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Abstract

Background: During development, all amniotes (mammals, reptiles, and birds) form extraembryonic membranes, which
regulate gas and water exchange, remove metabolic wastes, provide shock absorption, and transfer maternally derived
nutrients. In viviparous (live-bearing) amniotes, both extraembryonic membranes and maternal uterine tissues contribute to
the placenta, an endocrine organ that synthesizes, transports, and metabolizes hormones essential for development.
Historically, endocrine properties of the placenta have been viewed as an innovation of placental amniotes. However, an
endocrine role of extraembryonic membranes has not been investigated in oviparous (egg-laying) amniotes despite
similarities in their basic structure, function, and shared evolutionary ancestry. In this study, we ask whether the oviparous
chorioallantoic membrane (CAM) of chicken (Gallus gallus) has the capability to synthesize and receive signaling of
progesterone, a major placental steroid hormone.

Methodology/Principal Findings: We quantified mRNA expression of key steroidogenic enzymes involved in progesterone
synthesis and found that 3b-hydroxysteroid dehydrogenase, which converts pregnenolone to progesterone exhibited a 464
fold increase in the CAM from day 8 to day 18 of embryonic development (F5, 68 = 89.282, p,0.0001). To further investigate
progesterone synthesis, we performed explant culture and found that the CAM synthesizes progesterone in vitro in the
presence of a steroid precursor. Finally, we quantified mRNA expression and performed protein immunolocalization of the
progesterone receptor in the CAM.

Conclusions/Significance: Collectively, our data indicate that the chick CAM is steroidogenic and has the capability to both
synthesize progesterone and receive progesterone signaling. These findings represent a paradigm shift in evolutionary
reproductive biology by suggesting that endocrine activity of extraembryonic membranes is not a novel characteristic of
placental amniotes. Rather, we hypothesize that these membranes may share an additional unifying characteristic,
steroidogenesis, across amniotes at large.
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Introduction

A key defining characteristic of amniotes (mammals, reptiles,

and birds) is the formation of four extraembryonic membranes

during embryonic development; the amnion, chorion, allantois,

and yolk sac [1]. Fusion of the chorion and allantois forms either

the chorioallantoic placenta in viviparous (live-bearing) species, or

the chorioallantoic membrane (CAM) in oviparous (egg-laying)

species [2]. Both the chorioallantoic placenta and CAM perform

functions crucial for embryonic survival and development [1,2].

Yet, only the placenta, which is a composite structure composed of

extraembryonic membranes and maternal decidua, is classified as

an endocrine organ [2,3].

The mammalian chorioallantoic placenta synthesizes, trans-

ports, and metabolizes a suite of steroid and peptide hormones [2–

4]. Of these, placental progesterone (P4), plays a key role in the

maintenance of pregnancy [5], timing of birth [6], and promotes

growth of the embryo [7] and placenta [8,9]. Historically,

endocrine properties of the placenta have been viewed as an

innovation of eutherian mammals [2]. However, evidence of an

endocrine placenta in three species of viviparous lizards [10,11,12]

has recently called this traditional eutheriancentric view into

question.

Examination of mammalian [3,13,14] and lizard [12] placentas

has revealed that both extraembryonic membranes and maternal

tissues contribute to hormone synthesis and metabolism. There-

fore, we asked whether the extraembryonic membranes of

oviparous amniotes could also play a role in the production of

hormones during embryonic development. Although some

differences do exist in the formation of the chorionic ectoderm

between placental and oviparous amniotes [15], such an

investigation is warranted given that the extraembryonic mem-
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branes share numerous similarities in their basic structure and

function that are conserved across amniota. The presence of

steroidogenic activity in the extraembryonic membranes of an

oviparous amniote would imply a more ancient origin of

endocrine function for these membranes than is currently believed.

Both the chorioallantoic placenta and CAM are derived from

chorion and allantois [2,15] Therefore, if the CAM has similar

steroidogenic properties as the chorioallantoic placenta, then it

should synthesize key placental hormones, such as P4. In this study

we examined the potential activity of P4 in the CAM of chicken

(Gallus gallus). To confirm P4 activity we must demonstrate that: (1)

the oviparous CAM has the molecular mechanisms in place to

perform steroidogenesis and synthesis of P4. Indeed, we show

mRNA expression patterns of key steroidogenic enzymes involved

in P4 biosynthesis. (2) The CAM is able to synthesize P4. We

demonstrate that in vitro P4 synthesis takes place in the CAM and is

not a product of steroids in the yolk or embryo, by isolating the

CAM from other tissues and testing for synthesis directly in the

presence of a steroid hormone precursor. (3) The CAM is capable

of receiving the P4 signal through an appropriate receptor. Again,

we demonstrate, via mRNA expression and protein immunolo-

calization of the progesterone receptor, that the CAM is capable of

modulating P4 activity.

Results

The CAM has the required molecular mechanisms to
perform steroidogenesis and synthesis of progesterone

Cholesterol is required for the de novo synthesis of steroid

hormones with steroidogenesis proceeding by the conversion of

one steroid hormone to another by the action of specific enzymes

[4]. To determine whether the oviparous CAM has the molecular

mechanisms required for P4 synthesis, we examined mRNA

expression of key steroidogenic enzymes in the steroid biosynthesis

pathway [4,16] (Figure 1). The relative levels and timing of mRNA

expression were determined by harvesting CAM tissue, which

forms on embryonic day 5, on embryonic days 8, 10, 12, 14, 16,

and 18 and performing quantitative real-time RT-PCR (RT-

qPCR) of mRNA coding for steroidogenic acute regulatory protein

(StAR), cytochrome side-chain cleavage enzyme (P450scc), 17a-

hydroxylase (P45017a), 3b-hydroxysteroid dehydrogenase (3b-

HSD), and 17b-hydroxysteroid dehydrogenase (17b-HSD).

Figure 1. Steroid biosynthesis pathway. A simplified version of steroid biosynthesis highlighting the specific steroidogenic enzymes
investigated in this study. Filled boxes highlight the steroidogenic enzymes examined by RT-qPCR. Progesterone (P4) is highlighted as the focus of
this study. First, the transport protein, steroidogenic acute regulatory protein (StAR) is needed to facilitate the movement of cholesterol from the
outer to inner mitochondrial membrane. Cholesterol is then converted to pregnenolone by the action of cytochrome side-chain cleaving enzyme
(P450scc). Pregnenolone can then be converted to either 17a-hydroxypregnenolone by 17a-hydroxylase (P45017a) or to P4 by 3b-hydroxysteroid
dehydrogenase (3b-HSD). P4 can either be a final product in this pathway or serve as a precursor in the synthesis of glucocorticoids, androgens, or
estrogens. 17b-hydroxysteroid dehydrogenase (17b-HSD) functions in the conversion of weaker and stronger androgens and estrogens and was
included in this study as a marker of upstream steroid enzyme activity [4,16].
doi:10.1371/journal.pone.0005452.g001
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We show the presence of steroidogenic enzyme mRNA in the

CAM of an oviparous amniote (Figure 2). Overall, there was

significant mRNA expression of StAR (F1, 67 = 65.222, p,0.0001),

P450scc (F1, 68 = 58.489, p,0.0001), and P45017a (F1,

66 = 80.004, p,0.0001); however, the level of expression did not

change significantly between embryonic day 8 and 18 for several

components of the steroidogenic pathway (StAR F5, 67 = 1.144,

p = 0.346), (P450scc F5, 66 = 1.618, p = 0.167), (P45017a F5,

66 = 1.787, p = 0.128). In contrast, we observed a 464 fold increase

in 3b-HSD, which converts pregnenolone to P4, from day 8 to day

18 of development (F5, 68 = 89.282, p,0.0001). Detection of the

steroidogenic enzymes required for the transport and conversion

of cholesterol to P4 identifies a molecular mechanism for achieving

P4 synthesis in the CAM. Additionally, the significant increase in

3b-HSD indicates that P4 synthesis in the CAM potentially

increases through development similar to that of the chorioallan-

toic placenta through pregnancy [4,17].

In contrast, 17b-HSD showed a significant decrease in

expression, with mRNA expression decreasing to nearly zero by

day 18 (F5, 68 = 16.027, p,0.0001), which could be associated with

decreasing yolk androgens during development. Early in chick

development, Elf and Fivizzani [18] reported high levels of

androstenedione (A), testosterone (T), and dihydrotestosterone in

the yolk, which decreased as development proceeds. They showed

that yolk estradiol-17b remained constant through development

until increasing on embryonic day 20, which is beyond the

duration of our study. Because 17b-HSD is a key enzyme in the

conversion between A and T [19] (Figure 1), high levels of yolk A

and T earlier in embryonic development could explain why 17b-

HSD mRNA expression in the CAM was initially high and then

decreased through time. This scenario suggests that the CAM

utilizes a maternal source of androgens during development.

Taken together, these results indicate that the chick CAM has the

molecular mechanisms in place to perform steroidogenesis in

general and P4 synthesis in particular.

The CAM is capable of in vitro progesterone synthesis
Placental P4 synthesis in mammals is generally elevated from

mid to late pregnancy [17]; therefore, to investigate P4 synthesis in

the CAM, we harvested CAM tissue on embryonic day 18 and

performed in vitro explant culture. Sections of CAM were

incubated in culture media for 2, 4, or 8 hours either with or

without cholesterol (plus cAMP) as a precursor. The concentration

of P4 in the culture media was then quantified by radioimmuno-

assay. If the CAM is steroidogenic, addition of the steroid

hormone precursor (cholesterol) to the culture media should

stimulate increased P4 production. Indeed, our results showed a

significant increase in concentration of P4 in the culture media

following the addition of cholesterol precursor (F1, 58 = 46.917,

p,0.0001) (Figure 3). Additionally, we observed a significant

interaction between time of incubation and addition of precursor

to the culture media (F2, 58 = 3.709, p = 0.0305). This result

Figure 2. Relative mRNA expression of steroidogenic enzymes in the chick CAM. RT-qPCR analysis of mRNA coding for StAR, P450scc,
P45017a, 3b-HSD and 17b-HSD on chick embryonic days 8 (n = 10), 10 (n = 17), 12 (n = 14), 14 (n = 10), 16 (n = 14), and 18 (n = 12). Data are reported as
relative mRNA expression and represent mean normalized mRNA transcript number in copies/mL6SEM. 3b-HSD increased (F5, 68 = 89.282, p,0.0001)
and 17b-HSD decreased (F5, 68 = 16.027, p,0.0001) significantly between embryonic day 8 and day 18.
doi:10.1371/journal.pone.0005452.g002
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confirms that P4 synthesis can be induced in the chick CAM in the

presence of a steroid hormone precursor. Further, we found that in

the absence of precursor, the CAM produced a detectable level of

P4 that did not change significantly during the assay

(mean = 34 pg/ml/g68.2 SEM, F2, 21 = 1.626, p = 0.2205)

(Figure 3) suggesting that the CAM can exhibit endogenous P4

synthesis, but under the in vitro conditions used here this synthesis is

likely limited by the lack of precursor. In contrast, a decrease in P4

concentration during the assay would have indicated that P4

detected at the first time point was perhaps the product of

hormones leaching from this highly vascularized tissue. In sum,

these results demonstrate that the chick CAM is capable of in vitro

P4 synthesis. At present, we are unable to comment on the

bioavailability of cholesterol in the CAM under in vivo conditions

as these data do not currently exist.

The CAM is capable of receiving P4 signaling through the
progesterone receptor

Finally, we examined the capability of the chick CAM to receive

P4 signaling through an appropriate hormone receptor. As in

human [20], chick P4 receptor (PR) is predominately expressed in

two isoforms, PR-A and PR-B [21]. In chicken, the mRNA

sequences of these isoforms are identical with the exception that

PR-B has an additional 128 amino acids located at the N-terminus

[21]. To identify both PR isoforms in the CAM, we designed

primers that recognized the shared mRNA sequence (PR-ab) and

performed RT-qPCR to examine relative expression during

development. We show that PR-ab increased significantly through

embryonic development (F5, 68 = 15.897, p,0.0001), demonstrat-

ing a 758% increase between embryonic day 8 and 18 (Figure 4A).

We hypothesize that the observed increase in PR-ab expression in

the CAM could be due to autoregulation by P4 and/or

upregulation by an estrogen.

If CAM PR-ab is under autoregulation, i.e. P4 regulates its own

synthesis, one might expect that as 3b-HSD and presumably P4

increases, a corresponding decrease in PR-ab expression would

result [22]. However in placental tissues, P4 has been shown to

maintain and possibly upregulate PR in rats [9], and to

significantly increase the expression of PR in humans [23].

Therefore, it is possible that an increase in 3b-HSD and P4 could

result in an increase in PR-ab expression in the CAM. If CAM

PR-ab is upregulated by an estrogen, we might expect to see an

upregulation of both chick PR [24] and estrogen receptor alpha

(ERa) [25]. Therefore, we examined ERa mRNA expression in

the CAM and found that ERa increased by 307% between

embryonic day 8 and 18 (F5, 66 = 14.432, p,0.0001) (Fig. 4A)

suggesting that an estrogen might play a role in PR regulation.

To determine if PR-ab mRNA is translated at the level of the

protein, we performed immunolocalization of the nuclear PR with

an antibody designed to recognize both chicken A and B isoforms

[26]. We found PR-ab to be localized to the nucleus predom-

inately in the chorionic epithelium and in the epithelial cells of

mesenchymal blood vessels (Figure 4B). Positive nuclear staining

was also found in the allantoic epithelia and mesenchyme. In total,

mRNA expression and protein localization of PR-ab in the CAM

indicate that this tissue can modulate the activity of P4 during

embryonic development.

Discussion

Collectively, our data indicate that the chick CAM is

steroidogenic and has the capability to both synthesize progester-

one and receive progesterone signaling. By demonstrating mRNA

expression of steroidogenic enzymes, we show that the chick CAM

has the molecular mechanisms in place to perform steroidogenesis

and biosynthesis of P4. We demonstrate that the CAM is capable

of in vitro synthesis of P4 in the presence of a steroid precursor.

Additionally, we show that the CAM is capable of modulating P4

activity through the progesterone receptor.

In eutherian mammals, placental P4 plays a key role in the

maintenance of pregnancy [5], timing of birth [6], and promotes

growth of the embryo [7] and of the placenta itself [7–9]. Further,

P4 has been observed to stimulate blood vessel proliferation [27]

and maturation [28] in the mouse endometrium. Additionally, P4

has been suggested to play a role in human fetoplacental

vascularization by regulating the proliferation of placental vascular

smooth muscle cells [29] and through relaxation of placental blood

vessels [30]. At present, we can only speculate on the role of P4 in

the physiology of the CAM. We hypothesize that P4 in the

oviparous CAM might be expected to serve similar roles as in

eutherians contributing to the maintenance of embryonic

development, timing of hatch, and growth of the embryo and of

the CAM. Like the placenta, the CAM is a highly vascularized

organ; therefore, we suggest that P4 might be involved in CAM

blood vessel proliferation and maintenance.

Our findings represent a paradigm shift in evolutionary

reproductive biology by indicating that steroidogenic activity of

extraembryonic membranes is not a novel characteristic of

placental amniotes. Further, we hypothesize that endocrine

activity of extraembryonic membranes might be an evolutionarily

conserved characteristic of amniotes. If steroidogenic activity of

extraembryonic membranes is evolutionarily conserved, then the

endocrine role of the amniote placenta is likely to have evolved

initially in an oviparous ancestor.

Figure 3. Progesterone synthesis in the chick CAM. CAM sections
were incubated in culture media for 2, 4, or 8 hours either with (circles)
or without (squares) cholesterol (plus cAMP) as a precursor. Concen-
tration of P4 in the culture media is represented as pg/ml of P4 per g of
CAM tissue (pg/ml/g). Addition of precursor significantly increased the
concentration of P4 in the culture media (F1, 58 = 46.917 p,0.0001) with
a significant interaction between time of incubation and addition of
precursor (F2, 58 = 3.709, p = 0.0305). To determine background and
cross-reactivity of the P4 assay, controls consisting of only cholesterol
and cAMP were incubated for 8 hours with an average P4 concentra-
tion of 0.337 pg/ml/g60.423 SEM (not shown).
doi:10.1371/journal.pone.0005452.g003
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This hypothesis that the extraembryonic membranes of

amniotes are steroidogenic suggests an additional unifying

characteristic of amniotes and has implications for evolutionary

reproductive biology, particularly for the evolution of viviparity. It

is currently estimated that within squamates (lizards and snakes)

viviparity has independently evolved approximately 105 times

[31]. In the transition from oviparity to viviparity in squamates,

the period of time that eggs are retained within the uterus is

increased and the thickness of the eggshell is decreased [32].

Eggshell reduction facilitates maternal-fetal gas exchange, but has

also been proposed to function in the diffusion of chemical signals

from the embryo to the mother in order to prolong gestation [32].

Thus, secretion of steroid hormones by the oviparous CAM could

be important in establishing maternal recognition of pregnancy

during the evolution of viviparity in this group. We suggest that

evolutionary tinkering in the timing and spatial expression of

steroidogenic genes in the CAM could lead to novel endocrine

functions in communication with the maternal uterus; thus,

facilitating the endocrine role of the chorioallantoic placenta.

Materials and Methods

CAM acquisition
Fertilized chicken (Gallus gallus) eggs were obtained from Charles

River Laboratories (North Franklin, CT) and staged according to

Hamburger and Hamilton [33]. CAMs were collected by

removing the eggshell directly over the embryo and excising

CAM away from embryo and yolk sac membrane. CAMs were

washed in 16 phosphate buffered saline (PBS).

RNA Isolation and reverse transcription
Dissected CAM was stored in the RNA preservative, RNAlaterH

solution (Ambion) at 4uC. Total RNA was isolated from CAM

with TRIzolH reagent (Invitrogen Life Technologies), purified with

Figure 4. PR-ab and ERa mRNA expression and PR-ab immunolocalization. (A) RT-qPCR analysis of mRNA coding for PR-ab and ERa on chick
embryonic days 8 (n = 10), 10 (n = 17), 12 (n = 14), 14 (n = 10), 16 (n = 14), and 18 (n = 12). Data are reported as relative mRNA expression and represent
mean normalized mRNA transcript number in copies/mL6SEM. PR-ab (F5, 68 = 15.897, p,0.0001) and ERa (F5, 66 = 14.432, p,0.0001) increased
significantly between embryonic day 8 and day 18. (B, C), PR-ab immunohistochemistry of embryonic day 18 CAM. (B) PR-ab positive section. Nuclear
staining of PR-ab is localized predominately to the chorionic epithelium (c), and epithelial cells of blood vessels (bv). Positive nuclear staining is also
present in allantoic epithelium (a), and mesenchyme (m). (C) Negative control of corresponding CAM section incubated without primary PR-ab
antibody does not show specific nuclear staining. Scale bar represents 10 microns.
doi:10.1371/journal.pone.0005452.g004
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the SV Total RNA Isolation System (Promega), and reverse

transcribed with the iScriptTM cDNA Synthesis Kit (Bio-Rad).

Concentrations and quality of RNA samples were evaluated by

measuring optical density with a NanoDropTM ND-1000 (Thermo

Scientific) and by formaldehyde gel electrophoresis. Total RNA

was treated with ribonuclease-free deoxyribonuclease I (DNase I;

Qiagen) to remove any contamination of genomic DNA. 1 mg of

total RNA was reverse transcribed and complementary DNA

(cDNA) was diluted 10-fold and stored at 220uC until RT-qPCR

analysis.

Real-time quantitative polymerase chain reaction (RT-
qPCR)

RT-qPCR analysis was performed on CAM samples from

embryonic days 8 (n = 10), 10 (n = 17), 12 (n = 14), 14 (n = 10), 16

(n = 14), and 18 (n = 12). cDNA was analyzed in triplicate by RT-

qPCR amplification using an iCycler MyIQ Single Color Real-

Time PCR Detection System (Bio-Rad). Each 15-mL DNA

amplification reaction contained a 10-fold dilution of 106 Gold

Buffer (Applied Biosystems), 3 mM MgCl2, 200 mM dNTPs,

0.04% Tween-20, 0.4% glycerol, 1% DMSO, 500-fold dilution of

SYBR Green (Invitrogen), 0.01 mM Fluorescein Calibration Dye

(Bio-Rad), 0.2 mM of each primer, 0.67 mL of diluted cDNA, and

0.01 U AmpliTag Gold DNA polymerase (Applied Biosystems).

RT-qPCR amplification conditions included an enzyme activation

step of 95uC (10 min) followed by 40 cycles (reference genes) or 50

cycles (target genes) of 95 C (15 sec) and a primer specific

combined annealing/extension temperature (1 min). The speci-

ficity of amplification was confirmed by melt-curve analysis.

Triplicate data for each gene were averaged and amplification

was determined by the absolute quantification method [34]. In

brief, copy numbers were calculated from the cycle threshold

(Ct) value by the linear regression of a standard curve. Standard

curves for each target gene were generated from a plasmid

containing the amplicon of interest. Controls lacking cDNA

template were included on every RT-qPCR plate to determine

the specificity of target cDNA. Additionally, to confirm that

target cDNA was not contaminated by genomic DNA, RT-

qPCR was performed with b-actin and PR-ab primers on the

RNA isolated from every sample. To normalize mRNA

expression levels, RT-qPCR was performed on all samples with

five reference genes: b-actin, GADPH, ribosomal protein L8

(RPL8), RNA polymerase II polypeptide E (POLR2E), and

ribosomal protein S13 (RPS13). The geometric mean was

calculated according to geNORM [35] generating a normaliza-

tion factor (NF) for each sample to correct for potential

differences in RNA quality or quantity. For each target gene,

absolute copy number was divided by the NF. Data are reported

as relative mRNA expression and represent mean normalized

mRNA transcript number in copies/mL6SEM.

Cloning and sequencing of plasmids
RT-qPCR of pooled cDNA was used to generate a PCR

product for each primer set. Amplified PCR products were

separated on a 2% agarose gel and visualized by ethidium bromide

on a Gel Doc EQ with Quantity One 4.6 software (Bio Rad). RT-

qPCR products were purified by WizardH SV Gel and PCR

Clean-Up System (Promega) and purified samples were confirmed

by electrophoresis on a 2% agarose gel. PCR products were cloned

into a pGEMH-T Vector System (Promega). Plasmid DNA was

purified using the WizardH Plus SV Minipreps DNA Purification

System (Promega) and sequenced on an ABI PRISMH 3100

Genetic Analyzer (Applied Biosystems) using a BigDyeH Termi-

nator v3.1 Cycle Sequencing Kits (Applied Biosystems). The

specificity of cloned DNA was confirmed using BLAST against

sequences available in Genbank. Clone DNA concentration was

quantified by NanoDropTM ND-1000, converted to copies/ml,

and serially diluted in a solution containing 50 mM Tris-HCl

(pH 8.3), 75 mM KCl, 3 mM MgCl2, and 5 mg/ml of tRNA.

RT–qPCR primers
All Primers were designed to amplify mRNA-specific fragments

from chicken coding sequences (NCBI) using Primer3 software

[36] and were synthesized by Eurofins MWG Operon. Primer

pairs were combined and diluted to a final concentration of

10 mM. Primer pairs are listed as forward (F), reverse (R), and the

primer specific combined annealing/extension temperature used

in RT-qPCR. RPL8-F 59-CAA CCC CGA AAC AAA GAA AA-

39, R 59-ATA CGA CCT CCA CCA GCA AC-39 (62.4uC); b-

actin-F 59-TGC GTG ACA TCA AGG AGA AG-39, R 59-AGA

GCT AGA GGC AGC TGT GG-39 (60.9uC); POLR2E-F 59-

ATC AAC ATC ACG GAA CAC GA-39, R 59- GCA GCT CCG

TCA CTT CTT CT-39 (60uC); GADPH-F 59-TAT CTT CCA

GGA GCG TGA CC-39,R 59-TCT CCA TGG TGG TGA AGA

CA-39 (60uC); RPS13-F 59- AAA GGC TTG ACT CCC TCA

CA-39, R 59-ATG TTT GCG AAC AGC AAC AG-39 (60uC);

StAR-F 59-GCC AAA GAC CAT CAT CAA CC-39, R 59-GAC

CAA AGC ACT CAA CAG CA-39 (61.6uC); P450scc-F 59-GGT

GTC TAC GAG AGC GTG AA-39, R 59-GTT GCG GTA GTC

ACG GTA TG-39 (64.4uC); P45017a-F 59-GAC ATC TTC CCC

TGG CTA CA-39, R 59-CAC AGT GTC CCC ACA GAA TG-

39 (64.4uC); 3b-HSD-F 59-TCT CCA GGA AGG AGG CTT

TA-39, R 59-GTA GAA CTG CCC CCT GAT GT-39, (62.4uC);

17b-HSD-F 59-GAG AGG GAC CAC GGT GCT GAT-39, R 59-

AGT GGC GAA CAC TTT GAA CC-39 (64.4uC); PR-ab-F 59-

CCC AGT CTC TAA CGC AAA GG-39, R 59-GCT CAA TGC

CTC GTA AAA CA-39 (65uC); ERa-F 59-GAT AAT AGG CGC

CAC AGC AT-39, R 59-TAG TCG TTG CAC ACA GCA CA-39

(62.9uC).

Sexing of embryos
To sex individuals used in RT-qPCR analysis, CAM genomic

DNA was extracted from TRIzolH reagent (Zhu, Shirley, DNA

extraction from TRIZOL organic phase, http://med.stanford.

edu/labs/vanderijn/Protocols.html). DNA concentration was

determined by Nanodrop and diluted to 100 ng/mL. Molecular

sexing was performed as described in [37]. For in vitro tissue

culture, day 18 individuals were sexed by visual inspection of

embryonic gonads.

in vitro explant culture
CAMs from 7 eggs were collected on embryonic day 18. CAMs

were cut into 12 sections of approximately 0.1 g wet weight

(mean = 0.104 g60.0009 SEM) allowing for duplicate sections to

undergo identical treatment regimes. CAM sections were

incubated at 37uC on an orbital shaker in L-15 culture media

(Invitrogen) either with or without cholesterol and cAMP as

precursor. Precursor solutions and concentrations are based on

King et al. 2004 [38]. For cholesterol, 22(R)-Hydroxycholesterol

(Sigma) was dissolved in 95% ethanol (Fisher) to a final

concentration of 10 mg/ml and combined with 1 mM Dibutyryl

cAMP (Sigma). After 2, 4, or 8 hours of incubation, concentration

of progesterone in the culture media was quantified by solid phase

radioimmunoassay [39]. To determine background and cross-

reactivity of the P4 assay, controls consisting of only cholesterol

and cAMP were incubated for 8 hours with an average P4

concentration of 0.337 pg/ml/g60.423 SEM.

Extraembryonic Membranes

PLoS ONE | www.plosone.org 6 May 2009 | Volume 4 | Issue 5 | e5452



Immunohistochemistry and microscopy
Dissected CAM was fixed in 4% paraformaldehyde at 4uC

overnight. Tissues were washed 36 in 16PBS and stored in 75%

ethanol at 4uC. CAMs were dehydrated, paraffin embedded, and

sectioned at 8 microns. Tissue sections were deparaffinized in

citrosolv and rehydrated through graded concentrations of ethanol

to 0.1 M Tris buffered saline (TBS, pH 7.6). Immunohistochem-

istry was performed using the VectastainH Universal Quick Kit,

R.T.U. (Vector Laboratories) with the following modifications: for

antigen retrieval, slides were autoclaved for 30 min in 10 mM

sodium citrate buffer (pH 6.0). Sections were treated with 3%

hydrogen peroxide for 20 min, blocked in normal horse serum

(NHS) for 1 h, and treated with the Avidin Biotin blocking kit

(Vector Laboratories). Between all incubation steps, slides were

washed in TBS (5 min), 0.1 M TBS containing 0.2% Tween 20

(5 min), and again in TBS (5 min). CAM sections from day 16

(n = 5) and day 18 (n = 5) were incubated with a 1:50 dilution of

mouse monoclonal anti- progesterone receptor antibody (Ab-8),

Thermo Scientific. PR Ab-8 recognizes both PR isoforms in

chicken oviduct [26] and ovary [40]. Sections were treated with 3,

39-diaminobenzidine for 5 min (Vector Laboratories) and washed

in running tap water for 5 min. A control section receiving normal

horse serum in place of primary antibody was included on every

slide. Slides were dehydrated, cleared and mounted with

PermountTM mounting media (Fisher Scientific). Sections were

imaged using a Leica DMRE microscope under DIC and Leica

DFC 300 FX camera with Leica Firecam software.

Statistical analysis
All statistical analyses were performed in the R statistical

programming environment version 2.8.0 [41]. For gene expression

analyses, the total numbers of mRNA transcripts for 5 control and

5 target genes from the CAM were determined by RT-qPCR. To

quantify relative expression of target genes, we divided each

sample by a normalization factor to yield normalized quantities

(copies/mL). Normalization factors were estimated as the geomet-

ric mean expression of 5 control genes using geNORM [35].

Samples displaying a non-specific melt curve were excluded from

the analysis and account for differences in number of samples

between genes. To analyze each target gene, we used linear mixed

effects models (LMMs) to estimate the parameters for relative

mRNA expression over the 6 day experiment. For each analysis,

embryonic day was treated as a fixed effect, and embryonic day,

RT-qPCR plate, and sex of individuals were treated as random

effects. Model assumptions were evaluated visually via examina-

tion of residuals and QQ plots and square-root transformations

were performed when necessary to normalize errors (all genes

were square root transformed except P45017a which did not

require transformation). Outliers were identified from residuals

and QQ plots and removed from the study (note that inclusion of

outliers did not change patterns of significance, but were excluded

from the final analysis because they have a disproportionate

influence on mean estimates and caused violations of normality).

The assumption of homogeneity of variances was met for all genes

except 3b-HSD, which is likely due to the substantial changes in

mean expression of 3b-HSD as the embryo developed. Thus for

3b-HSD variance was assumed to be a power of the estimated

mean for each day and the exponent was estimated from the data

as part of the estimation procedure [42]

For in vitro tissue culture, we used the same analytical approach

described above using a LMM to estimate P4 concentration in

culture media. In this analysis treatment (precursor versus control)

and time (hour) are fixed effects on P4 concentrations (pg/ml/g of

CAM tissue) and day of dissection, egg, replicate and sex of

individual were treated as random effects. P4 concentration was

square root transformed and two outliers, the largest value for

control at 4 hours (206) and the largest value for precursor at

8 hours (213) were excluded from the analysis as outliers.
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