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Cytology samples are suitable for the study of genotypic and phenotypic changes

observed in different tumors. Being a minimally invasive technique, cytology sampling

has been used as an acceptable alternative to track the alterations associated with

tumor progression. Although the detection of gene mutations is well-established on

cytology, in the last few years, gene fusion detections are becoming mandatory,

especially in some tumor types such as lung cancer. Different technologies are

available such as immunocytochemistry, fluorescence in situ hybridization, reverse

transcription-polymerase chain reaction, and massive parallel sequencing approaches.

Considering that many new drugs targeted fusion proteins, cytological samples can

be of use to detect gene fusions in solid and lymphoproliferative tumor patients. In

this article, we revised the use of several techniques utilized to check gene fusions in

cytological material.

Keywords: NanoString, RT-PCR, fluorescence in situ hybridization, next-generation sequencing, gene

rearrangements, cytology, gene fusions

INTRODUCTION

In the last few years, targeted therapies have been revolutionary in cancer treatment. The discovery
of new molecular alteration has allowed development and introduction of new technologies such
as massive parallel sequencing (MPS) in clinical practice (1).

From a pathology point of view, this means the need to correlate tumor morphological features
with immunophenotype and molecular aspects in order to treat each patient with the more
appropriate drugs at the right time. The identification of a molecular target is also important to
establish outcome and prognosis.

Cancer development is driven by different types of genetic alterations such as mutations,
deletions, gene fusions, amplifications, and rearrangements. These alterations can be detected using
different approaches in cells/tissue such as immunocytochemistry (ICC), immunohistochemistry
(IHC), fluorescent in situ hybridization (FISH), reverse transcription-polymerase chain reaction
(RT-PCR), and MPS using RNA-based and DNA-based approaches (2). The main advantages and
disadvantages of these techniques are reported in Table 1.

An increasing interest is reported in this field especially in lung cancer. In the last 2 years,
the US Food and Drug Administration granted accelerated approval or approval to specific
fusion gene drugs in non-small-cell lung cancer (NSCLC) for REarranged during Transfection

proto-oncogene gene/RET (selpercatinib), ROS proto-oncogene 1/ROS1 (alectinib or entrectinib),
anaplastic lymphoma receptor tyrosine kinase/ALK (crizotinib, alectinib, etc.), and neurotrophic
tyrosine receptor kinase/NTRK (entrectinib) fusions. Chromosomal rearrangements involving
ALK, RET, ROS1, and NTRK family genes make in-frame kinase fusions with other partner genes
causing uncontrolled proliferation of transformed neoplastic cells (3).
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TABLE 1 | Fusion testing methods: advantages and disadvantages.

Method Advantages Disadvantages

ICC - Rapid and low cost

- Widely available

- Sensitivity depends on the

biomarkers antibody

- Not easily multiplexed

- Positive cases require orthogonal

confirmation method for some

biomarkers

FISH - Established approach

- Break apart FISH detects

rearrangements without 5’

partner knowledge

- High cost

- Requires expert interpretation

- Not easily multiplexed with other

biomarkers

- Not confirm detected fusion

expressed

- Sensitivity and specificity depend

on break apart assay utilized

RT-PCR - Rapid and low cost

- Well-established method

- Identify knowledge fusion partners

- Might miss fusion due to break

apart variability

- Not confirmation that protein is

present

MPS - Possibility to study all

clinically important

genomic fusions

- Most tissue sparing

approach for broad

genetic analysis

- Commercially kit available

- Detection of known and

unknown fusions

- Multiplexed

- Require high level of funding

- High level bioinformatics ability

- Large introns may be problematic

(as for NTRK genes) for DNA-

based MPS

- Transcripts expressed at low levels

by RNA-based can be a problem

issue

- Not confirmation that protein is

present

ICC, immunocytochemistry; FISH, fluorescent in situ hybridization; RT-PCR, Reverse-

Transcription Polymerase Chain Reaction; MPS, massive parallel sequencing. For more

details, see the text.

In lung cancer, patients are often diagnosed at the advanced
stage of the disease, and they cannot benefit from primary tumor
surgical resection. Small biopsies or cytology samples are more
often the only pathologic specimens to guide systemic therapy.
In literature, the utility of cytologic specimens in molecular
testing has been demonstrated and validated in a lot of studies.
For molecular analysis, although cytology samples provide
high-quality material, application of molecular technologies on
cytopathology is not yet widely used or recognized (2).

Indeed, in literature, many studies have demonstrated the use
of cytology to check gene mutations, but little is known about
detection of gene fusions in cytological samples (4, 5). In this
review, we will discuss the new technological applications on
routine cytological material for gene fusions.

METHODS

Immunocytochemistry
ICC is widely applied in clinical practice to assess
immunophenotype of neoplastic cells. It is a cost-effective and
easily available technique, with rapid turnaround time, and can
be applied on relatively few number of tumor cells. Compared
to other molecular techniques, ICC has few technical challenges
(6). Most predictive assays for biomarkers have been validated

on formalin-fixed paraffin-embedded (FFPE) histologic tissue
specimens. However, NSCLC patients frequently have diagnosis
on cytology samples, and request for predictive biomarker testing
on cytologic specimens is more frequently observed. Currently,
there is no validation for biomarker detection on cytology,
using ICC (7). Cytologic specimen preparations require a huge
amount of critical preanalytic variables such as various collection
media, fixatives, storage conditions, processing techniques, and
stains, among others. Furthermore, ICC assays on the cytological
samples need a rigorous and thorough validation process because
FFPE histological tissue preparations have been used to validate
and standardize all protocols (8).

Recently, the International Association for the Study of
Lung Cancer (IASLC) Pathology Committee reported that “all
cytologic preparations, including cell blocks, ethanol fixed,
and air-dried slides” can be used for ICC” (9). Among the
different cytologic sample preparations, cell blocks (CBs) are
the most widely diffused and accepted. This is in part due
to their availability in routine labs, the possibility of getting
multiple sections to test a panel of markers, and the use
of standardized and validated protocols for FFPE histologic
tissue applicable to CBs with automated immunostainers. In
fact, CB sections for ICC usually have a final fixation step
prior to processing into an FFPE block utilizing 10% neutral
buffered formalin. However, there are a great variability among
cytopathology laboratories, and there are no standardized
protocol for the prefixation, collection media to be used, and
processing technique. Furthermore, it is important to note that
CBs, as histological preparations, are formalin fixed, so for
molecular analysis, they are associated with artifacts and loss of
nucleic acid yield.

Non-CB cytologic preparations include air-dried and alcohol-
fixed direct smears, cytospins, and liquid-based cytology
(LBC) preparations and also require ICC validation and
internal controls. Of these, cytospin and ethanol-fixed smear
immunostainings are the most commonly utilized. ICC on
previously stained slides can also be of use, usually after
some formalin-based post-fixation step (9–11). In literature,
authors suggested that some fixatives can alter antigenicity
and ICC staining in cytologic specimens. On the other hand,
the United Kingdom National External Quality Assessment
Service (UK NEQAS) demonstrated that all non-formalin
and formalin fixatives, with the exception of acetone, give
comparable immunostaining quality (11, 12). In NSCLC, as
reported by College of American Pathologists (CAP) guidelines,
ICC can be of use to check ALK and ROS1 rearrangements.
Recently, the NTRK IHC approach has been considered as a
screening method to identify positive samples to be tested with
orthogonal methods.

ICC for ALK Rearrangements
ALK rearrangement testing, according to the current College
of American Pathologist/International Association for the
Study of Lung Cancer/Association for Molecular Pathology
(CAP/IASLC/AMP) guidelines, requires FISH assay, PCR-
based methods, or, alternatively, immunohistochemistry (IHC).
ALK IHC can be performed using 5A4 (Novocastra, Leica
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Biosystems; Newcastle Upon Tyne, UK) andD5F3 (Cell Signaling
Technology, Danvers, MA) clones.

The D5F3 ALK clone is used in a Ventana automated
immunoassay (Ventana ALK D5F3 CDx Assay, Ventana Medical
Systems, Tucson, AZ), approved by the United States Food and
Drug Administration (FDA) as a companion diagnostic kit for
crizotinib treatment in patients with ALK rearrangements1. A lot
of studies regarding cytological samples used the D5F3 or 5A4
clones on CB preparations and demonstrated 100% sensitivity
with specificities ranging between 83 and 100% (13–16).

LBC preparations, cytospin, and smears have been reported
to have low sensitivity (66–100%), so ICC applied on non-FFPE
samples needs more validation (17–19).

ICC for ROS1 Rearrangements
For ROS1 rearrangements, the guidelines recommended to use,
as a screening tool, D4D6 (Cell Signaling Technology) clone
that is reported to be highly sensitive but relatively less specific.
Therefore, IHC-positive cases require cytogenetic or molecular
test confirmation (20). Unlike ALK, FDA has not approved ROS1
IHC using D4D6 as a companion diagnostic for patients to be
tested for ROS1 rearrangements. There is no specific cutoff of
positivity for ROS1 IHC evaluation because of some difficulties of
interpretation. ROS1 protein can be expressed in non-neoplastic
cells especially in hyperplastic type 2 pneumocytes, alveolar
epithelial and basal cells, bronchial epithelial and metaplastic
bronchiolar cells, and peribronchial glands. Indeed, positivity
intensity has been found to be variable both in cell lines and
in ROS1-rearranged cancers. Heterogeneous staining patterns
(strongly positive and negative areas within the same tumor) is
not common in ROS1 positive carcinomas. Some authors have
proposed a ≥2 intensity of cytoplasmic staining in 50–75% of
tumor cells or H-scores of 100–150 to reach high sensitivity and
specificity. A positive sample on IHC should be processed for
confirmatory testing as FISH or RT-PCR or MPS.

Regarding cytological material, some ICC studies of ROS1
D4D6 have been reported in literature. CBs as well as non-
CB specimen immunostaining has shown sensitivities of 88–
100% and specificities of 92–98% (21). In another study, ICC
using the D4D6 antibody on an automated immunostainer was
used on cytological specimens in the routine diagnostic setting.
ROS1 ICC was tested on 295 NSCLC patients. The sensitivity,
specificity, and positive and negative predictive values for ROS1
ICC compared with the final ROS1 status all were 100% (22).

Another ROS1 antibody (SP384) has been developed and
studies reported high sensitivity and specificity, but data on
cytology samples are not available (23).

ICC for RET Rearrangements
In NSCLC, chromosomal rearrangements involving RET
gene represent a small percentage of patients (1–2%). At
the beginning, RET rearrangements in NSCLC works have
been reported to be more common among never-smokers
with the adenocarcinoma histologic subtype. Retrospective

1https://www.fda.gov/drugs/resources-information-approved-drugs/fda-

approves-crizotinib-capsules.

consequent analysis demonstrated that patients with RET
rearrangements had significantly more poorly differentiated
carcinomas compared with ALK positive patients. Very recently,
thyrosine kinase inhibitors as Selpercatinib and Vandetanib have
been proven to be efficacious in RET-positive NSCLC patients.
Regarding the possibility to use IHC, in research, the most used
clone is EPR2871 antibody. Yang et al. showed that the sensitivity
of IHC depends on the fusion partner. KIF5B sensitivity was
highest (100%), followed by CCDC6 (88.9%) and NCOA4 (50%).
RET IHC specificity was 82% (24). No reports are published, yet,
about ICC.

ICC for NTRK Rearrangements
Recently, NTRK family gene novel fusions have been described
in a subset of tumors. Chromosomal translocations involving
NTRK1, NTRK2, and NTRK3 genes cause a constitutive
activation and aberrant expression of TRK kinases in a series of
different cancer types. NTRK alterations are very rare in most
common malignancies, ranging between 0.1 and 2% according
to the tumor type. A selective neurotrophic tyrosine receptor
kinase (NTRK) inhibitor, larotrectinib, has been approved for
NTRK-positive patients by FDA.

In NSCLC patients, these fusions occur in a very small
group of patients (<1%) (25). Different IHC antibodies have
been evaluated in literature and used as screening tool (26, 27).
In fact, there are antibodies against NTRK proteins (Trk-A
or Trk-B), antibodies against common amino acid sequences,
found in all Trk proteins (pan-Trk antibodies), and antibody
cocktails. The most well-studied and reported clone is the
pan-Trk antibody EPR17341 (Abcam and Roche/Ventana). The
antibody recognizes a homologous region of Trk-A, Trk-B, and
Trk-C near the C-terminus (28). In lung carcinomas, NTRK
IHC using the EPR17341 clone shows a sensitivity of 87.5%
and a specificity of 100%. However, the positivity, confirmed
by second technology, is very rare, accounting for <1% (28).
The staining intensity is variable; most studies reported diffuse
positivity in neoplastic cells, but for some authors, a case can
be considered positive with at least 1% of positivity. Indeed,
the immunohistochemical staining pattern has been reported to
correlate with a specific genic rearrangement and fusion partner.
Furthermore, IHC seems to have higher specificity in some tumor
histotypes in lung, colon, and thyroid and less specificity for
NTRK3 fusions. Recently, the European Society for Medical
Oncology (ESMO) proposed an algorithm for the NTRK fusion
detection. Strong and diffuse cytoplasmic staining should be
considered a surrogate of NTRK1/NTRK2 fusions while nuclear
positivity should be a surrogate of NTRK3 fusions. Molecular
testing is required for confirmation for weak cytoplasmic staining
neoplasm (29).

Regarding cytological samples, these biomarkers have been
tested on histological samples, and cytological specimens were
excluded from clinical studies. CBs, however, could be of use
for studying NTRKmolecular status. Alcohol-fixed direct smears
have not been used for NTRK ICC. Furthermore, direct smears
can be utilized for DNA extraction for molecular approaches as
targeted NGS. However, at the present time, there are no studies
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FIGURE 1 | An ALK-positive case detected on lung adenocarcinoma cell block. H&E staining and FISH.

published about the use of cytological samples for NTRK fusions,
detected by ICC, FISH, and MPS.

Fluorescence in situ Hybridization
The FISH assay is widely applied to detect rearrangements, using
dual-labeled, break-apart probes. This technique does not require
an a priori knowledge of the fusion partner. Direct smears or
CBs or LBC samples are currently being used for FISH assays.
Nuclei on direct smears are well-preserved, which allows the true
number of FISH signal detection on neoplastic cells and avoids
signal loss from truncation artifacts.

FISH is considered the gold standard for a lot of cases and
can easily find amplification, rearrangements, and polysomy.
However, it does not identify the exact fusion variant. Although
multiplexing analysis has been reported, FISH usually requires a
single test for each gene to be analyzed.

Of note, break-apart probes cannot identify small
intrachromosomal rearrangements, and not all known DNA
rearrangements produce an expressed fusion transcript.

This is widely reported especially for EML4-ALK variants of
fusion (30, 31).

In NSCLC, for ALK or ROS1 or RET fusions, FISH testing
has long been considered a gold standard. FISH is positive when
rearrangement is present in at least 15% of cancer cells. In
ALK rearrangement positive specimens, nuclei show “broken-
apart” red and green signals, which are separated by at least
two signal diameters. However, if there is ALK deletion, nuclei
will show single red signals (Figure 1). Normal cells have yellow,
intact signals.

In specimens positive for ROS1 and RET, there is either
the classical pattern—one fusion signal (native ROS1/RET) and
broken-apart green and red signals—or the atypical pattern—one
fusion signal (native ROS1/RET) and one green signal without
red signal (Figure 2). Regarding NTRKs, it is necessary to study

with distinguishing probes NTRK1, NTRK2, and NTRK3. This
requires more samples, considering that multiplexed FISH is not
possible at the present time and requires >1 assay to cover all
NTRK gene fusions. As for the other genes described, a case is
considered as positive with more than 15% of split signals.

FISH analysis can be performed on CB, Diff-Quik, and
Papanicolaou-stained smears, and ThinPrep slides. CBs have
been widely used for ALK/ROS1 rearrangement analysis, because
the histological protocol can also be validated on this material.
Ethanol-based fixation of cytologic smears is also feasible for
FISH assay. For the analysis, the selection of an area of the
smear where cells did not overlap is important. In this way,
entire and individual nuclei can be analyzed; areas of nuclear
debris and overlapped nuclei should be avoided. To assess
FISH signals, at least 100 tumor cells with entire nuclei on a
monolayered area should be considered. An automated or semi-
automated platform with dedicated software for analysis should
be encouraged (32).

Zito Marino et al. described the use of multiplex FISH
with simultaneousALK rearrangement and ROS1 rearrangement
analysis on a single slide, using cytology material (33). It is
reported that dual ALK/ROS1 FISH probe test results were fully
concordant with the results of previous single FISH tests of
ALK/ROS1 on two different slides, without false negativity and
false positivity. Indeed, multiplexed ALK/ROS1 FISH test showed
agreement with IHC (33).

However, FISH requires expertise and is relatively costly and
time-consuming, leading to a long turnaround time. Moreover,
the advanced equipment necessary for this procedure is not
available in all laboratories.

Indeed, the performance of FISH depends on some
preanalytical factors such as time of fixation and fixative
types. It should be noted that false-positive and false-negative
FISH results, even by experienced laboratories with microscope
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FIGURE 2 | A ROS1-positive case detected by FISH on lung adenocarcinoma cell block. H&E and FISH.

equipped with dedicated software program such as the FDA-
approved BioView scoring system (Abbott Molecular, Abbott
Park, Illinois), have been reported (34). Currently, a positive cell
rate near 15%, which is considered “borderline,” needs additional
analysis, especially in young patients (35, 36).

Reverse Transcription-Polymerase Chain
Reaction
RT-PCR is a high-specificity technique that uses specific primers
to check fusion transcripts at RNA levels. Primer pairs specific for
the known fusion are necessary for the investigation and high-
integrity RNA obtained following an immediate extraction of
nucleic acid from fresh and unfixed material. It is known that
RT-PCR results may not always be informative when RNA is
extracted from FFPE samples such as CBs. Archival cytological
slides and brush material can be used for RNA direct extraction.
However, the RNA quality depends on inadequate fixation or
prolonged tissue ischemia, and these preanalytical factors can
cause RNA degradation.

RT-PCR assays, even when multiplexed, cover only the most
common fusion variants and those that the assay was designed to
identify, missing all the unknown variants (37).

This is particularly true in NSCLC where ALK and ROS1
rearrangements occur with known and unknown gene partners,
leading to a lot of fusion variants, so that RT-PCR likely misses
rare variants (38). Furthermore, the possibility of evaluating
the 3’−5’ imbalance of these genes should overcome it as
reported in literature by the European Thoracic Oncology
Platform Lungscape Project work (39). One of the kits available
for ALK detection is the ALK RGQ RT-PCR test (QIAGEN

Manchester, UK), while for ROS1 rearrangements, some authors
utilized the QIAGEN OneStep RT-PCR kit (Qiagen, Hilden,
Germany). The use of RT-PCR for NTRK rearrangement
detection has been reported in thyroid carcinoma, salivary
and breast secretory carcinoma, congenital fibrosarcoma, and
glioblastomas. However, the variability and the complexity of
these rearrangements together with previously described limits
restricted its use in clinical settings.

The current approach and guidelines suggest not to use RT-
PCR as an alternative to IHC or FISH, but as an additional
method in the rare discordant IHC and FISH cases (7).

nCounter System—NanoString
Technologies
An alternative method to detect fusion is the nCounter system
(NanoString Technologies). It is a fast hybridization method that
uses low RNA quantity to study gene fusions. Each target of
interest is detected by a unique pair of reporter and capture
probes whose sequences are adjacent and complementary to
a specific RNA messenger. The reporter probe is linked to a
digital color barcode and the capture probe is biotinylated. In
a multiplex reaction, each pair of probes is hybridized with
the targeted messenger RNA. After the immobilization of the
hybridized complexes, a phase of elongation occurs to enable the
detection and then counting of specific fluorescence barcodes is
made (40).

NanoString gene fusion analysis is based on a dual evaluation:
assessment of the 30- and 50-gene region imbalance and
transcripts using target-specific probes, and detection of known
fusion. This system shows a high specificity and sensitivity,
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with a good throughput, analyzing up to 800 targets for 12
samples simultaneously.

In NSCLC, it is possible to detect at the same time, in a
few working days, ALK, ROS1, RET, BRAF, and MET proto-
oncogene (MET)-skipping transcripts (41).

Most analyses using the NanoString method have been made
on histological specimens; however, it may be well-applied also
on cytological ones as suggested by Sgariglia et al. (42).

Data from literature reported high concordance between
nCounter RNA gene fusion assay results and IHC, FISH, and
RT-PCR in NSCLC cases (43–45).

Massive Parallel Sequencing
MPS leads the study of multiple mutations in multiple genes in
different patient specimens in a single run. In the recent past,
the high costs of this technology limited its development and it
was feasible only in dedicated large diagnostic centers. However,
the commercially available targeted panels (allowing to sequence
specific areas of the genome and detecting known and novel
variants within the region of interest) with dedicated automated
bioinformatics pipelines lead the diffusion of MPS assays (46). In
fact, in the past, MPS was mainly used in research to study the
comprehensive whole genome or transcriptome, while, recently,
the use of targeted panels with limited numbers of gene of interest
to sequence has brought it into clinical practice. It is also possible
to discriminate point mutations, insertions, deletions, and copy
number variations at the same time. In the case of fusion gene,
it detects known and unknown rearrangements. This possibility
is important for cytological material with limited amount of
neoplastic cells. Regardless of the specific features of platform
used, the gene fusion detection workflow has sequential phases:
DNA library construction, single-fragment clonal amplification,
MPS, and sequencing data analysis with the informatics pipeline.
The most widely used MPS assays are the Illumina platforms
(San Diego, California), the IonTorrent series (Thermo Fisher
Scientific, South San Francisco, California), and the Qiagen assay
(GeneReader, Qiagen, Hilden, Germany). They are different for
run time, DNA/RNA input requirements, panels available, target
enrichment, sequencing chemistry, and cost (47).

In clinical routine, gene fusions can be analyzed by MPS
at DNA or RNA levels, and in both cases, targeted panels
are considered better than non-targeted, largest gene panels.
Furthermore, some panels are commercially available, some of
which are approved for diagnostic use or can be customized.
Almost all panels analyzed in literature have a good agreement
with other methods such FISH and IHC (31, 48, 49).

Cytological samples can be used to detect deletions, point
mutations, and gene rearrangements by MPS. Several studies
demonstrated the possibility to extract high-quality RNA forMPS
analysis. In a study, Velizheva et al. showed the feasibility of non-
formalin cytology specimens for the simultaneous MPS testing of
lung adenocarcinomas by amplicon resequencing panels. Using
direct smears for RNA-based MPS analysis, they reported high
sensitivity (100% for DNA and RNA) and specificity (96 and
100% for DNA and RNA) (50).

There are different approaches to study gene fusion: RNA
and/or DNA approaches.

RNA-based assay detects only expressed fusion genes and can
discriminate splicing isoforms, with a quantification of fusion
transcripts. RNA sequencing is not affected by intronic regions
but RNA extraction is more complicated than DNA, especially
purification from FFPE specimens, as it can be highly degraded
with the possibility to invalidate the run (50). However, in
this setting, cytological samples as direct smears instead of CB
preparation improve the adequacy of cytological material for
RNA fusion testing for predictive biomarkers, as reported (51).

DNA-based assay does not need an additional RNA
purification step and allows the detection of the exact gene
fusion breakpoints together with other alterations such as
single nucleotide variants, indels, copy number variations, and
duplication. However, the evaluation of the rearranged locus
expression is not possible. Furthermore, the sequencing results
can be affected by detection of some fusion events involving
intronic regions, which can be extremely large with repetitive
sequences. This is particularly true for some genes such as
NTRK2 and NTRK3.

The possibility to use targeted panels in clinical practice has
been revolutionary. It is faster, it requires a lower input of
starting material, data analysis and result interpretation are not
so difficult, and analysis is based on a limited number of clinical
valuable targets.

Another important point is that DNA- or RNA-targeted
panels for gene fusions are amplicon-based and hybrid-capture.
The hybrid-capture technique needs a gene-specific enrichment
by a hybridization step with probes complementary to the
regions of interest. The amplicon-based approach utilized
primers specific for each target, depending on a multiplex
PCR (mPCR). For gene fusion detection, the amplicon-based
method is one of the most common technique and different
commercially available and custom panels have already been
reported and validated.

Classical mPCR allows the discovery of known fusion variants,
and it is based on the use of primers with exon–exon fusion
combinations. Indeed, RNA-based fusion panels also include
testing for expression imbalances between 50 and 30 regions
of the target genes. In this way, it allows rearrangement
identification even if the fusion partner is not included in the
panel or unknown. Study of comparisonwith FISH, IHC, and RT-
PCR showed that this test has a good concordance and in some
cases >90%. In general, for gene fusion analysis, amplicon-based
assay needs RNA purification and implies the use of combined
DNA and RNA NGS tests. The main problem is that, in some
cases, it could be difficult to separate tissue sections and obtain
enough material for analysis (52).

The hybrid-capture approach requires a gene-specific
enrichment by a hybridization step with biotinylated DNA or
RNA probes specific for the regions of interest. After DNA
extraction, probes are complementary to intronic, exonic, and
intergenic regions, whereas if RNA is analyzed, probes target
only exonic regions. This method allows the identification of
known and novel fusion variants for any gene targeted by the
capture panel. Novel fusion genes are not discovered, even if at
least one of the fusion partners has to be present on the target
panel. There are commercially hybrid-capture panels specific for
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RNA available from Illumina (i.e., Trusight RNA fusion panel)
and Agilent (i.e., SureSelect all-in One Solid tumor).

In the setting of gene fusion analysis, DNA hybrid-capture
panels are more common than the RNA ones. At this moment,
in clinical practice, there are two DNA hybrid-capture panels
approved by the FDA: the Memorial Sloan Kettering (MSK)
Integrated Mutation Profiling of Actionable Cancer Targets
(IMPACT) and the FoundationOne CDx—Foundation Medicine
(Roche). These panels allow one to study mutations, copy
number alterations, and rearrangements in 468 and 324 cancer-
associated genes, respectively, besides the evaluation of tumor
mutational burden (TMB) and microsatellite instability (MSI).
In comparison to FoundationOne CDx, the MSK-IMPACT
panel needs the simultaneous analysis of tumor and normal
DNA. Other smaller DNA-targeted panels have been analyzed
on clinical samples with good sensitivity and specificity and
requiring 50–250 ng of DNA input (52).

Furthermore, this approach has also been specifically applied
on some clinical samples such as Endobronchial Ultrasound
Guided Transbronchial Needle Aspiration (EBUS). In a recent
study, Xie et al. evaluated 85 EBUS specimens using the Lung
Core 56 gene panel (Burning Rock Biotech; Asia-Pacific). They
found 77 samples to be adequate when the amount of tumor cells
was very low (5%) (53). In an another study, Ruan et al. (54)
analyzed 108 malignant effusions of lung cancer patients. They
described the use of a panel including 17 lung cancer-associated

genes, and they successfully identified both gene rearrangements
and mutations.

The gene fusion analysis at the DNA level offers important

advantages: DNA is more stable than RNA and a unique NGS
test can allow a complete tumor molecular characterization.

Sensitivity of DNA-based NGS, however, is lower if fusion
breakpoints involve long intronic regions that are not covered by
hybridization-capture probes.

In general, for gene fusion analysis, the MPS approach
allows more target analysis with sparing material with

an acceptable turnaround time. It has a great sensitivity

regardless of the material samples utilized (cytology,
plasma, biopsies, surgical, or fresh samples), but it
needs an appropriate validation procedure and protocol
optimization, available interpretive software and bioinformatic
support, and worker expertise. Finally, MPS allows
incorporation of newly discovered biomarkers in the
clinical practice, and for gene fusion analysis, this is of
great importance (55).

CONCLUSIONS

In summary, whether gene fusion analysis is done individually
or in a panel will lead to better prognostic and therapeutic
stratification in NSCLC patients in a routine clinical setting.
Cytological sampling is an appropriate first approach to
have material in small lesions and/or in cancer patients
unsuitable for surgical procedures (56). Although cytology
shows intrinsic limitations, the possibility to obtain CB from
cytological material may enhance the diagnostic cytology rate
and allow the application of ancillary techniques, validated on
FFPE samples, to study predictive biomarkers (57). Different
technologies are available in studying gene fusions such as
ICC or RT-PCR or FISH and MPS approaches. Considering
that many new drugs targeted fusion proteins, cytological
samples can be of use to detect gene fusions not only in lung
carcinomas but also in other solid and lymphoproliferative
tumor patients.
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