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Abstract
An instance of host range evolution relevant to plant virus disease control is resist-
ance breaking. Resistance breaking can be hindered by across-host fitness trade-offs 
generated by negative effects of resistance-breaking mutations on the virus fitness 
in susceptible hosts. Different mutations in pepper mild mottle virus (PMMoV) coat 
protein result in the breaking in pepper plants of the resistance determined by the L3 
resistance allele. Of these, mutation M138N is widespread in PMMoV populations, 
despite associated fitness penalties in within-host multiplication and survival. The 
stability of mutation M138N was analysed by serial passaging in L3 resistant plants. 
Appearance on passaging of necrotic local lesions (NLL), indicating an effective L3 
resistance, showed reversion to nonresistance-breaking phenotypes was common. 
Most revertant genotypes had the mutation N138K, which affects the properties of 
the virus particle, introducing a penalty of reversion. Hence, the costs of reversion 
may determine the evolution of resistance-breaking in addition to resistance-breaking 
costs. The genetic diversity of the virus population in NLL was much higher than in 
systemically infected tissues, and included mutations reported to break L3 resistance 
other than M138N. Infectivity assays on pepper genotypes with different L alleles 
showed high phenotypic diversity in respect to L alleles in NLL, including phenotypes 
not reported in nature. Thus, high diversity at NLL may potentiate the appearance of 
genotypes that enable the colonization of new host genotypes or species. Collectively, 
the results of this study contribute to better understanding the evolutionary dynam-
ics of resistance breaking and host-range expansions.
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across-host trade-offs, costs of virulence, necrotic local lesions, pepper, tobamovirus, virus 
diversity

1  |  INTRODUC TION

Breeding resistance into crop cultivars is a highly effective, target-
specific, and environmentally friendly strategy for the control of 

viral diseases. However, deploying genetic resistance is not a sus-
tainable strategy: most often, the protection conferred by resistance 
is not durable, as the appearance and increase in frequency in virus 
populations of resistance-breaking genotypes eventually renders 
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resistance inefficient (Brown,  2015; Fraile & García-Arenal,  2010; 
García-Arenal & McDonald, 2003). Efforts to manage resistance du-
rability include understanding the evolution of resistance breaking, 
which is a major goal of plant pathology.

The evolution of plant–virus interactions can often be explained 
by the gene-for-gene (GFG) model, in which host proteins encoded 
in resistance genes (R) recognize viral proteins, which triggers a de-
fence reaction that limits virus multiplication at the infection site 
(Moffett,  2016; Palukaitis & Yoon,  2020; de Ronde et al., 2014). 
The cessation of virus multiplication is shown by the development 
of necrotic local lesions (NLL) at infection sites. If mutations occur 
in the viral protein that impair its recognition by R proteins, resis-
tance is not triggered and infection occurs, called resistance break-
ing. Resistance breaking confers on the virus the capacity to infect 
a larger set of host genotypes (Agrawal & Lively,  2002), thus the 
capacity for host-range expansion. If resistance-breaking mutations 
have negative pleiotropic effects on the virus protein function(s), 
known as resistance-breaking costs, across-host fitness trade-offs 
may be generated, and the resistance-breaking genotypes will be 
less fit than the nonresistance-breaking ones in susceptible hosts. 
Because resistance-breaking costs may determine virus evolution 
and resistance durability, much effort has been invested in their 
detection and in understanding the underlying mechanisms (García-
Arenal & Fraile,  2013). There is abundant evidence of resistance-
breaking costs in plant viruses, mostly showing a negative effect on 
within-host multiplication (e.g., Ayme et al., 2006; Fraile et al., 2011; 
Ishibashi et al.,  2012; Janzac et al.,  2010; Khatabi et al.,  2013; 
Montarry et al., 2012; Poulicard et al., 2010, 2012), but also on other 
traits of the virus life history such as virulence, transmission, compe-
tition in coinfection, or survival in the environment (Bera et al., 2017; 
Moreno-Pérez et al., 2016).

Our group has contributed to understanding the role of 
resistance-breaking costs in virus evolution, and the mecha-
nisms that generate them, by studying the interaction between 
virus species and genotypes in the genus Tobamovirus and pep-
per (Capsicum annuum) (Bera et al., 2017; Fraile et al., 2011, 2014; 
Moreno-Pérez et al.,  2016). The interactions of tobamoviruses 
with pepper are according to the GFG model, being determined by 
the interaction between proteins encoded by alleles at the pep-
per resistance locus L (Boukema, 1980, 1984) and the virus coat 
protein (CP) (Berzal-Herranz et al., 1995; de la Cruz et al., 1997; 
Gilardi et al., 2004; Matsumoto et al., 2008). Recognition of the 
CP by L alleles elicits a hypersensitive resistance response, ex-
pressed by the development of NLL. According to the capacity 
to elicit resistance, or to infect pepper genotypes carrying the 
different resistance L alleles, tobamovirus species and genotypes 
are classified into pathotypes. Plants homozygous for allele L+ 
are susceptible to all described pathotypes (P0, P1, P1,2, P1,2,3, and 
P1,2,3,4), L1/− plants are resistant only to pathotype P0, L2/− plants 
are resistant to pathotypes P0 and P1, L3/− plants are resistant to 
pathotypes P0, P1, and P1,2, and so on. Pathotype P1,2,3,4 infects all 
known L-gene host genotypes. Isolates with P1,2, P1,2,3, and P1,2,3,4 
pathotypes are all genotypes of pepper mild mottle virus (PMMoV) 

(Antignus et al., 2008; Rast, 1988) (Table S1). Resistance-breaking 
mutations have appeared after deploying different L resistance 
alleles in pepper cultivars. The evolutionary dynamics of resis-
tance breaking in tobamoviruses as a response to resistance de-
ployment in pepper has been studied in detail in south-east Spain 
(Fraile et al., 2011). Different single and double mutations in the 
PMMoV CP have been reported as determinants of the conver-
sion of pathotype P1,2 to pathotypes P1,2,3 and P1,2,3,4 (Antignus 
et al.,  2008; Berzal-Herranz et al.,  1995; Genda et al.,  2007; 
Hamada et al.,  2007, 2008; Tsuda et al.,  1998) (Table  S1). It has 
been shown that these resistance-breaking mutations may have 
pleiotropic effects on different virus traits, including infectivity, 
within-host multiplication, virulence, competitive capacity, and 
survival in the environment (Bera et al.,  2017; Moreno-Pérez 
et al., 2016). The sense and magnitude of pleiotropy, however, de-
pends on the specific mutation, the genotype of the susceptible 
host, and on environmental conditions such as coinfection versus 
single infections (Bera et al.,  2017; Moreno-Pérez et al.,  2016). 
Most PMMoV isolates from pepper in the field are of a P1,2 patho-
type (Fraile et al.,  2011; Moury & Verdin,  2012), in agreement 
with the lower within-host multiplication and survival of P1,2,3 
isolates (Fraile et al., 2011, 2014). CP mutants that break L3 or L4 
resistance have always appeared in pepper cultivars heterozygous 
at the L locus, have been isolated only a few times, and have re-
stricted geographical ranges, except mutant M138N, conferring a 
P1,2,3 pathotype, which is widespread in the Mediterranean basin 
(Moury & Verdin, 2012). The effects of mutation M138N on virus 
fitness are complex. Mutation M138N increased virus infectivity 
(Bera et al., 2017) and, in a single infection, either increased the 
within-host fitness respective to the P1,2 parental genotype or had 
no effect on this trait, depending on the genotype of the suscepti-
ble host; however, M138N mutants were outcompeted by the P1,2 
parental in coinfected plants (Moreno-Pérez et al., 2016). On the 
other hand, mutation M138N resulted in significantly less stable 
virus particles, affecting virus survival in the environment (Bera 
et al., 2017). Despite the complexity of the pleiotropic effects of 
mutation M138N on the virus fitness components, data on its fre-
quency in virus populations suggest high fitness penalties under 
field conditions (Fraile et al., 2011).

The positive and negative pleiotropic effects of resistance-
breaking mutation M138N in different fitness components makes 
predicting its fate in the virus population and, by extension, model-
ling host range expansions difficult. Thus, in this study we analyse 
the genetic stability of this mutation, testing the hypothesis that re-
vertants to a P1,2 pathotype could be selected as a result of the joint 
effects of its phenotypic consequences on different traits. Results 
of experimental evolution show that reversion to a P1,2 pathotype 
occurs, but most revertants differ from the parental P1,2 genotype 
and have associated fitness penalties. In addition, monitoring the 
fate of revertant genotypes yielded data on the genetic structure 
of the virus population in systemically infected host tissues and in 
NLL, which suggests that NLL may be a source of virus diversity for 
colonization of new host genotypes.
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2  |  RESULTS

2.1  |  Stability of the M138N mutation

Host-specific epistatic interactions of resistance-breaking muta-
tions may hinder the evolution of resistance breaking (Bedhomme 
et al., 2015). To test if mutation M138N resulted in selection on 
other genome positions due to epistasis, PMMoV TS-M138N 
(pathotype P1,2,3; Moreno-Pérez et al.,  2016) was passaged 10 
times in the susceptible host Capsicum annuum 'Dulce Italiano' 
(L+/L+) and in the resistant host C.  annuum 'Ferrari' (L3/L+). Five 
replicated lines were passaged in parallel, with two replicate 
plants (A and B) per line. For passage 1, 400 ng of virions was in-
oculated in 20-day-old plants and at 22 days postinoculation (dpi) 
c.2.5 g of leaf tissue was harvested from the upper two systemi-
cally infected leaves, which were ground in inoculation buffer to 
initiate passage 2 by inoculating the two first wholly expanded 
leaves of new plants. This process was repeated at 22-day inter-
vals  to complete 10 passages. All the inoculated plants of both 
hosts were systemically infected and showed symptoms of severe 
mosaic and leaf distortion. The nucleotide sequence of the com-
plete genome was determined by Sanger sequencing for the initial 
inoculum and for each of the five lines at passage 10 in RNA ex-
tracts from pooled systemically infected leaves of plant A and B 
of each line. No mutation relative to the original genome sequence 
was detected in any of the five passaged lines in Dulce Italiano. In 
Ferrari three nucleotide substitutions were detected in different 
lines: in line 1 nonsynonymous substitution G3490A results in the 
amino acid change V1141I in the 183 K protein, in line 2 synony-
mous C633U substitution in the 126 K protein gene, and in line 4 
synonymous U5981G substitution in the CP gene. These results 
do not support the hypothesis of selection on any genomic region 
due to epistatic effects of mutation M138N.

In the lines passaged in Ferrari, NLL were observed in inoculated 
and systemically infected leaves from passage 5 onwards (Table 1), 
and more frequently in inoculated than in systemically infected 
leaves (t = 2.64, p = 0.010). The number of NLL did not increase with 
time, if values from plant B of line 7 are excluded. NLL suggest the 
appearance of revertants to pathotype P1,2 or to a lower pathotype 
after passage 5. None of the mutations detected by Sanger sequenc-
ing of the passaged genomes are candidates to explain the induction 
of NLL in Ferrari plants with L3 resistance.

When NLL from the passage experiment were ground in inoc-
ulation buffer and used to inoculate three plants of C. chinense 'PI 
159236' (L3/L3) or C.  annuum 'Ferrari' (L3/L+), the symptoms were 
reproduced: NLL were induced in all the inoculated leaves, and all 
the plants were infected systemically and developed a severe mo-
saic (Figure 1a,b). Also, NLL were used to inoculate three plants of 
C.  annuum 'Yolo Wonder' (L1/L1) or C.  frutescens 'Tabasco' (L2/L2), 
which all showed mild systemic symptoms (Figure 1d,f), while two 
plants of C. frutescens 'Tabasco' (L2/L2) and one plant of C. annuum 
'Yolo Wonder' (L1/L1) developed NLL in the inoculated leaves at low 
numbers, one or two per leaf (Figure 1c,e). These results indicate the 

virus population at NLL from the passage experiment is heteroge-
neous, including genotypes of P1,2,3 and lower pathotypes.

2.2  |  High-throughput sequencing of the CP 
gene reveals mutations at sites that determine a 
P1,2,3 genotype

As it could be that the NLL observed from passage 5 onwards were 
due to a minor component of the viral population, the genetic struc-
ture at the CP gene in NLL lesions was analysed by Illumina deep se-
quencing. For this, disks of 4 mm in diameter were cut that included 
NLL in leaves of one plant (either plant A or plant B) of each of the 
five lines of passage 7, except for line 2, which came from passage 
8. As controls, 4-mm diameter disks were cut from systemically in-
fected leaves of the same plants that did not show NLL. From these 
disks total RNA was extracted, the CP gene was reverse transcrip-
tion (RT)-PCR amplified and amplicons were deep sequenced.

Table  2 shows that across the 10 high-throughput sequenced 
libraries nonsynonymous nucleotide substitutions occurred in 73 
of the 473 nucleotide (nt) positions of the CP gene. Table 2 shows 
the nature of the substitution in respect to the bases in the paren-
tal virus genome TS-M138N, the resulting amino acid change, and 
the relative frequency of each mutation for each library. No nucle-
otide polymorphisms were found in the libraries from systemically 
infected tissues of lines 2 and 3, which are not shown in Table 2. 
The genetic diversity of each population was estimated as mean 
observed heterozygosity (Table 3). The frequency of each allele at 
each polymorphic position was calculated (see procedures below) 

TA B L E  1  Number of necrotic local lesions in inoculated and 
systemically infected leaves of C. annuum 'Ferrari' (L3/−)

Passagea

Lineb

1b 2 3 4 5

5A 2/0 1/0

5B 1/0

6A 2/0 1/0 1/0 2/1 3/2

6B 1/0 1/0 1/0

7A 2/1 1/0 4/0 2/0

7B 48/14 6/6 2/0

8A 3/0 1/0 1/0

8B 1/2 1/0

9A 2/1 1/0 1/0 4/1

9B 1/0 0/0

10A 2/0 6/3 4 /0 0/3 1/1

10B 2/0 2/1 0/3 1/2 2/1

aA and B indicate two infected plants per line for passages 5 to 10 in a 
serial passage experiment.
bi/j indicate the number of necrotic local lesions (NLL) in inoculated and 
systemically infected leaves, respectively. Blank cells indicate no NLL 
were observed.
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and used to compute per-site heterozygosity (Cuevas et al., 2015; 
Li,  1997) for each population. The mean observed heterozygosity 
(Li, 1997) was calculated with a genome length (L) of 420 nt, the dif-
ference between the minimum and maximum positions in the CP 
where variants were called. The value of L is typically the length of 
the genome, and the CP gene region of PMMoV is approximately 
470 nt. Data show that the virus populations at NLL were on aver-
age five times as diverse as those in systemically infected tissues, 
this difference being significant (Wilcoxon rank sum test W  =  23, 
p = 0.036).

Among the observed mutations, some could affect the virus 
pathotype, for instance mutations L13F and G66V, which occurred 
in NLL of passage lines 1, 2, 3, and 4. It has been reported that 
when these two mutations occur together they determine a P1,2,3 
pathotype (Moreno-Pérez et al., 2016), which in line 2 would occur 

at the non-negligible frequency of 12.64%, as estimated from the 
frequency of each mutation. The N at position 138 of the parental 
TS-M138N virus is encoded by an AAU codon. Two mutations af-
fected the amino acid at position 138, the substitutions A416T and 
T417G, which by themselves result in the amino acid changes N138I 
and N138K, respectively. An N at position 138 of the CP is necessary 
and sufficient to overcome L3 resistance in the parental virus TS-
M138N (Berzal-Herranz et al., 1995; Moreno-Pérez et al., 2016). The 
mutation A416T was found only in NLL of line 2, while the mutation 
T417G occurred in the virus populations at NLL of all five passage 
lines and in systemically infected tissues of lines 1 and 5. Read anal-
yses showed that in line 2, mutations A416T and T417G occurred 
together with a frequency of 93.75%, which would lead to the rever-
sion N138M. In addition, mutations N138I and N138K are candidate 
determinants for reversion to the P1,2 pathotype and induction of 

F I G U R E  1  Symptoms induced by 
necrotic lesion transfer in different 
pepper species and genotypes. Necrotic 
local lesions that appeared in Capsicum 
annuum 'Ferrari' (L3/L+) during a serial 
passage experiment were used to 
inoculate C. chinense 'PI 159236' (L3/L3) 
(a, b), C. frutescens 'Tabasco' (L2/L2) (c, d) 
and C. annuum 'Yolo Wonder' (L1/L1) (e, f). 
Necrotic local lesions in inoculated leaves 
are shown in (a), (c), and (e), and systemic 
infection symptoms are shown in (b), (d), 
and (f)
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TA B L E  2  Mutations detected in the coat protein gene on PMMoV TS-M138N after passage in Capsicum annumm 'Ferrari' (L3/L+) and their 
relative frequency in the virus populationa

Mutation Frequency (%)

Posb AAc NLL_1 Sys_1 NLL_2 NLL_3 NLL_4 Sys_4 NLL_5 Sys_5

42 A→T L14F 3.63 – 35.93 1.42 2.26 – – –

152 A→G D51G 1.41 – 11.47 – – – – –

200 G→T G67V 3.88 – 35.21 1.38 2.30 – – –

269 C→A T90N – – – – 7.33 – 14.69 –

276 C→A N92K – – – – 6.28 – – 8.05

281 T→G I94R – – – – – – 17.92 8.28

284 T→G I95R – – – – – – 17.82 –

290 T→G V97G – – – – 10.62 – 12.21 –

291 T→G V97V – 9.46 – – 8.97 – 13.02 –

297 T→G N99K 9.26 – – – – – – –

298 C→A P100D – – – – 5.67 – 19.05 7.82

299 C→A P100Q 7.94 – – – 5.74 – 17.68 8.00

301 C→A Q101K – – – 9.96 6.00 – 13.90 –

306 T→G N102K – – 9.03 – – –

307 C→A P103T – – – 11.63 – – 16.67 –

308 C→A P103H – – – – – – 16.11 –

309 T→G P103P 8.88 – – 13.37 – – – –

311 C→A T104K – – – 9.50 – – 13.1 –

314 C→A T105N – – – 9.22 5.53 – 12.28 –

315 T→G T105T – 16.91 – – – – 15.29 9.74

317 C→A A106D – – – 9.65 6.67 – 13.22 –

318 C→A A106A – – – 10.19 6.15 – 12.78 –

323 C→A T108K – – – 9.30 – – 11.86 –

325 C→A L109I – – – 7.76 – – 10.84 –

326 T→G L109R – 8.75 – – 7.91 – 10.06 –

327 T→G L109L 11.11 – – 16.52 – – – –

330 T→G D110E 16.85 – – 21.65 – – 7.78 –

332 C→A A111A – – – 9.01 6.72 – 14.36 8.19

335 C→A T112K – – – 8.73 5.81 – 14.36 –

340 C→A R114R – – – 9.09 – – 10.93 –

344 T→G V115G 21.21 17.81 – 29.36 19.12 10.2 12.78 10.37

348 C→A D116D – – 43.44 7.83 6.33 – 11.86 –

351 T→G D117E 11.18 9.72 – 11.21 11.11 – – –

353 C→A A118E – – – 8.97 6.28 – 11.24 –

356 C→A T119K – – – 8.22 5.71 – 10.87 –

359 T→G V120G 8.48 – – – 7.2 – – –

362 C→A A121D – – – 7.41 6.61 – 11.86 –

363 C→A A121A – – – 8.68 – – 9.78 –

365 T→G I122S – – – – 5.56 – – –

371 C→A A124D – – – – – – 8.25 –

372 C→A A124A – – – 6.82 – – 9.69 –

377 T→G I126R 8.24 – – 15.38 – – 7.88 –

381 T→G S127R – – – 7.86 – – – –
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NLL, but mutation N138K would better explain the distribution of 
NLL that appeared in all lines during the serial passage experiment in 
C. annuum 'Ferrari' plants.

2.3  |  Characterization of mutant N138K

The mutation N138K was introduced by site-directed mutagen-
esis in pTS-M138N. Capped transcripts of the resulting clone 
pTS-M138K were infectious, inducing NLL in Nicotiana tabacum 

'Xanthi-nc' plants and a mild mosaic in C.  annuum 'Dulce Italiano' 
plants (Figure 2a). To determine its pathotype, the mutant was also 
inoculated in C. annuum 'Yolo Wonder' (L1/L1), C. frutescens 'Tabasco' 
(L2/L2), C. chinense 'PI 159236' (L3/L3), C. annuum 'Ferrari' (L3/L+), and 
C. chacoense 'PI 260429' (L4/L4). Inoculations resulted in the devel-
opment of mild (in C. annuum 'Yolo Wonder') or severe (in C. frute-
scens 'Tabasco', Figure 2b) systemic mosaics in plants of genotypes 
L1/L1 and L2/L2. When sap from the upper leaves of these plants was 
used to inoculate fully expanded leaves of N.  tabacum 'Xanthi-nc', 
abundant NLL developed in 3–4 days (Figure  2c), which indicated 

Mutation Frequency (%)

Posb AAc NLL_1 Sys_1 NLL_2 NLL_3 NLL_4 Sys_4 NLL_5 Sys_5

384 C→A N128K – – – 6.67 – – 14.66 –

385 C→A L129I – – – 6.19 – – 10.71 –

386 T→G L129R 6.01 – – 12.89 6.01 – 10.33 –

389 T→G M130R 9.39 – – 16.30 – – 8.16 –

393 T→G N131K 14.69 10.06 – 26.24 12.25 – 12.44 10.44

397 T→G L133V 18.44 16.77 11.45 27.88 16.28 9.55 10.61 12.22

398 T→G L133* 14.69 – – 23.64 7.66 – 13.76 –

401 T→G V134G 14.67 11.39 11.28 20.26 13.26 9.36 10.4 11.22

402 T→G V134V 8.33 – – 16.37 – – – –

405 T→G R135R 11.89 13.94 – 14.54 12.82 8.19 7.80 9.19

410 C→A T137K – – – – – – 6.83 –

416 A→T N139I – – 97.32 – – – – –

417 T→G N139K 20.74 9.43 98.40 26.42 13.78 – 9.38 8.79

418 T→G Y140D 14.06 9.58 – 18.26 10.04 – 9.13 9.33

423 T→G N141K 15.87 14.81 – 26.01 13.62 – 8.96 9.44

424 C→A Q142K – – – 8.89 – – 9.71 –

428 C→A A143D j – – – 20.11 – – 11.23 –

429 T→G A143A 14.86 – – 14.52 6.87 10.13 7.73 –

430 C→A L144M – – – – – 12.43 –

431 T→G L144R 9.55 – – 13.37 – – – –

433 T→G F145V k 17.88 10.42 – 24.74 10.25 12.66 10.16 –

434 T→G F145C k 13.74 – – 15.79 6.75 11.04 8.74 –

435 C→A F145G l – – – 8.15 – – 14.21 –

441 C→A S147R – – – 10.23 – – 10.80 –

443 C→A A148E 11.9 – – 12.64 6.31 11.81 18.82 –

447 T→G S149R 16.36 – – 28.82 6.91 – 11.88 –

452 T→G L151R 13.99 12.40 – 27.10 8.82 – – –

457 T→G W153G – – – 11.63 – – – –

462 T→G A154A 15.27 – – 21.67 – – – –

aPopulations correspond to necrotic local lesions (NLL) or systemically infected tissues (Sys) of passage lines 1 to 5. No polymorphisms were detected 
in systemically infected tissues of lines 2 and 3, which are not shown in the table.
bNucleotide position of the coat protein gene and nucleotide substitution respective to the parental virus sequence are numbered as in PMMoV-TS, 
accession no. NC_003630.
cAmino acid change with indication of amino acid position in the coat protein respective to the parental virus sequence. Note than amino acid 
numbering considers as position 1 the N-terminal M residue that is not present in the mature virion CP. In column AA, * indicates a stop codon if the 
indicated mutations at nucleotide positions 397 and 398 occur together; j indicates an A143E change if mutations at nucleotide positions 428 and 
429 occur together; k indicates an F145G change if two or three of mutations at nucleotide positions 433, 434 and 435 occur together.

TA B L E  2  (Continued)
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systemic infection of the pepper plants. On the contrary, inocula-
tion of C. chinense 'PI 159236' (L3/L3), C. annuum 'Ferrari' (L3/L+) and 
C. chacoense 'PI 260429' (L4/L4) resulted in the development of NLL 
in the inoculated leaves (Figure  2d) and not in systemic infection. 
These results show that TS-M138K is of a P1,2 pathotype.

For particle purification, viruses were multiplied in plants of 
Nicotiana clevelandii that were inoculated with RNA transcripts 
from plasmid pTS-M138K. Particles of PMMoV TS-M138N were 
purified in parallel after multiplication in the same host. Purification 
of PMMoV TS-M138K particles was inefficient by the standard 
procedure used for PMMoV and other tobamoviruses, in which 
plant tissues are homogenized in 40 mM EDTA, 36 mM NaOH, 
pH 7.0, 0.1% mercaptoethanol (Bruening et al., 1976). Monitoring 
the presence of encapsidated viral RNA along the purification 

procedure showed that at odds with TS-M138N, most encapsi-
dated viral RNA was found in the first low-speed centrifugation 
pellet, indicating particle aggregation and sedimentation with 
plant tissue debris (Figure 3). Assay of other procedures of parti-
cle purification showed efficient purification of TS-M138K when 
plant tissues were homogenized in 0.5 M Na2HPO4 pH 7.0, 0.1% 
mercaptoethanol. Using this procedure virion RNA was weakly 
detected in the first low-speed centrifugation pellet, at odds with 
that of TS-M138N (Figure 3) that, as most tobamoviruses, are not 
efficiently purified by this procedure (Bruening et al., 1976). The 
yield of particles from N. clevelandii leaves after purification with 

TA B L E  3  Genetic diversitya at the coat protein gene in virus 
populations in necrotic local lesions (NLL) and systemically infected 
tissues (Sys) in different passaged lines

Line NLL Sys

1 0.015 0.007

2 0.005 0.000

3 0.029 0.000

4 0.013 0.004

5 0.027 0.006

Mean 0.018 0.003

SD 0.010 0.003

aGenetic diversity quantified as mean observed heterozygosity.

F I G U R E  2  Pathotype characterization 
of PMMoV TS-M138K. PMMoV TS-
M138K infection induced systemic 
mild mosaic in Capsicum annuum 'Dulce 
Italiano' plants (L+/L+) (a) or systemic 
severe mosaic in C. frutescens 'Tabasco' 
(L2/L2) plants (b). Inoculation of Nicotiana 
tabacum 'Xanthi-nc' leaves with sap 
from upper noninoculated leaves of 
C. frutescens 'Tabasco' plants induced the 
appearance of abundant necrotic local 
lesions (c). Inoculation of C. chacoense 
'PI 260429' (L4/L4) plants resulted in the 
development of necrotic local lesions in 
the inoculated leaves (d)

F I G U R E  3  Monitoring of encapsidated virus RNA along the 
process of particle purification. Virus particles of either TS-M138N 
(M138N) or TS-M138K (M138K) were purified from systemically 
infected leaves of Nicotiana clevelandii by tissue homogenization in 
either 40 mM EDTA, 36 mM NaOH, 0.1% mercaptoethanol (method 
A) or 0.5 M Na2HPO4 pH 7.0, 0.1% mercaptoethanol (method B). 
Encapsidated virus RNA was detected by reverse transcription 
(RT)-PCR in either the first (low speed 1) or the second (low speed 
2) low-speed centrifugation pellet. C+ and C− indicate RT-PCR on 
virion RNA of TS-M138N or water, respectively
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the optimal method was about half for TS-M138K compared to 
TS-M138N (0.42 vs. 0.80 mg/g fresh leaf). Differences in the op-
timal procedure for particle purification suggest significant dif-
ferences between TS-M138N and TS-M138K particles. However, 
electron microscopy of the leaf sap of infected plants showed no 
differences between the particles of both virus genotypes, which 
had the typical structure and dimensions of tobamovirus particles 
(Figure  4). The stability of TS-M138K and TS-M138N particles 
was compared by monitoring the kinetics of disassembly at basic 
pH. Figure 5 shows that disassembly of TS-M138N particles was 
evident after 10  min and was complete after 45 min at pH  8.75, 
while TS-M138K particles did not disassemble after 120 min, 

demonstrating their higher stability. Note also that TS-M138K 
particles hardly entered the agarose gel, suggesting particle ag-
gregation in Tris-HCl pH  8.75 and/or the electrophoresis buffer, 
Tris-borate-EDTA pH 8.4.

3  |  DISCUSSION

The acquisition of new hosts provides a virus with more oppor-
tunities for transmission and survival, thus affecting its ecology 
and epidemiology, and the effectiveness of strategies for its con-
trol. Host range expansion may be hindered by across-host fitness 
trade-offs so that increasing the virus fitness in a new host will 
decrease its fitness in the original one (Elena et al., 2014; McLeish 
et al.,  2018). Across-host fitness trade-offs due to the pleiotropic 
effects of host range mutations have been widely documented for 
RNA viruses, including plant viruses (Bedhomme et al., 2015; Elena 
& Sanjuán, 2007). A case of host range expansion much studied by 
plant virologists is the capacity to infect previously resistant crop 
genotypes, that is, resistance breaking. Evidence for the costs of 
resistance breaking has been reported for various plant–virus sys-
tems (Goulden et al., 1993; Ishibashi et al., 2012; Janzac et al., 2010; 
Jenner et al., 2002; Wang & Hajimorad, 2016), including the pepper–
PMMoV system here analysed (Bera et al., 2017; Fraile et al., 2011, 
2014; Moreno-Pérez et al., 2016).

Previous studies had shown that CP mutation M138N in PMMoV, 
which determines a P1,2,3 pathotype, had no negative effects on 
virus multiplication in single infection of susceptible hosts (Moreno-
Pérez et al., 2016), but had negative effects on the virus competi-
tive ability with the P1,2 parental and on survival in the environment 
(Bera et al., 2017; Moreno-Pérez et al., 2016). To better understand 
the widespread geographical occurrence of mutation M138N and 
its persistence over time in PMMoV populations (Fraile et al., 2011; 
Moury & Verdin, 2012), we analyse here other mechanisms that may 
result in, or decrease, costs. The complete nucleotide sequences 
of the genomes of PMMoV TS-M138N serially passaged in a sus-
ceptible or a resistant host suggest that mutation M138N does not 

F I G U R E  4  Electron micrography of virus particles. Virus particles were visualized after uranyl acetate staining of clarified homogenates 
of upper noninoculated leaves of mock-inoculated plants (a) or of plants infected by TS-M138N (b) or by TS-M138K (c)

F I G U R E  5  Kinetics of virus particle disassembly. Particles of 
either TS-M138N (upper panel) or TS-M138k (lower panel) were 
incubated in 0.1 M Tris-HCl pH 8.75 for the indicated times (min). 
RNA, electrophoretic mobility of genomic RNA; C, untreated 
purified virion. Note that nonencapsidated viral RNA is detected in 
particle preparations before incubation
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establish strong epistatic interactions with other sites in the PMMoV 
genome. This result is relevant, as epistatic interactions among host 
range mutations and other loci are a major cause of across host fit-
ness trade-offs, in addition to antagonistic pleiotropy (Bedhomme 
et al., 2015).

The serial passage experiment in the resistant host C. annuum 
'Ferrari' (L3/L+), allowed detection of revertants of a lower patho-
type by the appearance of NLL (Table 1). The number of NLL did not 
increase over passaging, as expected from the inability of the virus 
genotype(s) inducing them to multiply and colonize systemically 
plants with L3 resistance. Neither did the number of NLL decrease 
on passaging, which suggests a constant rate of reversion. The 
higher frequency of NLL in inoculated than in systemically infected 
leaves can be explained by the higher probability of a revertant 
genotype to establish an infection in the inoculated leaf, where in-
fection foci occur at discrete sites (García-Arenal & Fraile, 2011), 
thus decreasing competition with M138N, than in systemically in-
fected leaves. These results indicate that reversion of TS-M138N 
to a lower pathotype occurs and is common, which suggest costs 
of resistance breaking additional to those identified so far. When 
NLL from the serial passage experiment were used to inoculate 
C.  annuum 'Yolo Wonder' (L1/L1), C.  frutescens 'Tabasco' (L2/L2), 
C. chinense 'PI 159236' (L3/L3) or C. annuum 'Ferrari' (L3/L+), the ap-
pearance of a systemic mosaic in all hosts showed the presence of 
genotypes of a P1,2,3 pathotype in the NLL virus population, which 
coexisted with genotypes of pathotyes P1,2, P1 and P0 that induced 
NLL in L3, L2 and L1 plants, respectively (Figure  1). These results 
show that the virus population at NLL is highly heterogeneous in 
terms of resistance-breaking phenotypes. PMMoV isolates of P1 
and P0 pathotypes have never been reported from nature, which 
suggest that mutations towards lower, not only higher, pathotype 
may have important fitness costs, so that PMMoV genotypes of 
P1 and P0 pathotypes would be outcompeted by P0 and P1 gen-
otypes of other tobamovirus species commonly found in pepper 
crops (Fraile et al.,  2011; Moury & Verdin,  2012; Vélez-Olmedo 
et al., 2021).

High-throughput sequencing of the CP gene confirmed the high 
genetic heterogeneity of the virus population at NLL, which was 
much higher than in systemically infected tissues. To our knowledge, 
this is the first analysis of the genetic structure of a virus population 
in NLL, that is, in resistant tissues. Despite the high mutation rates 
of RNA viruses (Sanjuán, 2012), in systemically infected tissues ge-
netic diversity may be low, as the fittest genotype will prevail, with 
few mutants occurring at low frequency, as in lines 1, 4, and 5, or 
even becoming fixed, as in lines 2 and 3 (Table 2). This genetic struc-
ture has been shown often in tissues of susceptible plants (Cuevas 
et al., 2015; Fabre et al., 2012; García-Arenal et al., 2001). On the 
other hand, in NLL cells undergoing defence reactions effective to-
wards a wide range of virus genotypes, mutants newly generated 
during virus replication would explore a broad phenotypic space that 
includes the escape of plant defences: new phenotypes will be pro-
duced that may have relevant traits, including overcoming, or not, 
specific resistances. In support of this hypothesis, the data in Table 2 

show the appearance of P1,2,3 pathotype determinants other than 
M138N, such as mutation D50G, which together with T43K (not de-
tected) determines a P1,2,3 pathotype and L13F and G66V in four 
of five passaged lines, which if occurring together would restore a 
P1,2,3 pathotype (Hamada et al., 2007; Moreno-Pérez et al., 2016). 
Reported P1,2,3 isolates determined by L13F + G66V or T43K + D50G 
belong to different phylogenetic clusters than those with a M138N 
determination (Moury & Verdin, 2012), which underscores the po-
tential for generation in NLL of new resistance-breaking genotypes. 
The large number of CP amino acid mutations in the NLL virus popu-
lation uncovered by high-throughput sequencing incites speculation 
on the occurrence at NLL of genotypes with other, unidentified, de-
terminants of P1,2,3 pathotype, or with determinants of the P1 and P0 
pathotypes unveiled by NLL transfer to different pepper genotypes. 
The study of these possibilities is out of the scope of this work.

Reversion of the mutation M138N requires at least two nucleo-
tide substitutions at codon 139 of the CP gene (note that according 
to the literature, the numbering of positions in the CP does not count 
the initial methionine residue, which is eliminated from the mature 
CP) to change the N codon in TS-M138N (AAU) to the M codon in 
TS (AUG). This reversion, sensu stricto, was detected in line 2, where 
the substitutions A416U and U417G occur together with a 93.75% 
frequency in the virus population (Table 2 and not shown). Reversion 
to a P1,2 pathotype seems to have been more frequent via a sim-
pler mutational pathway, the substitution U417G that results in the 
N138K mutation, which occurred in all five passaged lines (Table 2). 
The consistent occurrence of this mutation across lines and its high 
frequency prompted us to engineer a TS-M138K genotype, which 
when assayed in different pepper genotypes showed a P1,2 patho-
type, as expected. Additionally, the data in Table 2 show that a low 
frequency, of about 9%, of this mutant in the virus population is 
sufficient for recognition by L to induce a defence reaction and the 
development of NLL.

Reversion to a P1,2 pathotype through mutation N138K may 
have fitness penalties, as it results in viral particles that aggregate 
under a range of conditions, such as in 40 mM EDTA, 36 mM NaOH, 
pH 7.3 during extraction by standard procedures for tobamoviruses, 
or in Tris-borate-EDTA pH 8.1. Modelling of the three-dimensional 
structure of PMMoV (Bera et al.,  2017; Fraile et al.,  2014) shows 
amino acid 138 located at a loop between two alpha helices perpen-
dicular to the particle axis (Fraile et al., 2014), and the major change 
M138N results in a significant decrease of contacts and hydrogen 
bonds among CP subunits, and in changes to the electrostatic po-
tential in the RNA-binding groove region that weakens the CP–RNA 
binding and destabilizes the particles (Bera et al., 2017). The change 
M138K results in highly stable particles that do not disassemble 
at basic pH. While higher particle stability will increase survival in 
the environment, particle aggregation would reduce the infectivity 
of the primary inoculum from the environment. Thus, the mutation 
M138K may involve significant fitness penalties and, accordingly, 
a K at position 138 has not been found in any tobamovirus isolate 
infecting pepper, an M at this position occurring regardless of spe-
cies or pathotype, except for PMMoV isolates of pathotype P1,2,3 
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(Fraile et al.,  2014). Thus, the wide occurrence through space and 
time of mutation M138N in the PMMoV population despite the 
costs of within-host multiplication under coinfection and of survival, 
can be explained, at least in part, by limited mutational pathways for 
reversion that result in P1,2 revertants of a lower fitness.

The results of this study contribute to understanding the 
complexity of pleiotropic effects of host range mutations that 
collectively modulate the evolution of host range expansions. 
Specifically, we show that in addition to the effects of host range 
mutations on different life history traits, pathways of reversion 
and fitness of revertant genotypes may play a role in determin-
ing the fate of host range mutations in virus populations. Another 
major contribution of this study is to show the high genetic diver-
sity of the virus population in NLL and, possibly, other plant tissues 
undergoing defence reactions. Such high diversity may potentiate 
the appearance of genotypes that overcome host defences to col-
onize new host genotypes or species, thus contributing to virus 
emergence.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Plants and virus inoculations

The following species and cultivars of Capsicum that differ in the al-
leles at the L resistance locus were used: C. annuum 'Dulce Italiano' 
(L+/L+), C.  annuum 'Yolo Wonder' (L1/L1), C.  frutescens 'Tabasco' 
(L2/L2), C. chinense 'PI 159236' (L3/L3), C. annuum 'Ferrari' (L3/L+) and 
C. chacoense 'PI 260429' (L4/L4). Plants were grown in 15-cm diam-
eter, 1.5-L pots at 23–25 °C and under a 16 h light photoperiod in 
a P2-level biological containment greenhouse. Plants were inocu-
lated in the first two true leaves with 400 ng of freshly purified virus 
particles suspended in inoculation buffer (0.1 M sodium phosphate, 
pH 7.2). For serial passage experiments, the inoculum consisted of 
the sap of young systemically infected leaves from the previous 
passage plants ground in inoculation buffer. N. tabacum 'Xanth-nc', 
which has the N gene of resistance to tobamoviruses, was used as a 
local lesion assay host, and N. clevelandii was used as a multiplication 
host.

4.2  |  Virus isolates and mutants

Viral genotypes were multiplied in N.clevelandii after inoculation 
with transcripts from full-length cDNA clones. Clone pTS, which 
generates PMMoV-TS, of a P1,2 pathotype, and its derived CP mutant 
pTS-M138N, which generates PMMoV TS-M138N, of P1,2,3 patho-
type, are described in Moreno-Pérez et al. (2016). In the CP gene of 
plasmid pTS-M138N, the mutation N138K was generated through 
introduction of the T417G substitution by site-directed mutagenesis 
as in Moreno-Pérez et al. (2016) using primers N138K fw (5′-CGTG
GCACGGGAAAGTACAATCAAGCTCTG-3′) and N138K rv (5′-CAGA
GCTTGATTGTACTTTCCCGTGCCACG-3′), which generate plasmid 

pTS-M138K. Plasmids were multiplied in Escherichia coli XL2-Blue 
MRF′ (Agilent Technologies).

PMMoV particles were purified as in Bruening et al. (1976), and 
their electrophoretic mobility was analysed in 1.2% agarose gels in 
Tris-borate-EDTA pH 8.1 and ethidium bromide staining as in Hogue 
and Asselin (1984). To monitor the fate of virus particles along the 
purification procedure, pellets of low- and high-speed centrifugation 
steps were treated with 5% SDS in 0.1 M Tris-HCl pH 9.0 for particle 
disruption, phenol extracted, and virus nucleic acid detected by RT-
PCR using primers identical and complementary to positions 5853–
5874 and 5937–5958 of PMMoV accession number NC_003630. 
The resulting 106 nt amplicons were resolved by electrophoresis in 
1.2% agarose gels in Tris-HCl, Na acetate, EDTA, pH 8.2. The kinet-
ics of particle disassembly at basic pH was assayed in 0.1  M Tris-
HCl pH 8.75 as in Bera et al. (2017). For electron microscopy, 1 g of 
systemically infected leaf was ground in 300 μl of 0.01 M NaH2PO4 
pH 7.2, and the supernatant was stained for 2 min in 2% uranyl ace-
tate as in Lu et al. (1996).

4.3  |  Nucleotide sequence determination and  
analyses

Leaf RNA was extracted using TRIzol reagent (Life Technologies). 
Nucleotide sequence determination by Sanger method was out-
sourced at Macrogen (Amsterdam, Netherlands).

For high-throughput sequencing, RNA was extracted from two 
pooled disks of either NLL or systemically infected tissues of the same 
plant, and the CP gene was RT-PCR amplified using primers com-
plementary to nt positions 6142–6167 and identical to nt positions 
5685–6158 (positions numbered as in PMMoV accession number 
M81413.1). After equimolar pooling of the 10 amplicons (five from 
NLL and five from systemically infected tissues) sequencing was done 
at Genoscreen, Lille, France, using a HiSeq 2500 – Illumina platform. 
Paired-end libraries with multiplex adapters were prepared along with 
an internal PhiX control. The pool of tagged samples was sequenced 
on MiSeq run in 2 × 250 bp paired-end reads. The average number 
of single reads per sample was 343,000, which yielded 86 megab-
ases per sample, with a quality score of Q30 (associated error rate 
0.1%). Sequencing data were converted to FASTQ format with FastQ 
Groomer v. 1 (Blankenberg et al., 2010), the trimming of paired-end 
was made with Trimmomatic (Bolger et al., 2014), with a required av-
erage quality Q20, minimum length of reads to be kept a240. Mapping 
was done against the reference genome of PMMoV-TS using Bowtie 
v. 2.1.0 (Langmead & Salzberg, 2012). Call variant detection and align-
ment were performed with Mpileup (Li, 2011) and Varscan (Koboldt 
et al., 2012) with minimum base quality at a position to count a read 
Q28, minimum variant allele frequency threshold 0.01.
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