
et al., 2019). Since slow cyclin B-degradation is mediated by
the proteasome, preventing mitotic slippage by inhibiting
proteasomal degradation seems reasonable. Indeed, a stable
mitotic block was demonstrated after treatment with a
proteasome inhibitor (Brito and Rieder, 2006; Schnerch et al.,
2012b). Programmed cell death via the intrinsic signaling
pathway is triggered by cellular stress following defective cell
division or by insufficient repair mechanisms and is essential for
the destruction of degenerate or potentially harmful cells (Green
and Llambi, 2015). In response to DNA-damage, pro-apoptotic
members of the Bcl-2 family such as BAD and Bim are activated
and can thus neutralize anti-apoptotic members such as Bcl-2
itself, Bcl-xL, and Mcl-1, leading to mitochondrial outer
membrane permeabilization via the pore-forming proteins
BAX and BAK, to the release of various effector proteins such
as cytochrome C, to caspase activation and cleavage of cellular
proteins (Kalkavan and Green, 2018). Indeed, it has been shown
that cell death during a mitotic arrest is initiated via this
mitochondrial pathway (Gascoigne and Taylor, 2008). An
imbalance between members of the Bcl-2 family may result in
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inefficient apoptosis (Delbridge et al., 2016). Because of the
complexity of these signaling pathways, it is challenging to
identify the key regulators that trigger apoptosis during
prolonged mitosis. During prolonged mitotic arrest, nearly all
Bcl-2 family proteins and caspases are posttranscriptionally
modified (Topham and Taylor, 2013). The protein Mcl-1,
which is overexpressed in many tumors, seems to play a
central role here (Akgul, 2009; Beroukhim et al., 2010; Harley
et al., 2010). Mcl-1 levels are regulated in a cell cycle-dependent
manner, being highest in G2-phase. During mitosis, Mcl-1 is
degraded after Cdk1/cyclin B-mediated phosphorylation via
APC/CCdc20 (Figure 2). Due to the slow degradation of this
anti-apoptotic protein, cells arrested in mitosis after therapy with
spindle poisons can initiate apoptosis (Harley et al., 2010).
Conversely, stabilization of Mcl-1 during mitotic arrest, for
example by mutation of phosphorylation sites, prevents
initiation of apoptosis after antimitotic therapy. In various
tumors it was shown, that small molecules inhibiting anti-
apoptotic proteins such as Mcl-1 reactivate the apoptosis
signaling pathway (Wäsch, 2011; Leverson et al., 2015; Raab
et al., 2019).

Besides conventional chemotherapy, those small molecules
targeting signaling pathways that can be deregulated in tumor
cells currently play an increasing role, as they may be more
effective and cause fewer side effects. Inhibitors directed against
cell cycle regulators such as Plk1 are in preclinical development
and are tested in clinical trials (Gutteridge et al., 2016; Zeidan
et al., 2020). Mitotic block after antimitotic therapy with classical
spindle poisons or with such small molecules should be
consolidated by preventing mitotic slippage through slow
cyclin B-degradation via APC/C- or proteasome inhibition,
thus enhancing the antitumor effect. Lower levels of the APC/
C-coactivator Cdc20 reduced cyclin B-degradation even after
mitotic arrest by spindle poison treatment (Schnerch et al.,
2017). The effect of antimitotic therapy could be enhanced by
additional proteasome inhibition in AML (Schnerch et al., 2017).
It was suggested that the proteasome inhibitor bortezomib leads
to G2/M-arrest in myeloid blasts and thus acts synergistically
with antimitotic agents (Colado et al., 2008; Bucur et al., 2013).
Nevertheless, it was shown that bortezomib acts primarily in
mitosis, prevents slow cyclin B degradation and cyclin B
overexpression enhances mitotic arrest after volasertib
(Schnerch et al., 2017). Delayed mitotic progression after
cyclin B overexpression was described (Gascoigne and Taylor,
2008) and a similar effect in volasertib-treated cells by adding
bortezomib (Schnerch et al., 2017). Paclitaxel and bortezomib
have also been used sequentially in solid tumors at low
concentrations achievable in vivo(Weaver, 2014; Weyburne
et al., 2017). In vitro, a similar effect of proteasome inhibitors
on solid tumor cells as on myeloma cells was observed (Garnett
et al., 2012). The sequential combination of antimitotic agents

with proteasome inhibition enhances cell death in different solid
tumor cells, but during interphase and not through the presumed
effect of a consolidated mitotic arrest with subsequent apoptosis
in mitosis (Greil et al., 2021). In clinical trials, neither bortezomib
alone nor a combination with doxorubicin has been shown to
have a therapeutic effect in lung and breast cancer (Dou and
Zonder, 2014), perhaps because the bortezomib concentration
achievable in vivo inhibits only one of the three subunits of the
proteasome (Weyburne et al., 2017).

Consistent with the presumed synergistic effect on mitotic
exit, APC/C-inhibition alone or combined with a taxane can lead
to strong mitotic cell death in certain tumor cells, but in others
with high expression of the anti-apoptotic regulator Mcl-1, cell
death is induced in interphase (Zeng et al., 2010; Raab et al., 2020;
Greil et al., 2021). Here, combined APC/C- and Mcl-1-inhibition
is highly lethal but also in interphase (Greil et al., 2021). Despite
an initially increased apoptosis rate and reduced cell number
shortly after exposure, the substances do not always lead to a
durable response in a cell type-specific manner (Greil et al., 2021).
This difference between short-term effect and long-term survival
seems to be explained by mitotic slippage (Zeng et al., 2019):
These cells escape mitotic block and thus evade cell death shortly
after spindle toxin therapy, but their long-term survival is
compromised by increasing genomic instability after disrupted
cell division.

CONCLUSION

The APC/C either has an oncogenic function after binding to its
co-activator Cdc20, or works as a tumor suppressor when bound
to Cdh1. Thus, dysfunction of both the APC/CCdh1 and APC/
CCdc20 and loss of Cdh1 itself lead to dysregulation of the cell
cycle, aneuploidy and increased genomic instability and
contribute to tumorigenesis and probably drug resistance.

Targeting the APC/C has shown potent anti-tumor capacity
and the combination of spindle poisons with a proteasome
inhibitor or direct inhibitors of the APC/C and Mcl-1 seems a
promising approach to improve treatment response in different
solid tumors, even though they act entity-dependent at different
cell cycle phases. Taken together, the current state of knowledge
provides a compelling rationale to further pursue on the role of
the APC/C in tumor development and treatment.
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