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ABSTRACT: CaPd2P2 is a recently reported superconducting material belonging to the
well-known ThCr2Si2-type family. First-principles density functional theory calculations
have been carried out to investigate the structural, mechanical, thermophysical, optical,
electronic, and superconducting properties of the CaPd2P2 compound under pressure.
To the best of our knowledge, this is the first theoretical approach to studying the
pressure effect on the fundamental physical and superconducting properties of CaPd2P2.
It is mechanically stable under the studied pressures. The applied hydrostatic pressure
reveals a noticeable impact on elastic moduli of CaPd2P2. It exhibits ductile nature under
the studied pressure. Significant anisotropic behavior of the compound is revealed with/
without pressure. The study of melting temperature shows that the compound has a
higher melting temperature, which increases with the increasing applied pressure. The
investigation of the electronic properties strongly supports the optical function analysis.
The reflectivity as well as the absorption spectra shifts to higher energy with the
increasing applied pressure. The pressure-dependent behavior of the superconducting transition temperature, Tc, is revealed with a
pressure-induced increasing trend in Debye temperature.

1. INTRODUCTION

The world technology is being developed every day through
advanced levels of research activities to make human life easier.
Superconductivity is one of the most fascinating discoveries to
make the real world faster, but it is still puzzling for the research
community even more than 100 years after its invention.1 Most
of the superconductors exhibit low-temperature superconduc-
tivity. Therefore, the practical application of superconducting
materials is difficult. Considering this, researchers in the field of
superconductivity have been developing materials with room-
temperature superconductivity. In recent years, several research
works have been performed to achieve room-temperature
superconductivity.2−18Most of these researches were performed
under high pressure.2−12 In 2020, Snider et al.5 claimed to have
achieved room-temperature superconductivity in a carbona-
ceous sulfur hydride under high pressure (267 ± 10 GPa),
providing a ray of hope. Although their research raises several
questions,19−23 it has provided a new thrust to the researchers in
this field to search for new materials with high-temperature
superconductivity. In 2020, Blawat et al. observed super-
conductivity at the transition temperatures, Tc, of nearly 1.0
and∼0.7 K in CaPd2P2 and SrPd2P2 compounds, respectively.24

In 2021, Islam and Hossain theoretically proved low-temper-
ature superconductivity in CaPd2P2 and SrPd2P2.

25 Both of
these are one of the 700members of the ThCr2Si2-type materials
(also called the 122 family) and exhibit fascinating chemical and
physical properties.26 The ThCr2Si2-structure was introduced in
1965 by Ban and Sikirica.27 The APd2P2 class was first reported

in 1983.28 The ThCr2Si2-type AT2X2 (where A = lanthanide or
alkaline earth elements; T = transition metals; X = P, Se, Si, Ge,
or As) crystals have gained massive attention of the research
community due to their diverse properties such as super-
conductivity at low Tc

29,30 and high Tc,
31,32 pressure-induced

superconductivity,33−36 superconductivity generated by dop-
ing,37−39 and magnetic and anti-ferromagnetic character-
istics.40,41 In 2021, Parvin and Naqib exhibited the pressure
effect on low-temperature pnictide superconductor NaSn2P2.

42

They predicted the pressure-dependent characteristics of Tc

with a pressure-induced variation in the Debye temperature.
The knowledge of mechanical properties is required to know

the suitability of a compound for application in a particular
device. The study of the thermophysical properties, which
reveals the behavior of a compound at different temperatures
and pressures, is also very important. In addition, an
investigation of the optical properties provides valuable
information that can support to design of optoelectronic
devices. The study of the electronic band structure and the
density of states at the Fermi level is particularly important for
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gaining useful information about the parameters responsible for
making a material a superconductor. The application of
hydrostatic pressure is an efficient and environmental-friendly
thermodynamic approach for altering the physical properties of
materials. The elastic constant provides valuable information
about mechanical stability, bonding strength, and stiffness of
solid materials. Therefore, the pressure-dependent behavior of
elastic constants is quite important to investigate. The pressure-
induced variation in the elastic anisotropy of a crystal is required
to gather information about any possible microcracks/defects
that develop in a crystal with applied pressure.
To the best of our knowledge, none of the fundamental

physical properties mentioned in the above section has been
studied yet in detail for the recently reported ThCr2Si2-type
CaPd2P2 compound. Therefore, the present approach deals with
a detailed theoretical investigation of the structural, mechanical,
electronic, optical, thermophysical, and superconducting
properties of CaPd2P2 under pressure using density functional
theory (DFT)-based Cambridge serial total energy package
(CASTEP) code. The comprehensive calculations and new
findings displayed in this research provide valuable insight into
the probable applications of CaPd2P2 in the future. The authors
believe that this study would be useful enough for designing as
well as carrying out research on superconducting materials
under pressure.

2. COMPUTATIONAL METHODS

In this investigation, CASTEP computer code43 based on
DFT44,45 was used for the geometry optimization and
investigation of properties. A generalized gradient approxima-
tion (GGA) along with the Perdew−Burke−Ernzerhof (PBE)
method46 was employed for this study. Vanderbilt47 ultrasoft
pseudopotential was used for the description of the electron−
ion interaction. The pseudo-atomic calculations were performed
by taking only valance electrons. The k-points 16 × 16 × 7 along
with the cutoff energy 700 eV were chosen for this DFT
investigation. The Monkhorst−Pack schemes48 were used for
the Brillouin zone sampling of k-points. The Broyden−
Fletcher−Goldfarb−Shanno (BFGS) technique49 was inserted
to ensure the optimized structure of the CaPd2P2 compound.
The elastic constants of CaPd2P2 were computed using the
“stress−strain” theory.50 The strain amplitude was fixed to
0.003. The convergence criteria were settled as follows: energy,
maximum displacement, maximum stress, and maximum force;
and 10−5 eV/atom, 0.001 Å, 0.05 GPa, and 0.03 eV/Å.

3. RESULTS AND DISCUSSION

3.1. Structural Properties. The CaPd2P2 compound
possesses a tetragonal structure along with the space group
I4/mmm (no.139) of the renowned ThCr2Si2-type family. The
Ca, Pd, and P atoms occupy 2a (0, 0, 0), 4d (0, 0.5, 0.25), and 4e
(0, 0, 0.3882) Wyckoff sites, respectively.24 Figure 1 depicts the
primitive cell and conventional unit cell of CaPd2P2.
The optimized lattice parameters are listed in Table 1 along

with available experimental and theoretical values.24,25 At 0 GPa,
the DFT-optimized lattice parameters are well in accordance
with the experimental results.24

The decreasing trend in lattice parameters is observed with
the increase in pressure, which infers that the space among the
atoms is reduced. As a consequence, the repulsive effect between
the atoms increases, which benefits the stiffness of crystal
compression under pressure. To the best of our knowledge, this
is the first theoretical approach to investigate the pressure effect
on CaPd2P2; as a result, it was not possible to make a
comparative analysis of this study with other investigations.

3.2. Mechanical Properties. To obtain information on the
mechanical stability, bonding nature, and stiffness of solid
materials, elastic constants are a key criterion. Tetragonal
structures like that of CaPd2P2 consist of six different elastic
constants, C11, C12, C13, C33, C44, and C66, which are tabulated in
Table 2. The elastic constants C11 and C33 are related to the
uniaxial stress (resistance to linear compression) and the other
four reflect the shear-dominated responses (connected with the
elasticity in shape). From Table 2, it can be noticed that the
values of C11 and C33 are noticeably higher than those of other
elastic constants under the studied pressures, which indicates
that the CaPd2P2 compound cannot be compressed easily under

Figure 1. Constructed crystal of the CaPd2P2 compound: (a) primitive cell and (b) conventional unit cell.

Table 1. Calculated Lattice Parameters a and c and the Unit
Cell Volume, V, of CaPd2P2 under Different Applied
Pressures

P (GPa) a (Å) c (Å) V (Å3) ref

0 (exp.) 4.137 9.649 165.13 24
0 (GGA) 4.036 10.203 166.20 25

0 4.037 10.201 166.25 this
4 3.986 10.119 160.77 this
8 3.944 10.049 156.31 this
12 3.906 9.991 152.43 this
16 3.874 9.931 149.04 this
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uniaxial stress. The mechanical stability criteria51 comprising
these constants without pressure conditions are as follows.
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CaPd2P2 satisfies the above stability conditions, which was also
observed in an earlier study at 0 GPa.25 Moreover, CaPd2P2 is
also dynamically stable, as observed in a previous study.24 As this
is the first theoretical approach to study the mechanical
properties under pressure, mechanical stability is required to
be observed under pressure. The mechanical stability of the
tetragonal crystal under pressure can be observed from the
following conditions52−54
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From Table 2, it can be observed that CaPd2P2 satisfies the
above stability conditions under the studied pressure. The values
in Table 3 are found using the formulae from the Voigt−Reuss−
Hill (VRH) averaging schemes.55−57 The tabulated data
includes bulk modulus (B), shear modulus (G), Young’s
modulus (E), Pugh’s ratio (B/G), and Poisson’s ratio (v), and
universal anisotropy indicesAU. In Table 3,BV andBR denote the
Voigt and Reuss approximated bulk moduli, respectively. The
shear moduli approximated by Voigt and Reuss are denoted as
GV and GR, respectively.
It is known that a lower (higher) value of the bulk modulus

and other elastic moduli is indicative of the soft (hard) nature of
the crystal.58−60 FromTable 3, we can conclude that the softness
of CaPd2P2 decreases with the increase in pressure, which is
revealed by the gradual increase in B values. Therefore, it is more
difficult to change the volume of the compound under higher
pressures.
Pugh’s ratio and Poisson’s ratio are useful indicators of the

ductility/brittleness of a solid. The B/G value lower than 1.75 is
indicative of a brittle behavior, while the value higher than 1.75
indicates a ductile nature.25,61 Similarly, the critical value of v is
0.26, higher than the critical value indicating ductility and those

lower than the critical value indicating brittleness.25,62 Since
ductile materials are convenient for fabricating devices, it is
important to understand their ductility/brittleness. According to
the values tabulated in Table 3, the B/G and v values are all
above 1.75 and 0.26, respectively, thus indicating the ductile
behavior of CaPd2P2 under the studied pressure. The value of v
can also be an indicator of the nature of interatomic forces
present in bonding within solids.63 Materials with atomic
bonding dominated by the central force interaction have v
within the range of 0.25−0.50. In this study, the v is within the
domain of 0.25−0.50, indicating the dominance of a central
force interaction in the atomic bonding of the crystal structure.
The shear modulus (G) is an indicator of shear resistance. At

all pressures, G is less than B, which implies that shape-
deforming stress should be used to control the mechanical
failure mode of CaPd2P2 instead of the volume-changing stress.
Young’s modulus (E) is defined as the resistance of a solid to
compressive or tensile stress. The increasing values of E with the
increasing pressure indicate that the ability to withstand tensile
stress is increased with the increase in applied pressure.
Elastic anisotropy is a highly significant parameter of the

crystalline solids. The study of anisotropy is necessarily
important due to the different bonding natures along different
crystallographic directions. This provides information about the
possibility to generate microfractures in solid. The universal
anisotropic characteristic, AU, is theoretically determined by an
equation given elsewhere.25,64 If the AU value is equal to zero,
then the crystal is isotropic; any deviation signifies anisotropic
nature. CaPd2P2 exhibits significant anisotropic nature under the
studied pressure, which suggests that the mechanical properties
of the compound depend on the direction.

3.3. Debye Temperature and Melting Temperature.
The Debye temperature, θD, is a very significant thermophysical
criterion of solid that indicates the highest frequency mode of
vibration. It is a boundary between the low- and high-
temperature regions of solid. When the temperature of the
solid is higher than θD (i.e., T > θD), the vibration mode is
considered to have kBT energy and in the case of T < θD, the
vibration mode is expected to be at rest.65 The low-temperature
vibration is a result of acoustic vibration. The θD is related to
different thermodynamic parameters such as the thermal
expansion of solids, phonons, thermal conductivity, specific

Table 2. Calculated Elastic Constants Cij (in GPa) of the CaPd2P2 Compound

P (GPa) C11 C12 C13 C33 C44 C66 ref

0 (GGA) 161.61 84.66 80.55 218.66 57.15 39.11 25
0 161.65 87.72 80.52 219.99 57.10 39.67 this
4 186.70 103.50 89.40 232.59 64.56 46.45 this
8 206.49 117.20 113.77 265.85 71.06 61.03 this
12 229.61 135.45 128.15 312.48 74.80 75.91 this
16 254.16 152.82 140.53 331.30 84.03 86.47 this

Table 3. Calculated Values of Bulk Modulus, B (GPa), Shear Modulus, G (GPa), Young’s Modulus, E (GPa), Pugh’s Ratio, B/G,
Poisson’s Ratio, v, and Universal Anisotropy, AU, of CaPd2P2

P (GPa) BV BR B GV GR G E B/G v AU ref

0 114.82 113.10 113.96 50.42 48.36 49.39 129.47 2.31 0.31 0.23 25
0 115.65 114.06 114.85 50.41 48.15 49.28 129.34 2.33 0.31 0.25 this
4 130.06 129.50 129.78 56.69 54.53 55.61 145.98 2.33 0.31 0.20 this
8 152.04 150.30 151.17 62.90 60.91 61.90 163.40 2.44 0.32 0.18 this
12 172.80 170.14 171.47 70.43 67.65 69.04 182.61 2.48 0.32 0.22 this
16 189.71 187.87 188.79 77.95 74.58 76.26 201.64 2.48 0.32 0.24 this
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heat, and melting point. The superconducting transition
temperature, Tc, is also largely associated with θD. As a result,
the variation in the θD value with the applied pressure is highly
significant forTc. There are several approaches for evaluating θD.
In the present research, θD is estimated using elastic moduli,
which is considered one of the standard ways.66 The average
sound velocity (vm), transverse sound velocity (vt), and
longitudinal sound velocity (vl) are related to the estimation
of θD via the following equations67−70
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where kB, h,NA,M, ρ, and n indicate the Boltzmann constant, the
Planck constant, Avogadro’s number, the molecular mass, the

Table 4. Calculated Values of Density, ρ, Transverse Sound Velocity, vt, Longitudinal Sound Velocity, vl, Mean Sound Velocity,
vm, Debye Temperature, θD, and Melting Temperature, Tm, of the CaPd2P2 Compound

pressure (GPa) ρ (g/cc) vl (m/s) vt (m/s) vm (m/s) θD (K) Tm ref

0 6.29 5346.70 2802.17 3134.22 365 1166 25
0 6.29 5357.73 2779.05 3110.49 363 1165 this
4 6.50 5601.19 2924.95 3272.34 386 1260 this
8 6.69 5910.43 3041.81 3406.31 406 1369 this
12 6.86 6197.94 3172.40 3553.77 427 1511 this
16 7.02 6432.53 3295.94 3691.92 447 1613 this

Figure 2.Optical functions of (a) reflectivity, (b) optical absorption, (c) optical conductivity, (d) real part of dielectric function, (e) imaginary part of
dielectric function, and (f) loss function of CaPd2P2 under different pressures.
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density, and the number of atoms in the unit cell, respectively. θD
of CaPd2P2 is calculated up to 16 GPa, with a step of 4 GPa. The
computed values of ρ, vt, vl, vm, and θD are tabulated in Table 4.
At 0 GPa, the theoretically estimated value of θD is higher in
comparison with the experimental result.24 Precise measure-
ment of θD is difficult; in a number of cases, experimental and
theoretical values of θD show a larger variation.71,72 The effect of
pressure on θD is clearly observed in Table 4. It is exhibited that
θD increases with the increasing applied pressure. This is the
expected behavior of solid because the crystal becomes stiffer
under pressure. Consequently, θD shows increasing affinity with
the increasing applied pressure.
The transformation of the solid phase into the liquid phase at

a certain temperature is indicated as the melting temperature,
Tm. This is another crucial thermophysical criterion of the
application of a material at a particular temperature and also
reflects the strength of the bond in solids. Tm is evaluated using
elastic constants via the following equation73

T
C C

354 4.5
2

3m
11 33= +

+
(7)

Tm of CaPd2P2 increases with the increase in applied pressure as
displayed in Table 4, which is the result of the increasing trend in
C11 and C33 (these two elastic constants are related to uniaxial
stress) with the increase in applied pressure (Table 2). The
increasing affinity of Tm benefits the bond strength with the
increase in applied pressure.
3.4. Optical Properties. The optical properties of material

provide significant information, particularly for the application
of optoelectronic devices. It is essential to study the material
response to the incident electromagnetic radiation. Therefore,
the fundamental optical properties such as reflectivity (R),
optical absorption (α), optical conductivity (σ), real (ε1), and
imaginary (ε2) parts of dielectric functions as a function of
photon energy are calculated in this study. For metallic
compounds, plasma energy (between 2 and 10 eV) is required
for analyzing the optical functions.25 In this study, 6 eV of
plasma energy was used to study the optical functions of the
CaPd2P2 compound. The optical functions are analyzed along
the [100] polarization direction.
The reflectivity profile offers a crucial idea about the

appropriateness of a material as a reflector. Figure 2a represents
the pressure-induced reflectivity spectra of CaPd2P2 up to 20 eV
of photon energy. Maximum reflectivity is observed at zero
photon energy, which reduces sharply with the increasing
photon energy, reaches a minimum near 6.5 eV. The reflectivity

further increases above 6.5 eV and becomes flat over a wide
range in the ultraviolet (UV) region of 9−18 eV. This result
suggests that CaPd2P2 can be used as a prominent reflector in a
wide range of UV radiation. It is also noticed from the analysis
that the reflectivity does not change to a greater extent with the
applied pressure. However, the reflectivity spectra shift to the
higher energy above 18 eV with the increasing applied pressure.
The absorption coefficient measures the attenuation of light

intensity while passing through a material. A lower absorption
coefficient means more radiation can pass through the material
and vice versa. The absorption profile of CaPd2P2 is depicted in
Figure 2b. The optical absorption starts to increase with the
increasing photon energy and reaches a maximum at ∼9.0 to 10
eV (upper limit of plasma energy) and then falls gradually. It is
interesting to notice that up to 10 eV of photon energy, there is
no significant effect of external pressure on absorption, while at
photon energy >10 eV, the absorption spectra shift to the higher
energy with the increasing external pressure.
The real part of the optical conductivity of the CaPd2P2

compound under high hydrostatic pressure is illustrated in
Figure 2c for up to 20 eV of photon energy. It is noticed that the
optical conductivity is maximum at the zero photon energy and
then decreases sharply with the start of absorption of photons of
low energies, and then further increases and reaches a peak
position at ∼8 eV and then again decreases gradually with the
increase in incident energy. These behaviors strongly support
the metallic entity of CaPd2P2, which justifies the analysis of
electronic properties and absorption profile. It is noticed that the
conductivity spectra shift to the higher energy with the
increasing applied pressures, which is also observed in the
optical absorption profile.
Figure 2d,e displays the real and imaginary parts of the

dielectric functions, respectively, at different external pressures
of up to 20 eV of photon energy. Figure 2d displays that the real
part of the dielectric function displays ε1 < 0 at zero photon
energy as well as low photon energies, indicating the metallic
nature of CaPd2P2. Previous studies by Islam25 and Hossain
showed that the ε1 value reaches unity and the ε2 value reaches
approximately zero under higher photon energy, suggesting that
CaPd2P2 is expected to appear as a transparent material in the
high energy region. The applied hydrostatic pressure on
CaPd2P2 does not influence its dielectric functions significantly.
The imaginary part of the dielectric function is largely associated
with the optical absorption profile.25 As the optical absorption
profile does not change significantly with the applied pressure,
dielectric functions remain almost invariant with pressure.

Figure 3. Calculated electronic band structure of CaPd2P2 at 0 and 8 GPa pressure.
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The loss function measures the loss of energy of an electron
traversing through a material. At 0 GPa, the loss function
exhibits a sharp peak near about 18 eV of photon energy. The
optical behavior of a metallic system changes to a dielectric-like
response above the plasma energy.42 The peak of loss function
shifts to the higher energy with the increasing applied pressure,
which also supports the analysis of optical absorption and
reflectivity spectra. After certain photon energy (∼18 eV for the
CaPd2P2 compound), the peak shifts in the direction of higher
energies with the increase in applied pressure such that the
number of effective electrons participating in the intraband as
well as the interband transitions are reduced.74

3.5. Electronic Properties. The electronic band structures
of solids provide significant information about their physical
properties, which can be determined by the conduction and
valance band electrons. The behavior of these electrons mostly
depends on the characteristics of their energy dispersion along
the k-spaces directions such as Z-G-X-P-N-G within the
Brillouin zone. In this study, the electronic energy dispersion
graph at 0 and 8 GPa pressures along the highly symmetric
directions of the Brillouin zone of CaPd2P2 are analyzed and
depicted in Figure 3. The Fermi level (EF) is displayed by the
broken red line at zero of the photon energy scale. The overlap of
the valance and conduction bands is observed at EF for both 0
and 8 GPa, indicating the metallic behavior of CaPd2P2.
To get a clear insight into the electronic properties of

CaPd2P2, the total density of states (TDOS) and the partial
density states (PDOS) are calculated. As shown in Figure 4a, the
calculated TDOS at the 0 GPa pressure at EF is∼1.93 states/eV/
f.u., which does not change significantly with the applied
pressure. At 0 GPa, the calculated TDOS value at EF was
observed to be ∼1.94 states/eV/f.u. in the earlier study, which
supports the present investigation.25 As the band structure and
the TDOS do not change significantly with the applied pressure,
DOS is analyzed further at 0 and 8 GPa only.
For more theoretical insight, the DOS of individual atoms Ca,

Pd, and P in the CaPd2P2 structure are observed, and depicted in
Figure 4b. The Pd and P states are largely responsible for the
emergence of DOS in the valance band near EF. At 0 GPa, the
DOS of Ca, Pd, and P at EF is ∼0.41, ∼0.75, and ∼0.77 states/
eV/f.u., respectively, which do not change significantly with the
applied pressure. From this above observation, it is obvious that
Pd and P atoms contribute most to the emergence of DOS at EF.
The valance band energy between −7.5 and −2.0 eV is

significantly contributed by the Pd-4d states along with a
significant contribution from the P-3p states.
The valance band near EF (−2.0 to 0 eV) is highly dominated

by the hybridization between the Pd-4d and P-3p states. This
analysis reveals that these electrons are largely responsible for
the emergence of superconductivity in CaPd2P2, which is also
observed in previous investigations.24,25 It is generally known
that the copper pairs are formed by electrons with energies near
the EF, in accordance with the Bardeen−Cooper−Schrieffer
(BCS) theory.75 Figure 3 reveals that the contributions of Pd-4d
and P-3p states in the valence band and Pd-4p and P-3p states at
the conduction band are dominant, which also supports the
previous investigation.24,25

3.6. Superconducting Properties. CaPd2P2 possesses
low-temperature superconductivity with experimental Tc ∼1.0
K24 and theoreticalTc of 0.33 K.

25 TheTc can be estimated using
the following McMillan equation76

T
1.45

exp
1.04 (1 )

(1 0.62 )c
Dθ λ

λ μ λ
= [− +

− * +
]

(8)

where μ* and λ are the Coulomb pseudopotential and electron−
phonon coupling constant, respectively. The Coulomb
pseudopotential can be calculated using the TDOS values at
the Fermi level, N(EF), by the following equation

77−79

N E
N E

0.26
( )

1 ( )
F

F
μ* =

+ (9)

The values of μ* in the range from 0.1 to 0.15 are considered
physically reasonable.24,80 From the above equation, it can be
concluded that the value of μ* does not change significantly with
the applied pressure as the DOS at the Fermi level, N(EF), of
CaPd2P2 remains almost invariant with the increasing pressure.
The λ can be defined as, λ = N(EF) Ve‑ph, where Ve‑ph is the
electron−phonon interaction energy. As the N(EF) exhibits
slight variation (Figure 5) with the increasing applied pressure.
Therefore, in the present study, the variation in λ depends on the
possible effect on Ve‑ph with the applied pressure. From the
McMillan equation, it is expected that for a fixed value of λ of the
CaPd2P2 compound, Tc may increase with the applied pressure
due to the increasing trend of θD with pressure. This is because
θD is linearly associated with Tc.

Figure 4. Calculated (a) TDOS of the CaPd2P2 compound at 0, 4, 8, 12, and 16 GPa pressure and (b) DOS of Ca, Pd, and P atoms in the CaPd2P2
compound at 0 and 8 GPa pressure.
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4. CONCLUSIONS
First-principles DFT-based investigations have been carried out
to study the structural, mechanical, thermophysical, optical,
electronic, and superconducting properties of the ThCr2Si2-type
tetragonal compound CaPd2P2 under pressure. The lattice
parameters as well as the unit cell volume decrease with the
applied pressure, which is the result of reducing space among the
atoms with the increasing pressure. The elastic moduli show an
increasing trend with the increasing pressure, which indicates
that CaPd2P2 becomes increasingly stiff with the applied
pressure. The study of Pugh’s ratio and Poisson’s ratio exhibits
that CaPd2P2 has a ductile nature under the studied pressures.
The study of universal anisotropy indices shows the significant
anisotropic nature of CaPd2P2. The melting temperature
increases with the applied pressure, which benefits the suitability
of the higher-temperature applications of CaPd2P2. The
CaPd2P2 compound reveals prominent optical absorption of
UV radiation and becomes maximum near about 10 eV of
photon energy. Almost a flat and significant amount of
reflectivity is noticed between 9 and 18 eV of photon energy,
and then the reflectivity spectra shift to the higher energy with
the increasing applied pressure. The DOS analysis reveals that
the Pd−P antibonding is largely responsible for the emergence
of superconductivity in CaPd2P2, which justifies the previous
reports. The value of DOS does not change significantly with the

applied pressure. The increasing trend of the Debye temperature
with pressure predicts that the superconducting transition
temperature of the low-temperature superconductor CaPd2P2
might be increased with the applied pressure for a particular
value of the electron−phonon coupling constant. This study
concludes that applied pressure can be an efficient and clean
thermodynamic approach to obtaining interesting physical
properties of materials. The authors of this research work
strongly believe that these interesting features of CaPd2P2 under
pressure will attract enormous attention of the researchers to
study the effects of pressure on superconducting materials both
theoretically and experimentally.
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