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A B S T R A C T   

Background: Genomic variations may cause deleterious effects on protein functionality and perturb biological 
processes. Elucidating the effects of variations is critical for developing novel treatment strategies for diseases of 
genetic origin. Computational approaches have been aiding the work in this field by modeling and analyzing the 
mutational landscape. However, new approaches are required, especially for accurate representation and data- 
centric analysis of sequence variations. 
Method: In this study, we propose ASCARIS (Annotation and StruCture-bAsed RepresentatIon of Single amino 
acid variations), a method for the featurization (i.e., quantitative representation) of single amino acid variations 
(SAVs), which could be used for a variety of purposes, such as predicting their functional effects or building 
multi-omics-based integrative models. ASCARIS utilizes the direct and spatial correspondence between the 
location of the SAV on the sequence/structure and 30 different types of positional feature annotations (e.g., 
active/lipidation/glycosylation sites; calcium/metal/DNA binding, inter/transmembrane regions, etc.), along 
with structural features and physicochemical properties. The main novelty of this method lies in constructing 
reusable numerical representations of SAVs via functional annotations. 
Results: We statistically analyzed the relationship between these features and the consequences of variations and 
found that each carries information in this regard. To investigate potential applications of ASCARIS, we trained 
variant effect prediction models that utilize our SAV representations as input. We carried out an ablation study 
and a comparison against the state-of-the-art methods and observed that ASCARIS has a competing and com-
plementary performance against widely-used predictors. ASCARIS can be used alone or in combination with 
other approaches to represent SAVs from a functional perspective. ASCARIS is available as a programmatic tool 
at https://github.com/HUBioDataLab/ASCARIS and as a web-service at https://huggingface.co/spaces/HUBio-
DataLab/ASCARIS.   

1. Introduction 

Nonsynonymous single nucleotide variations have been associated 
with diseases [1,2] due to their effects, such as perturbing biological 
processes and impairing molecular functions of proteins by changing 
their stability or interactions [2–12]. Interpreting the effect of variations 
is important for understanding diseases of genetic origin, proposing 
effective treatment strategies, and developing novel biotechnological 
products [12]. High-throughput technologies have been producing vast 
amounts of variation data that awaits interpretation. However, 

experimental investigation of these variations remains challenging due 
to extensive resource-centric requirements such as labor and time. For 
this reason, accurate computational methods are necessary for priori-
tizing variants to direct experimental analysis and expedite validation. 
Computational approaches have been used in variation analyses, yet 
most of the research so far has focused only on predicting the effects of 
variation. On the other hand, recent developments in artificial 
intelligence-related technologies have led to a surge of new algorithms 
and methods to be used in bioinformatics and computational biology 
[13]. For these algorithms/methods to process biological entities, these 
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entities must be numerically represented in a meaningful manner. 
Therefore, there is a current need for new approaches to yield accurate, 
comprehensive, and reusable numerical representations (i.e., feature 
vectors) of sequence variations. 

There are numerous computational methods/tools for predicting the 
effects of variations at the level of genes or proteins [3,14–41]. Most of 
these methods/tools aim to answer the question of whether a given 
substitution (or indel) can be deleterious at the molecular level and/or at 
the whole organism scale, by utilizing the available biological infor-
mation. These methods differ regarding the employed features and 
implemented algorithmic techniques (please see Supplementary Infor-
mation S1 for a review of variant effect prediction methods/tools). One 
of the current and prevailing issues in this regard, especially associated 
with machine learning-based approaches, is the interpretability of re-
sults [13]. It is crucial for a researcher, the tool’s user, to comprehend 
why the method predicted that specific outcome. Another critical point 
here is the input data and its featurization. The choice of source/input 
feature type(s) and the dataset are at least as important as the algo-
rithmic approach used. In this regard, types of features that are unex-
plored in the framework of variant modeling are potential subjects of 
investigation, where they can be combined with traditional approaches, 
with the ultimate aim of constructing new models with performances 
that are sufficiently high to effectively aid clinical decision-making. 

Residue/region-specific annotations of proteins (e.g., nucleotide/ 
DNA binding regions, active sites, modified residues, motifs, domains, 
etc.) provide crucial information about both their molecular functions 
and the biological mechanisms in which they are involved. This 
knowledge is collected, organized, and presented to the user in a stan-
dard format in protein-centric resources such as the UniProt database 
[42]. Especially, the ontology-based and protein-centric versions of 
these annotations (e.g., Gene Ontology term associations of whole pro-
teins) have been studied within the context of predicting functions [43, 
44] and phenotypic implications [45] of proteins; however, they are 
under-explored in the framework of variant modeling, with only a few 
examples [14,46]. Essentially, there is a correlation between the effect 
of a SAV and its correspondence with a functional region on the 
sequence. Hence, residue/region-specific protein annotations hold great 
potential in terms of enlightening the functional implications of 
sequence variations. 

In this study, we propose ASCARIS (Annotation and StruCture-bAsed 
RepresentatIon of Single amino acid variations), a new function-centric 
featurization approach to represent SAVs based on their spatial corre-
spondence with residues/regions of functional importance, such as do-
mains, active sites, binding sites, disulfide bridges, etc. Our hypothesis is 
simply that mutations that directly correspond to functionally important 
sites/regions in proteins (or mutations that are proximally located to 
these functional regions in the 3-D space) are more susceptible to 
causing deleterious effects, since these localized roles can easily be 
disrupted by the respective amino acid change. The originality of our 
work derives from the investigation of positional functional annotations 
of proteins and their integration with more conventional features (i.e., 
physicochemical and structural descriptors) for the construction of 
concise, effective, interpretable, and reusable variant representations. 

We incorporated 30 different types of protein sequence annotations 
from UniProtKB (the full list is provided in Table 1). SAVs rarely 
correspond directly to functionally annotated positions because of their 
sparse nature. Due to this, we also accounted for the spatial distance 
between the SAV and the annotated positions/regions by utilizing the 
coordinates from the 3-D structure of the protein and incorporated this 
distance-based information into our variation feature vectors. Further-
more, we included amino acid-specific physicochemical and structural 
changes caused by these SAVs such as polarity, volume, and accessible 
surface area, together with the location of mutations in the structure, 
with the aim of characterizing variations in a more context-dependent 
manner. To obtain 3-D features, we utilized two different tracks; (i) 
PDB + homology modeling, and (ii) AlphaFold2 tool’s structure 

predictions. The latter allowed the extension of our variant featurization 
method to proteins with completely unknown 3-D structures. 

ASCARIS is not a variant effect predictor, in particular. Nonetheless, 
as an example application of the proposed method, we trained machine 
learning-based classification models (using the 68-dimensional numer-
ical features as input vectors, which are obtained from ASCARIS output 
data tables -originally composed of 74 columns/dimensions- by 
removing the 5 meta-data columns and the column representing all 
available domain annotations) to predict the effects of SAVs as delete-
rious or neutral. We trained and validated prediction models with more 
than 100,000 variation data points collected from the UniProtKB [42], 
ClinVar [47] and PMD [48] databases, and compared the predictive 
performance with state-of-the-art variant effect predictors. The sche-
matic representation of the study is given in Fig. 1. One of the main 

Table 1 
Types of positional annotations from the UniProt database that are incorporated 
into the proposed SAV representations.  

Annotation Class Annotation Type Description 

Region Coiled Coil Positions of regions of coiled coil within 
the protein 

Motif Short sequence motif of biological 
interest 

Region Region of interest in the sequence 
Repeat Positions of repeated sequence motifs or 

repeated domains 
Zinc Finger Position(s) and type(s) of zinc fingers 

within the protein 
Calcium Binding Position(s) of calcium binding region(s) 

within the protein 
DNA Binding Position and type of a DNA-binding 

domain 
Nucleotide 
Binding 

Nucleotide phosphate binding region 

Intramembrane Extent of a region located in a 
membrane without crossing it 

Transmembrane Extent of a membrane-spanning region 
Topological 
Domain 

Location of non-membrane regions of 
membrane-spanning proteins 

Sites Active Site Amino acid(s) directly involved in the 
activity of an enzyme 

Binding Site Binding site for any chemical group 
Metal Binding Binding site for a metal ion 
Site Any interesting single amino acid site on 

the sequence 
Amino Acid 

Modification 
Cross-link Residues participating in covalent 

linkage(s) between proteins 
Disulfide Bond Cysteine residues participating in 

disulfide bonds 
Glycosylation Covalently attached glycan group(s) 
Lipidation Covalently attached lipid group(s) 
Modified Residue Modified residues excluding lipids, 

glycans and protein cross-links 
Variants Natural Variant Description of a natural variant of the 

protein 
Mutagenesis Site which has been experimentally 

altered by mutagenesis 
Secondary 

Structure 
Beta Strand Beta strand regions within the 

experimentally determined protein 
structure 

Helix Helical regions within the 
experimentally determined protein 
structure 

Turn Turns within the experimentally 
determined protein structure 

Molecule 
Processing 

Peptide Extent of an active peptide in the mature 
protein 

Pro-peptide Part of a protein that is cleaved during 
maturation or activation 

Signal Sequence targeting proteins to the 
secretory pathway 

Initiator 
methionine 

Cleavage of the initiator methionine 

Transit Peptide Extent of a transit peptide for organelle 
targeting  
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advantages of our method is that it practically incorporates 
structure-related information for variant modeling using fundamental 
properties and residue/region-based functional features without costly 
molecular calculations and sequence alignments. A further advantage of 
our method is that it produces interpretable feature vectors, where each 
dimension corresponds to a predefined structural or annotation-based 
property. Our alignment-free featurization approach can be used to 
represent SAVs as concise numerical vectors to be used in various types 
of computational approaches, e.g., combining them with traditional 
conservation-based features under ensemble methods to predict the ef-
fects of variations with elevated performance and/or coverage, or as 
part of multi-omics-based datasets in large-scale integration and 
modeling of biomedical data. 

2. Methods 

2.1. Data 

The variation datasets were retrieved from three databases, namely 
UniProt, ClinVar, and Protein Mutant Database (PMD). To be able to use 
variation data points from different databases together, we grouped 
each variation into one of the two classes, namely “neutral” and “dele-
terious”. From UniProt’s (v2019_01) human variation (“humsavar”) 
dataset (the current link as of 2023: https://ftp.uniprot.org/pub/data-
bases/uniprot/current_release/knowledgebase/complete/docs/humsa-
var), we obtained 40,028 polymorphisms and 29,553 disease associated 
SAVs for 12,519 human protein entries. Here, we labeled poly-
morphisms as neutral mutations, while variations associated with a 
disease condition are labeled as deleterious. 

The second database, ClinVar, was used to retrieve clinically re-
ported variants. Among the variation data points in the ClinVar database 
version 1.61 (downloaded from: https://ftp.ncbi.nlm.nih.gov/pub/ 

Fig. 1. The overall workflow of the proposed variant featurization/representation method, ASCARIS, together with its application to the problem of variant ef-
fect prediction. 
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clinvar/tab_delimited/), “pathogenic” and “likely pathogenic” variants 
were considered members of the deleterious class, whereas, “benign” 
and “likely benign” variants were considered neutral. The rest of the 
variation data points in ClinVar were discarded since their annotated 
effect was considered ambiguous. ClinVar variant data points were 
mapped to UniProt protein sequences using Ensembl transcript IDs and 
the bioDBnet database [49]. As a result of these filtering and mapping 

operations, 17,945 benign (i.e., neutral) and 41,434 pathological (i.e., 
deleterious) mutations were retrieved for 4132 human proteins. 

The last data source, Protein Mutant Database (PMD), includes 
manually curated mutations and their consequences regarding protein’s 
stability, interaction(s) or functional changes, in terms of the severity of 
the effect. In the PMD SAV dataset (downloaded on February, 2020 from 
http://pmd.ddbj.nig.ac.jp, which is not accessible as of 2023), [+ +] 

Fig. 2. Dataset construction and featurization steps: (a) the sources of structural information and statistics about the data from each source, (b) the representation of 
different types of features on SAV representations, (c) mapping of positional sequence annotations and the SAV onto the 3-D protein structure, and part of the SAV 
feature vector that corresponds to these annotations. 
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and [+ ] signs denote an increase in the activity/stability, whereas “[–]” 
and “[-]” denote a decrease in the activity/stability, “[0]” denotes 
complete loss of function, and “[= ]” denotes no change. An increase or 
a decrease in the activity, no matter what the magnitude is, has a po-
tential to impair the protein’s native state. For this reason, variations 
with increase and decrease in activity and/or stability, along with the 
ones with complete loss of function were recorded as deleterious, and 
no-effect cases were recorded for the neutral class. We collected 15,348 
neutral and 33,372 deleterious variations for 3401 distinct proteins 
(human and model organisms) from PMD. 

To prepare the finalized dataset, we removed duplicate data points 
(Fig. S1a). Since different resources’ approaches to variant interpreta-
tion change, there were also a few conflicting cases, in terms of the 
annotated effect of these variations, i.e., labeled as neutral in one source, 
and deleterious in another (Fig. S1b). Such conflicting data points were 
removed from our dataset. We also eliminated amino acid changes that 
resulted in a termination codon as they were highly biased to be dele-
terious. After these filtering operations, our dataset was composed of 
144,075 SAVs (76,951 deleterious and 67,124 neutral) on 15,402 
distinct proteins. Finally, we removed SAV data points for which 3-D 
structural information cannot be obtained (details of this elimination 
procedure is given below), making the finalized dataset of 96,274 SAVs, 
of which 52,512 are deleterious and 43,762 are neutral. All relevant 
data, including input datasets and generated data (e.g., SAV represen-
tation vectors), can be accessed on our GitHub repository at https:// 
github.com/HUBioDataLab/ASCARIS. 

2.2. Incorporation of structural information 

We obtained structure files for the proteins in our dataset from 
Protein Data Bank (PDB) [50]. For the variation data points for which 
the corresponding protein’s structure has not been solved at all, or that 
the available structures do not span the region of the protein sequence 
where the variation is located, homology models from SwissModel [51] 
and ModBase [52] have been incorporated, in respective order. In the 
case of availability of multiple PDB structures or models that satisfy the 
above-mentioned conditions, the structure with the highest resolution or 
the model that possesses the highest quality score is retained. Variations 
without any corresponding structure or model were eliminated from the 
dataset. Fig. 1 and Fig. 2a show the workflow of the structure incorpo-
ration process, including the number of variation data points mapped at 
each step. 

As an alternative version of ASCARIS, we utilized the AlphaFold2 
tool’s [53] protein 3-D structure predictions instead of PDB and ho-
mology modeling. AlphaFold2 is a deep learning-based method devel-
oped by DeepMind that is capable of predicting monomer protein 
structures from primary amino acid sequences with high accuracy [53]. 
We used the AlphaFold version of ASCARIS mainly to assess its perfor-
mance and compare it against the original version. For this purpose, we 
downloaded structure models for the reference human proteome 
(release 2021_03) from AlphaFold-DB (at https://alphafold.ebi.ac.uk/). 

2.3. Featurization 

ASCARIS representations contain information regarding multiple 
types of data including protein domains, physicochemical properties, 
structural location categories (i.e., core, interface or surface) and 30 
different types of functional residue- or region-based annotations. This 
way, each SAV data point is represented by a 74-dimensional feature set 
including the meta-data columns (e.g., accession of the protein, wild 
type and mutated residues, position, etc.). Table S1 and Fig. 2b displays 
the names, descriptions, categories and number of dimensions that 
correspond to each type of feature on the representation. SAV features 
vectors that are used in ML-based variant effect prediction models are 
68-dimensional and obtained by removing the five meta-data columns 
and the column representing all available domain annotations from the 

ASCARIS output data tables. We provided detailed information 
regarding each feature below. 

2.3.1. Protein domains 
Domain region annotations of proteins were retrieved from InterPro 

[54]. In some cases, multiple domains from the same hierarchy (i.e., a 
group of domain entries that roughly define the same structure with 
different levels of specificity) are annotated to the same region of a 
protein. In such cases, the one at the highest level in the hierarchy (i.e., 
the most generic one) was selected and other domain annotations were 
discarded. In the case of multi-domain proteins, only the domain that 
spans the site of variation is retained. If none of the annotated domains 
spans the position of variation, the one closest to the variation, in terms 
of the number of amino acid positions in-between, was kept and the rest 
were discarded. This way, we retained domain information for 96,131 
SAV data points out of 144,075 SAVs in the raw variation dataset. The 
remaining 47,944 SAV data points have not been associated with any 
InterPro domains. Out of the 96,131 SAVs, 31,893 of them have 
distantly located (i.e., out of region) domains, and 64,238 SAVs are 
found to be within the domain annotated regions. The unique number of 
retrieved domains was 2401. 

Due to the high number of unique domains in our dataset, most of 
which were only encountered in one or a few SAV data points, we per-
formed a statistical analysis using Fisher’s exact test to evaluate their 
significance considering the separation between neutral and deleterious 
SAVs. In other words, we observed the change in the frequency of 
observing deleterious mutations between the cases; (1) when the mu-
tation is on the domain of interest, and (2) when the mutation is not on 
the domain of interest. Details and results of this analysis are provided in 
Supplementary Information S2. Based on the results, we selected the 
most significant domains by taking the p-values into account (Table S2). 
We incorporated the domain information into our SAV features using 
categorical variables, where each domain is encoded by its unique 
InterPro identifier. Domains are incorporated into two different di-
mensions of our SAV features (i.e., data tables): first one considers all of 
the domains (column name: “domains_all”), and the second one only 
considers the statistically significant domains (column name: 
“domains_sig”). The choice of using either one of them is left to the user. 
Throughout this study, we opted for the significant domains while 
constructing our prediction models. 

2.3.2. Physicochemical features 
Physicochemical properties are evaluated at the individual amino 

acid level, considering their property value changes, as the difference 
between the wild-type amino acid to the mutated one. Differences in 
three different physicochemical features, i.e., polarity, volume, and 
composition, together with their consensus, the Grantham Matrix 
Scores, are calculated for each SAV and incorporated into the four di-
mensions of the corresponding feature vectors as real values. Amino 
acid-based volume and polarity values are taken from published data 
[55–57]. The composition is calculated as the ratio between the atomic 
weight of non-carbon atoms and the total weight of carbon atoms in the 
side chain. These values indicate the magnitude of change in terms of 
physical constraints and provide a measure for the similar-
ity/dissimilarity between the changed amino acid and the original one. 

2.3.3. Structural location of the variation 
We incorporated the location of the mutated residue on the structure 

either as core, surface, or interface region since it may provide clues 
about the possible effect of the mutation [58–61]. We deduced this in-
formation from relative solvent accessible surface area (rASA) values. 
For this, we calculated solvent-accessible surface area (SASA) values for 
the residues of interest using FreeSASA [62]. In order to classify residues 
into one of the three groups (i.e., core, interface, and surface), we 
applied a cut-off accessibility value of 5% to select between core and 
surface residues [12,63]. According to this, a residue with a rASA value 
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less than 5% is considered as buried, while a residue with a rASA value 
greater than or equal to 5% is considered to be located at the surface. In 
order to differentiate between surface and interface, we directly 
employed protein-based interface residue information from Inter-
actomeInsider [64]. Here, we selected validated interface residues along 
with high quality ÉCLAIR interface predictions. When a residue, that 
was previously labeled as surface, is listed as an interface residue in 
InteractomeInsider, it is removed from the surface group and placed into 
the interface group. When a previously core-labeled residue is found in 
the interface residue list, it is removed from the core residues group and 
labeled as conflicting. Structural location information is recorded using 
2 dimensions of our variation feature vectors: a 1-D categorical variable 
using core/surface/interface grouping, and a 1-D real-valued variable 
containing the actual rASA values. 42,976 mutations in our dataset were 
found to be in the surface region, 12,900 of them in the core region, and 
5810 in the interface region. 724 mutations were labeled as conflicting. 
For the remaining data points, rASA values could not be calculated. 
Conflicting cases are later merged with those without any SASA values 
and treated as a fourth category. 

2.3.4. Mapping positional sequence annotations 
Sequence annotations were retrieved from the UniProt database 

version v2019_01 for each protein in our dataset. There are 34 different 
types of positional annotations in UniProt, and we selected 30 of them. 
The types and descriptions of these positional annotations are given in 
Table 1. We included the positional annotation data in two different 
ways. First, we identified the annotated sites/regions that directly 
correspond to the SAV positions on the sequence. We incorporated this 
information into our feature vectors by reserving 30-dimensions, where 
each dimension belongs to a different type of positional annotation. We 
used a categorical variable to signify the correspondence between an 
annotation and the SAV of interest, i.e., ‘2′ if the SAV and annotation 
correspond to each other on the same sequence position, ‘1′ if that type 
of annotation exists on the protein of interest but the annotation and the 
SAV are not on the exact same position in the sequence, and ‘0′ if the 
annotation does not exist for that protein at all (Fig. 2c). 

Second, to account for the cases where there is no direct corre-
spondence between the annotation and the SAV, we calculated the 
spatial distance in-between, using 3-D structural information. Incorpo-
ration of this feature is an important element of the ASCARIS framework 
(and also adds value to its novelty), since it provides our model with the 
ability to account for the changes that might occur as a result of larger 
perturbations on the protein. To incorporate this, we identified the 
spatial location of both the SAV and the annotated residue, using the 
sequence-based position information and its structural correspondence. 
Then, we calculated the Euclidean distance between the C-alpha of both 
residues (i.e., SAV and the functionally annotated site/region) on the 3- 
D space in the unit of Angstroms (Fig. 2c). If the annotation is region- 
based instead of site-based, the residue that is in the closest proximity 
to the SAV residue is taken into account. Some of the proteins have 
multiple sites/regions annotated with the same type of positional 
annotation. In such instances, the one closest to the site of variation is 
retained. The proximity information is incorporated into SAV repre-
sentations via 30 additional dimensions, each of which corresponds to a 
different type of annotation, and the value inside is the real-valued 
spatial distance between the SAV and the corresponding annotated 
residue. If there is a direct correspondence between a SAV and an 
annotation, the distance value is recorded as 0. If the annotation type of 
interest does not exist for that protein or its position is outside the 
structurally solved regions of the protein, we impute the corresponding 
cells with the median spatial distance of the respective annotation type 
in the whole SAV dataset. These annotation type-specific mean distance 
values are given in Table S3. Here, we did not use the value zero for the 
imputation in order to distinguish between a missing value and a true 
0 distance (i.e., a case where the variation and the annotation corre-
spond to the same position in the sequence). 

2.4. Machine learning-based classification of variants 

In order to measure the biological relevance of our SAV represen-
tations, we trained classification models that use our representations as 
input and predict the effect of query SAVs as either neutral or delete-
rious. We evaluated the performance of our models, first, via 5-fold 
cross-validation, as reported under Section 3.2.2 and second, over in-
dependent hold-out test datasets for the comparison with state-of-the-art 
methods, which is reported under Section 3.2.3. 8 different metrics are 
used for the evaluation of the performance of prediction models (i.e., 
accuracy, sensitivity/recall, specificity, negative predictive value - NPV, 
precision, F1-score, Matthew’s correlation coefficient - MCC, and the 
area under the receiver operating characteristic curve - AUROC). Please 
see Supplementary Information S3 for detailed information about the 
metrics. 

In this study, we used the random forest (RF) algorithm for the bi-
nary classification of variation data points. The random forest algorithm 
is an extension of decision trees where multiple trees are built, an 
ensemble of which are used to make a decision [65]. A randomly 
selected subset of a given size is drawn with replacement from the 
original data and trees are built with each dataset separately [64,66]. 
The RF algorithm randomly selects features to be used for splitting at 
each node, thus being less prone to overfitting. 

In the analyses explained in Section 3.2, we used the default hyper- 
parameters of random forest which can be listed as; the number of trees: 
100, the maximum number of decision splits: n-1, and the number of 
predictors to select at random for each split: √p, where n and p repre-
sent the number of observations and the number of predictors, respec-
tively. For the hyper-parameter optimization using grid-search, we 
tested the following values; the number of trees: 50, 150, 300, and 500; 
the maximum number of decision splits: 3, 81, 2187, 96273; and the 
number of predictors to select at random for each split: 2, 8, 24, 68. We 
also employed additional algorithms, such as adaptive boosting (Ada-
boost) [67], logistic regression (LogitBoost) [68], support vector ma-
chines (SVM) [69], and the naive Bayes (NBayes) [70], for algorithmic 
baseline model comparison. 

In this study, Python (v3.7) was employed for data pre-processing 
and analysis, and feature vector construction jobs. MDS and t-SNE al-
gorithms are implemented using Python’s (v3.7) sklearn (v0.21.1) li-
brary. MATLAB by MathWorks is employed for classification model 
development and performance evaluation. As far as we are aware, this is 
the only available and supported implementation to handle both cate-
gorical and real-valued variables in the same feature vector, without any 
limitation on the number of features. 

3. Results and discussion 

3.1. Exploration of the dataset and features 

In this section, we identified and discussed the relationship between 
the effects of variations and their structural and annotation-specific 
properties, to evaluate the biological relevance of incorporating these 
features. After that, we visualized our variation dataset (based on our 
representation vectors) on a 2-D space via dimensionality reduction, to 
observe the distribution of neutral and deleterious variations coming 
from different sources. 

3.1.1. Domain annotation-based evaluation 
We examined the relationship between a variant’s effect and its 

location with respect to annotated domain regions. We formed 3 groups 
for this purpose; “no domain” group signifies SAV data points where the 
corresponding proteins have no domain annotation in InterPro, whereas 
the “within domain” and “out of domain" groups signify the variations 
that are located inside and outside the domain annotated regions on the 
sequence, respectively. All available domain annotations are used for 
this analysis. As observed from Fig. 3a, mutations are more likely to have 
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a deleterious effect when they are located within domain annotated 
regions (61.3%), compared to the variations that remain outside of 
domain regions (30.6%). We also statistically tested this observation 
using Fisher’s exact test and found the difference in deleteriousness to be 
statistically significant at a 99% confidence interval (p-value < 0.01). It 
is expected that a mutation that is within the region of a domain is more 
likely to cause a deleterious effect on the functionality of the protein, 
compared to a mutation in a non-domain (probably disordered) region, 
since domains are the main structural and functional building blocks of 
proteins [71]. It was also observed that the percentage of deleterious 
SAVs among no domain regions (51.9%), which is plausible since it is 
highly probable that these so-called ”no domain” proteins are under-
studied and have domains that are yet to be identified/documented. 
Therefore, many of these SAVs may actually reside in domain regions. 

3.1.2. Physicochemical property-based evaluation 
We analyzed changes in physicochemical descriptor values between 

the wild-type amino acid and the mutated one, in terms of polarity, 
volume, composition, and the Grantham score, which represents the 
consensus of the former three. Since these physicochemical properties 
are given as relative values (i.e., changes occurred due to the variation 
with respect to the wild-type amino acid in that position), their evalu-
ation should be made accordingly. Here, SAVs with large physico-
chemical values indicate significant property changes and, thus, are 
expected to be deleterious, on the other hand, we expect to observe 
neutral variations with a higher ratio in the cases with insignificant 
property value changes. To test this, we applied statistical testing to each 
property independently. 

First, we drew histograms of the value distributions (Fig. S2). Then, 
for each physicochemical property, we labeled each data point with 
conditions as “significant change” or “non-significant change” via 
thresholding using a cut-off value determined with respect to the whole 
value distribution. Thresholds were chosen to leave approximately the 
same number of data points per group (i.e., significant and non- 
significant change). Since the change in polarity, volume, and compo-
sition can also be negative, two thresholds were selected for each 
property type. Data points with polarity values higher than 1.6 or lower 
than − 1.6 are considered for the “significant change” group, while data 
points with polarity values between − 1.6 and 1.6 are considered for the 
‘non-significant change’ group. For the volume property, the threshold 
values are set to − 38 and 38. For the composition property, the 
thresholds are − 0.52 and 0.52. Since the calculation of the Grantham 

score comprises the summation of weighted and squared values of in-
dividual property differences, the minimum value is 0, and as a result, 
only a positive threshold is set, which is 81 (i.e., the median of the 
distribution). The data points in each group are also divided into two 
conditions as deleterious and neutral SAVs. Counts for each group- 
condition combination (e.g., deleterious mutations in the significant 
polarity change group) are obtained and used in Fisher’s exact test to 
calculate p-values of associations between the magnitude of physico-
chemical change and the variant effect. The results, considering all four 
types of physicochemical properties, were found to be statistically sig-
nificant at the 99% confidence interval, with p-values of 0, 0, 
1.5 × 10− 146, and 0 for polarity, volume, composition, and the Gran-
tham score, respectively. These results indicate that physicochemical 
properties can be considered good indicators of the functional effects of 
SAVs. 

3.1.3. Structural location-based evaluation 
Here, we aimed to observe if the location of the mutation on the 

protein structure contains information regarding its effect. For this, we 
grouped variations’ positions on the sequence as core, interface, or 
surface, according to the structural information and relative solvent 
accessible surface area measures (please refer to Section 2.3.3 for more 
information). As observed in Fig. 3b, mutations found in the core and 
interface regions have a higher deleteriousness rate (i.e., 71.7% and 
69.4%, respectively) compared to the ones in the surface regions (i.e., 
48.6%). We also tested this observation using Fisher’s exact test (taking 
into account that the number of deleterious mutations is higher than 
neutrals in the overall source dataset) and found the relationship be-
tween a mutation’s structural location as core, interface or surface is 
significantly related to being deleterious at 99% confidence interval 
with p-values of 0, 2.9 × 10− 141 and 4.6 × 10− 127, respectively. These 
results were expected since core regions are critical in terms of the 
stability of the protein and mutations may have a destabilizing effect 
leading to structural changes [59,60], whereas interface regions are 
important because they play roles in protein-protein interactions and a 
mutation at these regions may prevent the formation of a protein com-
plex or a transient interaction, causing a deleterious effect [59,61]. 
Thus, our results are in correlation with the literature. 

3.1.4. Positional sequence annotation-based evaluation 
Mutations in critical sites/regions in proteins (e.g., active sites, DNA 

binding regions, etc.) are generally more disruptive compared to the 

Fig. 3. . (a) Distribution of neutral and deleterious SAV data points according to their domain region correspondence. Mutations found within the domains tend to be 
more deleterious (61.3%) compared to the ones outside (30.6%), (b) distribution of neutral and deleterious SAV data points according to their location on the 
structure of the protein. Mutations found within the core and interface regions tend to be more deleterious (71.7% and 69.4%, respectively) compared to the ones on 
the surface (48.6%). 
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ones found in other regions. Information related to these important 
functional sites/regions can be incorporated into models using protein 
sequence annotations such as the positional annotations provided by 
UniProt [72]. However, only a small number of proteins are associated 
with a certain type of positional annotation (Fig. 4a). One of the possible 
reasons is that some of these annotation categories are protein 
family/class-specific, such as the active sites of enzymes, and are ex-
pected to be annotated to enzymes only. The second reason is the fact 
that annotations of proteins are incomplete, and further experimental 
and computational analyses are required to increase coverage. Never-
theless, proteins of only 201 SAV data points (out of 96,274) have no 
positional annotation at all in UniProtKB. On average, an annotation 
category is associated with 24% of our dataset. Individual rates are 
shown in Fig. 4a for each type of annotation. 

With the aim of evaluating the effects of mutations in functional 
sites/regions, we extracted the percentage of deleterious and neutral 
mutations in our dataset that corresponded to each of the 30 different 
positional annotation categories explained in Table 1. The results are 
displayed in Fig. 4b, which indicates a prevalence of either being dele-
terious or neutral for most of the categories. Here, variations that 
coincide with 6 annotation categories (i.e., peptide, glycosylation, 
coiled-coil, propeptide, signal peptide, and transit peptide) have higher 
rates of neutral mutations; whereas, rates of deleterious mutations are 
higher for 23 categories. For the category called “natural variation 
sites”, the rates for neutral and deleterious SAVs are equal to each, since 
UniProt lists both disrupting and benign variations together under this 
category. 

The results are as expected for the 23 categories that have higher 
rates of deleterious mutations since, for example, a mutation in the 
active site of an enzyme is highly likely to disrupt the enzymatic func-
tion, and thus, have an overall deleterious effect. Considering those 6 
categories where the rate of neutrals is higher, we can infer that these 
sites/regions are not strongly related to the function of the mature 
protein or SAV does not tstructural properties. For example, coiled coils 
are dynamic and flexible regions, and they differ in terms of both length 
and variability, from being almost invariant to being hypervariable [73]. 
The flexible nature of coiled coils may explain why the percentage of 
neutrality is higher in variations coinciding with these regions. Other 
such categories, e.g., propeptides, signal peptides, and transit peptides, 
function as recognition sites and for targeting proteins, which are 
cleaved during the maturation of the protein. SAVs usually cause a 
partial decrease in the efficiency of the recognition and targeting pro-
cesses since the patterns themselves are variable. Thus, severe impacts 
are rarely observed on the overall protein function [74]. 

In our dataset, 67% of the SAV positions coincide with at least one 
positional annotation (excluding the “natural variant” category anno-
tations), which means that we cannot utilize this information for 33% of 
the data points, to model and predict the effect. On the other hand, even 
if a variation does not directly correspond to an important site/region, 
those that are located proximally to critical positions still tend to disrupt 
the intended function. For example, a mutation in the same pocket as the 
active site of an enzyme, where the mutated amino acid has significantly 
different properties from the wild-type, may have a deleterious effect on 
the enzymatic function. In order to take these cases into account, we 
utilized spatial distances between the SAV and the positionally anno-
tated sites/regions on the 3-D structure of the protein. To observe 
whether the distance data contain information relevant to the effects of 
variations, we calculated the average spatial distances between varia-
tions and each of the 30 positional annotation categories, considering 
the cases where SAVs and annotations are on the same protein, but do 
not coincide with each other on the same residue. We plotted the curves 
for both neutral and deleterious SAV data points in Fig. 4c. Here, it is 
observed that, for most of the annotation categories, average distances 
are lower for deleterious variations compared to neutral ones, which 
indicates that the spatial distance data carry information that can be 
utilized for modeling and predicting the effects of SAVs. 

3.1.5. Visualization of the variation space 
Visualizing high dimensional data in reduced dimensions provides a 

means for exploring the distribution of different properties of the sam-
ples in the dataset. One obvious visualization in our case would be to 
compare the neutral and deleterious SAVs. Another one would be a 
comparison between SAVs from different source databases. For this, we 
conducted a dimensionality reduction analysis using both multidimen-
sional scaling (MDS) [75] and t-distributed stochastic neighbor 
embedding (t-SNE) [76] on our SAV dataset and visualized the results on 
a 2-dimensional space (Fig. S3). Results generally indicated that it is not 
possible to separate neutral and deleterious variations from each other 
at reduced dimensions, indicating the requirement for more sophisti-
cated methods (e.g., machine learning algorithms) to process the data 
and capture the non-linear relationships between data points. Details of 
the dimensionality reduction and visualization analyses can be found in 
Supplementary Information S4. 

3.2. Predicting the Effects of Variations via ASCARIS 

In this section, we evaluate the discriminative power of our SAV 
feature vectors in terms of separating deleterious mutations from neutral 
ones, in the framework of machine learning-based modeling, consid-
ering the PDB and AlphaFold versions of ASCARIS independently. For 
this, we first carried out an investigative (ablation) analysis to observe 
the effect of features, datasets, and algorithms. Afterward, we trained 
and optimized a predictive model using our multi-source variation 
dataset. We then compared the performance of our model against the 
state-of-the-art variant effect predictors on different benchmark data-
sets. Finally, we conducted a use-case analysis on 2 SAVs, the effects of 
which were correctly predicted by ASCARIS. 

3.2.1. Ablation study to investigate features, data sources, and classifiers 
We evaluated the predictive power of different feature types in our 

ASCARIS-PDB and ASCARIS-AlphaFold SAV representations by gener-
ating feature vectors with different feature combinations and training/ 
validating a random forest classification prediction model with each 
version (using our combined SAV dataset of 96,274 data points). We 
then compared the performance results and calculated feature rankings 
to evaluate their importance. We measured the performance of all 
models via a 5-fold cross-validation analysis by keeping the data points 
on each validation split the same between models, and using the metrics: 
AUROC, accuracy, precision, recall, F1-score, and finally MCC, which is 
considered the main metric due to the slight imbalance between neutral 
and deleterious SAVs in some of the test datasets. It is important to note 
that our training data is relatively balanced, therefore, training of our 
model was not affected by such an issue. 

Our first set of models (i.e., p1 and a1) only contained domain 
annotation information, which is incorporated in the form of identifiers 
of InterPro domains where the SAV of interest resides in the protein. This 
model incorporates domain annotations, considering 307 domains that 
were found to be statistically significant in terms of separating neutral 
and deleterious SAVs from each other in Fisher’s exact test analysis 
(please see Methods subsection 2.3.1 and Supplementary Information 
S2). The feature vectors of this model are composed of a single dimen-
sional variable that contains 308 categories (i.e., 307 significant do-
mains displayed in Table S2 and an additional category to accommodate 
the rest of the domains and the “no domain hit” cases). Our second set of 
models (i.e., p2 and a2) incorporates physicochemical properties by 
generating 4-dimensional feature vectors containing real-valued polar-
ity, composition, volume, and Grantham scores. Our third set of models 
(i.e., p3 and a3) is composed of two dimensions related to the location of 
the SAV on the protein sequence: (1) the solvent accessible surface area 
value, and (2) its categorization as “core”, “surface” or “interface”. 

Performance comparison between the first 3 PDB-based models 
(Table 2a) indicated that physicochemical features are notable in-
dicators for variant effect prediction together with domains (MCC: 0.26 
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and 0.24, respectively). These findings are in accordance with the 
literature, as previous studies also highlighted the importance of phys-
icochemical features for variant effect prediction [77] and the usefulness 
of domain annotations in modeling functions [71] and ligand in-
teractions [78] of proteins. As our fourth set of models, we integrated 
features of the first 3 models and trained a new one with these integrated 
features, which resulted in a significant performance increase (MCC: 
0.42 and 0.48 for p4 and a4, respectively), indicating their comple-
mentarity. In the fifth set of models, we utilized positional feature/se-
quence annotations in terms of one-to-one correspondence between the 
annotated positions and SAVs on the sequence. This binary 30-dimen-
sional feature vector resulted in a high performance (MCC: 0.56 and 
0.54 for p5 and a5, respectively) which points out to the effectiveness of 
this approach. This also happens to be the main contribution of our 
study to the literature. Furthermore, adding 30 more dimensions cor-
responding to the spatial distances between the annotated residues and 
the SAV of interest (as our 6th set of models) further increased the 
performance (MCC:0.59 and 0.61 for p6 and a6, respectively). The 7th 
set of models (i.e., p7 and a7) measures the predictive performance 
when the binary positional annotations are added to the p4/a4 models. 
This addition results in a tremendous increase in all of the metrics (MCC: 
0.60 for both p7 and a7) and shows the importance of positional an-
notations. In our 8th and final set of models, we incorporated all features 
in 68-dimensions, which displayed the best performance in terms of all 
metrics (MCC: 0.61 and 0.63 for p8 and a8, respectively). Based on the 
fact that the maximum predictive performance has been achieved by the 
model that incorporates all types of features, we decided to construct our 
finalized variant effect prediction model using all features. 

With the aim of selecting the classification algorithm, we performed 
a cross-validation based analysis to compare the performance of random 
forest classifier (RF), Adaptive boosting (Adaboost), adaptive logistic 
regression (LogitBoost), support vector machine (SVM), naive Bayes 
(NBayes) and fully connected feed forward deep neural networks 
(FFNN). Widely accepted and default hyperparameter values were used 
for all classifiers, such as the maximum number of decision splits: n-1, 
and the number of predictors to select at random for each split: √n (n 
represents the number of predictors/features), the number of ensemble 
learning cycles: 100, minimum number of leaf node observations: 1 for 
all ensemble-based methods, learning rate: 1 for Adaboost and Logi-
tBoost, kernel function: linear and kernel scale: 1 for SVM, and distri-
bution type for categorical and real values predictors: multivariate 
multinomial and Gaussian, respectively. Since the performance of deep 
neural network models are highly dependent on the selected hyper-
parameters, we carried out a Bayesian search-based optimization run 
and found the best parameters as: number of hidden layers: 3, layer 
sizes: [143 64 32], and activation function: sigmoid (default optimiza-
tion algorithm: Levenberg–Marquardt). The results of the 5-fold cross- 
validation are given in Table 2b, which indicates that RF is the most 
successful classifier. With the observation of these results, we decided to 
base our predictor on the RF algorithm. 

Finally, we performed an analysis to observe the performance of the 
models trained on SAV datasets from individual data sources; i.e., 
ClinVar, UniProt, and PMD, to observe which source yields a higher 
generalization power to the model, and evaluate whether combining 
data from 3 different SAV resources under one model, or using only one 
of the data sources, is the better approach for training our final pre-
dictive model. We prepared one test dataset composed of 7694 SAVs 
(8% of the whole combined dataset) by taking a nearly equal number of 

data points from each data source, and used it as a hold-out test dataset 
to calculate the performance of all models. Three training datasets, each 
composed of SAV data points from an individual data resource and 
containing 20,876 SAVs (the size of the smallest individual SAV data-
set), have been prepared. SAVs in the test dataset have already been 
excluded from these training datasets. Three predictive models were 
trained with these datasets. For all of these models, the finalized full set 
of features were incorporated into SAV representation vectors. Table 2c 
shows the performance results of these three individual data resource 
models, along with the model that utilized the combined training 
dataset. According to MCC scores, the combined dataset model provided 
the best performances with 0.61 and 0.63 for PDB and AlphaFold ver-
sions of ASCARIS, respectively (Table 2c). In terms of individual-dataset 
models, the UniProt dataset led to the highest performances (MCC: 0.43 
and 0.42) followed by ClinVar (MCC: 0.34 and 0.40) and PMD (MCC: 
0.13 and 0.13). This could be due to the way SAVs are classified in these 
databases (i.e., UniProt and ClinVar focus on the reported effect in terms 
of associations with diseases, whereas PMD focuses on effects related to 
protein’s structural stability). Since the performance of the model using 
the combined dataset is the best, we based our predictive method on this 
training dataset and used it further in this study. 

An interesting observation here is that ASCARIS-AlphaFold generally 
performs slightly better compared to the PDB version. We believe the 
reason is not related to the quality of the models but their coverage, 
since AlphaFold provides full structural coverage over the entire protein 
sequences, whereas in the PDB version, less than half of the SAVs and 
positional annotations could be mapped to regions covered by a PDB 
model, and the rest were resolved using SwissModel or MODBASE 
models (Fig. 2a). 

3.2.2. Training, validation and evaluation of the finalized model 
We built our finalized variant effect predictor model using all types 

of variables in feature vectors (with significant domains, omitting the 
“all domains” dimension), the merged training dataset from all three 
sources, and the RF algorithm. In these analyses, we did not apply a 
feature selection procedure since the ratio between the number of 
feature vector dimensions (i.e., 68-D) and size of our dataset (i.e., 
~100,000 samples) was acceptable. Due to this, we allowed the ML 
model to automatically select the relevant features from the constructed 
vector. 

We employed a grid-search-based hyper-parameter optimization test 
via 5-fold cross-validation. The evaluated hyper-parameter types and 
their respective values are explained in Section 2.4. The selected values 
at the end of the optimization process are; number of trees: 300, 
maximum number of decision splits: 96273 (size of the whole dataset - 
1), and number of predictors to select at random for each split: 8. The 
detailed results of hyper-parameter optimization tests can be found in 
Table S4. We measured the final performance of our model on a hold-out 
test dataset, which corresponds to 10% of the data points in our original 
dataset. According to the results of this analysis, our ASCARIS-PDB and 
ASCARIS-AlphaFold models perform with; AUROC: 0.89 and 0.90, ac-
curacy: 0.81 and 0.82, recall: 0.85 and 0.88, precision: 0.81 and 0.81, 
F1-score: 0.83 and 0.84, and MCC: 0.62 and 0.64, respectively. 

To explain/interpret our models, we calculated feature importance 
values. Feature importance ranking of the optimized models shows that 
“significant domains”, solvent accessible surface area and physico-
chemical features are the most critically important determinants of the 
decision process (Fig. S4). Positional annotations vary in their 

Fig. 4. . (a) The coverage of each annotation category on the proteins in our SAV dataset (e.g., nearly 23% of proteins in our dataset have at least one active site 
annotation in UniProtKB), (b) the rates of deleterious vs neutral variations for each annotation category, which are calculated considering the SAV data points in our 
dataset that coincide with a positional annotation on the same residue, (c) Mean spatial distances between annotated residues and mutated residues in the structure, 
calculated independently for each annotation category, considering the cases in which the SAV and annotated residue do not coincide on the same residue. In the case 
of the existence of multiple annotations on a protein, only the annotation that is located spatially closest to the mutation of interest is taken into account. Dashed lines 
indicate overall averages calculated by taking the mean of all distances. For the calculation of Euclidean distances between residues, the coordinates of C⍺ of the 
respective amino acids are extracted from PDB models. 
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Table 2 
Performance results of the ablation study for ASCARIS-PDB and ASCARIS-AlphaFold where different; (a) combinations of features are tested, (b) classification algorithms are evaluated, and (c) training data resources are 
analyzed, by benchmarking on the same hold-out test dataset.  

(a)  

Model # Content of the feature vector Performance scores   

Domains Physico-chemical 
features 

Location in the 
structure 

Positional Annotations 
(binary) 

Positional Annotations 
(distance) 

AUROC Accuracy Recall Precision F1- 
score 

MCC 

ASCARIS-PDB p1 þ 0.68 0.63 0.90 0.61 0.73 0.25  
p2  þ 0.68 0.63 0.70 0.65 0.68 0.26  
p3   þ 0.61 0.58 0.81 0.59 0.68 0.14  
p4 þ þ þ 0.78 0.71 0.75 0.73 0.74 0.42  
p5    þ 0.86 0.78 0.82 0.79 0.80 0.56  
p6    þ þ 0.88 0.80 0.83 0.81 0.82 0.59  
p7 þ þ þ þ 0.88 0.80 0.85 0.80 0.82 0.60  
p8 þ þ þ þ þ 0.89 0.81 0.85 0.81 0.83 0.61 

ASCARIS- 
AlphaFold 

a1 þ 0.68 0.90 0.61 0.72 0.63 0.25  

a2  þ 0.68 0.70 0.65 0.68 0.63 0.26  
a3   þ 0.68 0.85 0.63 0.72 0.65 0.29  
a4 þ þ þ 0.81 0.84 0.73 0.78 0.74 0.48  
a5    þ 0.85 0.82 0.77 0.80 0.77 0.54  
a6    þ þ 0.89 0.85 0.80 0.83 0.81 0.61  
a7 þ þ þ þ 0.88 0.86 0.79 0.83 0.80 0.60  
a8 þ þ þ þ þ 0.89 0.87 0.81 0.84 0.82 0.63 

(b)       
Classification algorithm Performance results        

AUROC Accuracy Recall Precision F1-score MCC      
ASCARIS-PDB Random forest 0.90 0.86 0.81 0.84 0.82 0.63       

Adaboost 0.84 0.80 0.78 0.79 0.76 0.52       
Logitboost 0.87 0.82 0.79 0.81 0.79 0.57       
SVM 0.62 0.31 0.69 0.43 0.55 0.16       
Naive Bayes 0.75 0.90 0.62 0.73 0.64 0.28       
Deep neural network 
(FFNN) 

0.84 0.81 0.80 0.80 0.78 0.56      

ASCARIS- 
AlphaFold 

Random forest 0.90 0.88 0.81 0.84 0.82 0.63       

Adaboost 0.85 0.84 0.77 0.80 0.78 0.55       
Logitboost 0.87 0.85 0.79 0.82 0.79 0.58       
SVM 0.57 0.53 0.60 0.56 0.55 0.11       
Naive Bayes 0.57 0.83 0.68 0.75 0.69 0.38       
Deep neural network 
(FFNN) 

0.85 0.88 0.71 0.78 0.74 0.47      

(c)       
Training dataset source Performance results        

AUROC Accuracy Recall Precision F1-score MCC      
ASCARIS-PDB UniProt 0.8 0.59 0.86 0.7 0.69 0.43       

ClinVar 0.77 0.85 0.71 0.78 0.7 0.34       
PMD 0.64 0.92 0.64 0.75 0.63 0.13       
Combined (UniProt +
ClinVar + PMD) 

0.89 0.86 0.84 0.85 0.82 0.61      

ASCARIS- 
AlphaFold 

UniProt 0.78 0.56 0.87 0.68 0.68 0.42       

ClinVar 0.79 0.82 0.75 0.78 0.72 0.4       
PMD 0.67 0.94 0.64 0.76 0.63 0.13       
Combined (UniProt +
ClinVar + PMD) 

0.9 0.89 0.84 0.86 0.83 0.63       
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importance ranking; however, it is important to note that these anno-
tations are scarce, thus, the missing information may cause some of the 
annotation categories to rank lower. Among them, the spatial distance to 
previously reported mutagenesis sites is the most critical. We did not 
discard any features at the end of this analysis due to the fact that the 
importance values of features vary depending on the dataset used; 
consequently, features at the bottom of the importance table may 
become essential on a different dataset. 

It is also important to note that variations recorded in natural variant 
and mutagenesis variables in our feature vectors do not correspond to 
the SAV data points in our variant effect prediction model training/ 
validation/test datasets. As a result, there is no data/information leak 
from training to test. 

Mainly due to the simplicity of our feature vectors, the proposed 
model had convenient run times, such that, training of the full model 
with the optimal parameters took 91 s, running the whole hyper- 
parameter optimization analysis with 5-fold cross-validation and grid 
search (64 hyperparameter values sets * 5 folds = 320 training/valida-
tion runs) required 7 h, and predicting the effects of 10,000 SAVs in the 
hold-out test dataset (with the pre-trained model) took 3 s on an 8-core 
2.3 MHz Intel i9 CPU with 16 GB memory. 

3.2.3. Performance comparison with other methods 
In order to compare our model to the state-of-the-art methods, we 

performed five different benchmark analyses against widely-used 
variant effect predictors (VEP). The first four benchmarks had similar 
characteristics; therefore, we detailed the analysis and the results of the 
first one below, and placed the second, third and the fourth in Supple-
mentary Information. The fifth and final benchmark is relatively new 
and involves deep mutational scanning data together with numerous 
widely-used VEPs. 

In the study by Schwarz et al., authors compared the performance of 
their method, MutationTaster2 [29], to that of SIFT [24], PROVEAN 
[21] and two different versions of PolyPhen-2 [16] on multiple bench-
mark datasets [29]. Here, we used the main benchmark test dataset from 
Schwarz et al., that contains 2600 variation data points from ClinVar 
and the 1000 Genomes project [79]. We created feature vectors for the 
variation data points in the MutationTaster dataset. To yield a fair 
comparison, we filtered our training dataset by first, removing the 
hold-out test data points, and second, by removing all SAV data points 
that entered our source databases (i.e., UniProt, ClinVar and PMD) at 
and after the year 2014, so that our training data would be temporally 
consistent with the training datasets used in Schwarz et al. We re-trained 
our RF model using default hyper-parameter values. The results are 
displayed in Table 3, where two versions of ASCARIS (i.e., PDB and 
AlphaFold) are shown together with methods from the literature. 
ASCARIS-AlphaFold was among the top three in terms of accuracy and 
F1-score (after MutationTaster2) and the best in terms of precision and 
specificity. The predictive performances of all competing methods on 
this test dataset are considerably high, which decreases the capacity for 
discriminating competing methods. To address this issue, we con-
structed a challenging sub-set by selecting SAV data points that are 

correctly predicted by half or less of the competing methods (i.e., < 4 
methods), including ours (for fair comparison). Then we used this 
challenging sub-set, which is composed of 167 SAVs (74 neutral and 93 
deleterious), as our hold-out test set and calculated the performance 
metrics of all methods. These challenging SAVs are provided in Table S5. 
According to performance results in Table 3, our method (ASCAR-
IS-AlphaFold) was the best performer, followed by MutationTester2, 
which indicates that our approach performs well on challenging/diffi-
cult cases. The reason behind observing low performance values here is 
deliberately selecting mostly inaccurately predicted data points in this 
analysis. To observe whether our method produces complementary re-
sults to others, we analyzed prediction similarities/intersections among 
methods. Fig. S5 displays the number of intersecting predictions on this 
challenging dataset, in terms of neutral SAVs and deleterious SAVs via 
Venn diagrams (in panels a and b, respectively) [80]. As shown, our 
method has the highest number of distinct predictions in this bench-
mark, especially for neutral SAVs. Intersections among the 
state-of-the-art methods are much higher compared to intersections 
between our method and the state-of-the-art methods, indicating the 
value of the proposed approach in terms of complementing the 
widely-used alignment and/or structure-based methods. This can be 
attributed to our annotation-based featurization approach, as it is 
marginally different from the widely-used state-of-the-art methods 
included in this analysis. Due to the elevated performance of the 
AlphaFold version of ASCARIS compared to the PDB version, we 
continued the remaining benchmarking analysis only with 
ASCARIS-AlphaFold. 

The benchmark dataset number 2, 3 and 4, namely predictSNP, 
VariBench and SwissVar, were retrieved from Grimm et al. [81]. Infor-
mation about these datasets is provided in Supplementary Information 
S5. Also, performance results obtained on these datasets are given in 
Table S6. ASCARIS displayed considerably high performances on these 
benchmarks, as well (Table S6), and showed that it is on par with the 
methods that were specifically designed for high performance variant 
effect prediction. This indicates our approach has the ability to suc-
cessfully represent SAVs regarding their functional consequences. The 
input benchmark datasets and ASCARIS feature vectors generated for 
each dataset can be accessed in our GitHub repository at https://github. 
com/HUBioDataLab/ASCARIS. 

In our fifth benchmark analysis, we employed a study by Livesey & 
Marsh [82]. In this work, the authors assessed the performance of 46 
VEPs using data from 31 previously published deep mutational scanning 
(DMS) experiments. DMS experiments allow the quantification of the 
functional impact of a high number of mutations, usually covering all 
possible single amino acid substitutions for the selected positions on the 
sequence (in some cases, across the entire protein), in one experiment. 
Therefore, they generate valuable data for variant prioritization and 
allow the direct identification of pathogenic variants on a large scale. 
Variant effect datasets that are produced by the DMS framework can also 
be used to benchmark and assess the performance of VEPs. For this 
purpose, the authors formed a dataset by selecting a subset of patho-
genic missense mutations from ClinVar [47] and benign mutations from 

Table 3 
Variant effect prediction performance comparison on the MutationTaster dataset on the full dataset and its challenging sub-set. The best performances are shown in 
bold font for each metric.  

Method name* Performance on the challenging sub-set Performance on the full dataset 

NPV Specificity Recall Precision F1-score Accuracy NPV Specificity Recall Precision F1-score Accuracy 

PPH2_div  0.10  0.09  0.34  0.32  0.33  0.23  0.85  0.83  0.91  0.89  0.90  0.88 
PPH2_var  0.20  0.26  0.16  0.21  0.18  0.20  0.80  0.89  0.87  0.93  0.89  0.87 
MT  0.33  0.30  0.53  0.49  0.51  0.43  0.90  0.87  0.94  0.92  0.93  0.91 
SIFT  0.22  0.26  0.26  0.30  0.28  0.26  0.82  0.85  0.88  0.90  0.89  0.87 
PROVEAN  0.21  0.27  0.18  0.24  0.21  0.22  0.80  0.87  0.86  0.91  0.89  0.86 
ASCARIS_pdb  0.46  0.53  0.40  0.47  0.43  0.46  0.62  0.82  0.58  0.80  0.67  0.69 
ASCARIS_alphafold  0.56  0.85  0.47  0.80  0.59  0.64  0.76  0.95  0.82  0.96  0.88  0.87 

* NPV: Negative predictive value, PPH2_div & PPH2_var: PolyPhen-2 w/ HumDiv & HumVar classifiers, MT: MutationTaster2. 

F. Cankara and T. Doğan                                                                                                                                                                                                                     



Computational and Structural Biotechnology Journal 21 (2023) 4743–4758

4755

gnomAD [83] for particular genes, details of which can be found in the 
original article [82]. We aimed to compare ASCARIS with 46 different 
VEPs on the abovementioned DMS data. To achieve this, we first 
removed all data points that are present in both our dataset and the DMS 
test set from our training, and then examined the date of the data from 
the original study to ensure temporal consistency and a fair comparison. 
We then trained ASCARIS models with our PDB and AlphaFold vectors, 
and calculated the model performances on the test dataset (i.e., BRCA1: 
834, CALM1: 30, and P53: 375 SAVs) using the AUROC metric as 
employed in the original study. The performance of our model can be 
seen as blue bars in different panels of Fig. 5. ASCARIS ranked among 
the top 10% for CALM1 (AUROC: 0.909), the top 19% for BRCA1 
(AUROC: 0.919), and the top 26% for P53 variations (AUROC: 0.872) 
excluding the actual DMS results (red bars), which is highly satisfactory 
considering the large number of competing methods and the high rate of 
rank changeability between different datasets. Even though ASCARIS 
was not particularly designed as a VEP, it could not be consistently 
beaten by any method in this analysis, the majority of which were highly 
optimized VEPs with high computational complexity. This, again, in-
dicates that ASCARIS have the power of expressing the functional 
characteristics of SAVs. 

3.2.4. Use-case analyses 
To evaluate a few examples where the proposed method could suc-

cessfully detect the variant effect where the other predictors failed, we 
selected 3 example SAV data points (2 deleterious/disrupting and 1 
neutral), from benchmark 1 and examined the corresponding SAV rep-
resentation vectors together with relevant information from the 
literature. 

A SAV of the human Arylsulfatase B protein (ARSB_HUMAN) is 
selected as the first example (gene name: ASB or ARSB, protein UniProt 
accession: P15848, variation: C405Y, consequence: deleterious). ASB 
(or ARSB) is an enzyme (N-acetylgalactosamine-4-sulfatase) that 
removes the 4-sulfate group from chondroitin-4-sulfate (C4S) and reg-
ulates its degradation [84]. Mutations in the N-acetylgalactosami-
ne-4-sulfatase gene cause reduced enzyme activity, and ASB deficiency 
is reported to be the cause of Mucopolysaccharidosis type VI (MPS VI; 
Maroteaux-Lamy syndrome) which is a lysosomal storage disorder [85]. 
Disease onset and rate of progression is variable for this disorder 
depending on the mutation, thus assessing mutational characteristics is 
critical. C405Y mutation changes cysteine in the 405th position to 
tyrosine and disrupts the disulfide bond between the residues 405 and 
447. Theoretically, such inability to form a disulfide bridge that was 
present in the native form will cause the destabilization of the protein. 
According to a study by [86], where the authors analyzed mutations 
from 105 patients with Mucopolysaccharidosis Type VI, they reported 
that the C405Y mutation causes a slowly progressing disease with a late 
onset [86]. They suggest that this effect might be observed due to the 
destabilization introduced by the breaking of the disulfide bond. ASB’s 
active site involves at least 10 residues, and mutations around this re-
gion are expected to be highly critical. It is possible to observe from the 
visualization of the structure of the ASB protein that the mutation is 
located in a relatively close proximity with the active site (i.e., minimum 
spatial distance: 11.44 A), which may explain the effect suggested by the 
authors (Fig. S6a). It is also reported that this mutation is within the 
annotated region of the superfamily “Alkaline-phosphatase-like, core 
domain superfamily” [InterPro ID: IPR017850], which is found to be 
heavily associated with deleterious/disrupting mutations (deleterious 
and neutral occurrences in our dataset for this domain are 722 and 112, 
respectively). To sum up, it is possible to state that the information 
included in our mutation feature vector including; (i) the direct corre-
spondence of this mutation with a disulfide bond, (ii) close proximity to 
the active site of the protein, and (iii) the domain/family region in which 
the mutation occurred, may contribute to the correct classification of 
this mutation as deleterious/disrupting by our method. The remaining 
use-cases are provided in Supplementary Information S6. 

3.3. SAV representation construction tool 

We developed an open access tool for ASCARIS and shared it in two 
different platforms: 1) as a web-service with graphical user interface at 
https://huggingface.co/spaces/HUBioDataLab/ASCARIS, and 2) as a 
command line tool at https://github.com/HUBioDataLab/ASCARIS that 
can be run locally. The ASCARIS tool generates 74-dimensional repre-
sentations for the given SAV data points. The input to the tool is a file 
composed of one or more SAV data points (one in each line), composed 
of UniProt accession of the protein containing the SAV of interest, one 
letter notation of the wild type residue of interest, position of the 
mutated residue, and one letter notation of the mutated residue of in-
terest in different columns, in tab delimited format. Another input op-
tion is directly entering the SAV data point (including the same four 
different types of information this type separated by the “-” character) to 
the provided window in the user interface of the web-service or inside 
the Python one-liner that executes ASCARIS (more information can be 
found in the readme file of the Github repo). The output is again a tab 
delimited file containing the representation of each input SAV on a 
different row. Each row contains meta-data related to the SAV (5 di-
mensions), “all domains” column (1 dimension) which was not used in 
our VEP analyses, along with the actual 68-dimensions of numerical/ 
categorical features. The detailed explanation of the output file is pro-
vided in Table S1. More information can be found at https://github. 
com/HUBioDataLab/ASCARIS together with all datasets, instructions, 
and dependencies. 

4. Conclusion 

In this study, we developed a methodology, ASCARIS, to quantita-
tively represent single amino acid variations in proteins in terms of their 
spatial organization with positional sequence features, to reflect their 
functional characteristics. Our representations also include structure- 
derived information regarding physicochemical changes caused by the 
amino acid change, its location on the protein structure and its domain 
correspondence, constituting a 74-dimensional representation that can 
be utilized in any statistical data model to represent SAVs in a function- 
centric way. Possible applications can be predicting the effect of varia-
tions, omics-based modeling of cells or patients for precision medicine, 
designing new proteins, and many more. 

As an application of our method, we trained ML models to predict 
consequences of single amino acid variations on protein functionality 
and compared their performance against well-known predictors from 
the literature. During this application, our initial idea was that, when 
used in the modeling alone, these representations could not compete 
with alignment-based variant effect predictors as it quantitatively de-
scribes SAVs from a limited perspective. However, we expected that it 
could produce complementary results as its point of view is different 
from existing methods. Results indicated that our method actually pro-
duces complementary results to conventional variant effect predictors. 
Moreover, it performs quite well in challenging cases where these 
methods mostly fail. Another interesting observation was that the 
AlphaFold version of ASCARIS scored a higher performance compared 
to the PDB version of the method, indicating the benefit of having high 
quality structure predictions with almost complete coverage on 
sequences. 

One of the advantages of our method is being practical as it utilizes 
documented annotations instead of trying to detect conservation via 
sequence alignments. Also, since the annotations are curated, the noise 
in data is expected to be low. Another advantage of our method is the 
interpretability of results when it is used in ML-based modeling, given 
that each dimension on our feature vectors has a known molecular/ 
structural/functional correspondence. One limitation of ASCARIS is that 
the curated feature annotations of proteins are far from being complete, 
which means that we are dealing with missing information during 
modeling. Our method’s representation power will further increase with 
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the addition of new protein feature annotations in databases such as 
UniProt. As future work, we plan to construct ensemble-based variant 
representations by integrating successful structure and alignment-based 
approaches with our method using multi-modal deep learning. We also 
plan to incorporate ASCARIS representations in large-scale biomedical 
knowledge graphs [87] as variant feature vectors for integrative 
modeling of heterogeneous biomedical data via deep graph learning. We 
hope that these comprehensive SAV representations will be effectively 
utilized for data-centric modeling in various areas of biomedicine and 
biotechnology. 
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[71] Doğan T, MacDougall A, Saidi R, Poggioli D, Bateman A, O’Donovan C, Martin MJ. 
UniProt-DAAC: domain architecture alignment and classification, a new method 
for automatic functional annotation in UniProtKB. Bioinformatics 2016;32: 
2264–71. 

[72] McGarvey PB, Nightingale A, Luo J, Huang H, Martin MJ, Wu C, UniProt C. 
UniProt genomic mapping for deciphering functional effects of missense variants. 
Hum Mutat 2019;40:694–705. 

[73] Truebestein L, Leonard TA. Coiled-coils: The long and short of it. BioEssays 2016; 
38:903–16. 

[74] Holbrook K, Subramanian C, Chotewutmontri P, Reddick LE, Wright S, Zhang H, 
Moncrief L, Bruce BD. Functional Analysis of Semi-conserved Transit Peptide 
Motifs and Mechanistic Implications in Precursor Targeting and Recognition. Mol 
Plant 2016;9:1286–301. 

[75] Cox MAA, Cox TF. Multidimensional Scaling. Handb Data Vis 2008:315–47. 
[76] van der M, Geoffrey Hinton L. Visualizing Data using t-SNE. J Mach Learn Res 

2008;9:2579–605. 
[77] Stone EA, Sidow A. Physicochemical constraint violation by missense substitutions 

mediates impairment of protein function and disease severity. Genome Res 2005; 
15:978–86. 
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