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Abstract

In trotting horses, movement asymmetry is associated with ground reaction force asymme-

try. In humans, limb length differences influence contralateral force production. Here we

investigate whether horses, in immediate reaction to limb length changes, show movement

asymmetry adaptations consistent with reported force differences. Aim of this study was to

quantify pelvic and compensatory head and withers movement asymmetry as a function of

limb length changes after application of orthotic lifts. In this experimental study movement

asymmetry of eleven trotting horses was calculated from vertical displacement of poll, with-

ers, sacrum and left and right tuber coxae with inertial sensors. Horses were assessed in-

hand under 5 conditions (all with hind limb boots): without orthotic lifts, and with a 15mm or

30mm orthotic lift applied to the left hind or right hind. A linear mixed model investigated the

influence of orthotic lift condition (P<0.05, pairwise posthoc Bonferroni correction). Pelvic

movement asymmetry showed increased pelvic downward movement during stance of the

shorter limb and increased pelvic upward movement during and after stance of the longer

limb (P<0.001) with asymmetry changes of 3-7mm (4-10mm) for 15mm (30mm) lifts. Hip

hike (tuber coxae movement asymmetry) was unaffected (P = 0.348). Head and withers

movement asymmetry were affected less consistently (2 of 3 respectively 1 of 3 head or

withers parameters). The small sample size of the study reduced generalizability, no direct

force measurements were conducted and only immediate effects of orthotic lifts were

assessed with no re-assessments days or weeks after. Conclusions about mechanical con-

sequences (weight bearing, pushoff) are based on published movement-force associations.

Pelvic movement asymmetry with an artificial change in limb length through application of

an orthotic lift indicates increased weight support with the shorter limb and increased pushoff

with the longer limb. This may be of relevance for the management of horses with different

hoof shapes between contralateral limbs, for example some chronically lame horse.
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Introduction

Parameters describing asymmetry of upper body movement in trot–commonly referred to as

head nod and hip hike–are often used for the purpose of detecting the presence and quantify-

ing the severity of lameness in the horse [1,2], a clinical sign suggesting the necessity of further

veterinary assessment for any indications of a painful or mechanically restricting defect being

the cause of the gait abnormality. When a horse with hind limb lameness trots, the asymmetri-

cal movement of the pelvis–which can be quantified by comparing the two minima (and/or

maxima) in vertical position [3]–is associated with differences in ground reaction force pro-

duction between the left and right hind limb stance phases [4]. Similar associations have been

identified between asymmetrical head movement and differences in forelimb force production

[5]. This ‘simple’ association between upper body movement asymmetry and asymmetrical

force production provides a means of interpreting the kinematics of lameness in the frame-

work of basic mechanics. For example, measuring a decrease in movement asymmetry after

diagnostic analgesia [6,7] or a (temporary) increase in asymmetry after a flexion test [8,9] can

be assumed to lead to more or less symmetrical force production between contralateral limbs.

Hence these interventions are used by veterinarians to ascertain whether or not the clinical

sign of movement asymmetry is likely linked to an underlying pathological condition.

In addition to shifting force to the contralateral, unaffected limb, hind limb lame horses

also redistribute force from the hind limbs to the forelimbs and vice versa in forelimb lame

horse [10,11]. Consequently, some clinically lame horses show concurrent head and pelvic

movement asymmetry [12,13]. The ‘law of sides’ [13] relates a concurrent ipsilateral head and

pelvic asymmetry to an increased likelihood of a primary hind limb lameness and a contralat-

eral asymmetry to a primary forelimb lameness. Adding measurement of withers movement

asymmetry into a gait assessment has shown good discriminative potential between induced

forelimb lameness (head and withers movement asymmetry same-sided) and induced hind

limb lameness (head and withers movement asymmetry of opposite direction) [14]. Synchro-

nous measurement of head, withers and pelvic movement hence appears to be a workable

compromise between in-field applicability (measurement with cameras or inertial measure-

ment units rather than direct measurement of force with force platforms) and providing suffi-

ciently accurate and precise measurements [15,16] allowing insights into the fundamental

mechanics related to force asymmetry in lame horses. In addition to underlying pain,

‘mechanical defects’ [17] are referenced as causes for horses showing lameness. The notion of

the lameness being a clinical sign [17] indicates the need for further veterinary investigations

establishing whether further attention is needed. A previous study of 222 horses in training

showed motion asymmetries in 73% of horses during straight line trot [18]. However, with

technological advances in quantifying subtle gait asymmetries, the question arises whether all

measurable movement asymmetries need further veterinary attention [19]. Whether inherent

motor laterality or conformational asymmetries, in particular limb length differences, can

result in motion asymmetries affecting vertical trunk displacement in horses has not been

investigated.

In humans, limb length discrepancies lead to increased weight bearing with the shorter

limb and increased pushing off (propulsion) with the longer limb [20,21]. In horses, manipula-

tion of limb length is for example of interest for correcting force asymmetries in the presence

of asymmetrical feet [22], which may be relevant for rehabilitation regimens in horses with dif-

ferently shaped hooves. It may also be interesting to contrast the effects of manipulating limb

length to the effect of toe or heel wedges in the clinical lameness examination [23].

Aim of this study is to quantify the immediate effects of artificial changes in distal limb con-

formation (a simple mechanical change), in particular hoof height discrepancies creating a
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limb length difference between contralateral hind limbs, on movement asymmetry. We

hypothesize that, in the presence of a unilateral hind limb orthotic lift, i.e. an artificial length-

ening of one limb, pelvic movement asymmetry will be consistent with signs of reduced weight

bearing with the longer limb (the limb with the orthotic lift) and with signs of reduced pushoff

with the shorter limb (the limb contralateral to the orthotic lift). It is difficult to hypothesize

the direction of any compensatory head and withers movement asymmetries or the direction

of tuber coxae movement differences due to the hypothesized mixed effect on pelvic move-

ment asymmetry and as such the investigation of head and withers movement asymmetries

has explorative character.

Materials and methods

This study was approved by the Royal (Dick) School of Veterinary Studies Ethical Review

Committee. Horse owners gave written informed consent for participation in the study.

Animals

Eleven riding horses not known to be clinically hind limb lame at the time of data collection

were included in the study (5 mares, 6 geldings, 10 to 25 years of age (average 16 years), 4

Paint horses, 2 Quarter horses, 2 Arabians, 1 Appaloosa, 1 Warmblood, 1 Thoroughbred. All

horses were in good body condition score (BCS 3–5, [24]).

Interventions

Easycare original easyboot (EasyCare, Inc. Tucson, AZ, US) hoof boots were used to apply

‘orthotic lifts’ (i.e. an artificial lengthening of the limb by increasing hoof height) to one hind

hoof at a time (Fig 1). The lifts were made from 15mm thick Castle (Castle Plastics, Leomin-

ster, MA, US) double nail pads. Lifts of 15mm height and 30mm height (two pads) were

applied. A steel sliding plate horse shoe was added to the bottom of the non-lift boot during

the 30mm variable trials in order to keep the weight difference between contralateral limbs the

Fig 1. Photo of hind limb boots used in the study. From left to right: Easycare original easyboot without orthotic lift,

boot with 15mm lift, boot with 30mm lift, boot with steel shoe used in contralateral hind limb when the 30mm lift was

used.

https://doi.org/10.1371/journal.pone.0199447.g001
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same for trials with 15mm and 30mm. This resulted in the effective height difference between

the boot with the 30mm lift and the non-lifted boot to be reduced to 23mm.

Horses were assessed under five conditions:

• ‘no lift’: boots fitted to both hind limbs (without any additional pads)

• 15L: boots on both hind limbs. One 15mm pad added to the left hind (LH) boot

• 15R: boots on both hind limbs. One 15mm pad added to the right hind (RH) boot

• 30L: boots on both hind limbs. Two 15mm pads added to the LH boot, steel sliding plate fit-

ted to RH boot (effective difference 23mm).

• 30R: boots on both hind limbs. Two 15mm pads added to the RH boot, steel sliding plate fit-

ted to LH boot (effective difference 23mm).

Gait analysis

Quantitative gait analysis was performed by the same licensed veterinarian (DD) with five

inertial measurement units (IMUs, MTw 2nd generation, Xsens, Enschede, The Netherlands)

attached to poll, withers, sacrum (between tubera sacrale) and left and right tuber coxae.

Horses were assessed in familiar surroundings and trotted in-hand (sand or dirt surface) sub-

jectively aiming for collection of a minimum of 25 strides per condition.

Data processing followed published procedures (implemented in MATLAB, The Math-

works INC, Natick, MA, US) and involved high pass filtering, rotation into horse-gravity

based reference frame and numerical double integration [15] followed by stride segmentation

making use of pelvic rotation and vertical velocity [25]. Movement asymmetry measures were

then calculated from minima and maxima identified in vertical displacement traces [3]. Here

we calculate differences between minima (head: HDmin, withers: WDmin, mid pelvis:

PDmin), differences between maxima (head: HDmax, withers: WDmax, mid pelvis: PDmax)

and differences between upward amplitudes (head: HDup, withers: WDup, mid pelvis: PDup)

as well as differences between upward movement amplitudes between left and right tuber

coxae (HHD). Median asymmetry values over all strides collected for each condition were tab-

ulated according to horse, orthotic lift condition (no lift, L15, R15, L30, R30) together with the

number of strides and the average stride time (S1 Table for complete data set).

For illustrative purposes, signs of asymmetry parameters (HDmin, HDmax, HDup, PDmin,

PDmax, PDup) are interpreted in comparison to displacement traces of horses with induced

forelimb and hind limb lameness [1,3] and labelled as L for signs corresponding to traces

observed in left lame and R for signs corresponding to traces observed in right lame horses.

Withers movement was labelled with the same convention as head movement. HHD was

labelled based on the observation of increased movement amplitude of the tuber coxae on the

lame side [2]. This is simply a judgement of the direction of asymmetry allowing to use the

terms left-sided and right-sided asymmetry with reference to published traces of horses with

left-sided and right-sided (induced or natural) lameness [1–3].

Statistical analysis

A mixed linear model was implemented (SPSS, IBM, Armonk, NY, US) for each movement

asymmetry variable with horse as random factor, stride time as covariate and condition as

fixed factor. Ten movement asymmetry variables (HDmin, HDmax, HDup, WDmin,

WDmax, WDup, PDmin, PDmax, PDup and HHD) were investigated. Histograms of model

residuals were inspected visually for normal distribution. Significance level was chosen at
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P<0.05 and when a significant overall effect was found, pairwise comparisons were conducted

with Bonferroni post hoc corrections applied.

Box plots were created to illustrate movement asymmetry parameters for the different

orthotic lift conditions (‘no lift’, 15L, 15R, 30L, 30R). Plots showing median values (circled

dots), 25th and 75th percentile (interquartile range, IQR, thick lines), whiskers (thin lines)

extending to median +/-1.5�IQR and extreme values outside the area covered by the whiskers.

In order to study magnitude and direction of effects of asymmetry, estimated marginal means

(and their confidence intervals) from the mixed model analysis were evaluated.

Results

Data collection summary

Data collection from the 11 horses resulted in median gait asymmetry values calculated across

a total of 1365 strides (average 25.8, minimum 13, maximum 38). Data collection in ten horses

included all five conditions. In the remaining horse, only the ‘no lift’, 30L and 30R conditions

were successfully collected. Stride time on average across all 53 trials of 11 horses was 696.1ms

(minimum 624ms, maximum 805ms). Absolute values of movement symmetry variables for

head and pelvis displacement were larger than the previously described thresholds of>8mm

for head movement and>4mm for pelvic movement (thresholds from [26] adapted to the

inertial sensor system used here with equations in [27]) in 7 (out of 11) horses for HDmin, 5

for HDmax, 6 for PDmin and 7 for PDmax.

Effect of unilateral orthotic hind limb lift

The results of the mixed linear models for each movement asymmetry parameter are summa-

rized in Table 1. None of the models revealed a significant influence of stride time (all P> =

0.138). Without application of an orthotic lift (condition ‘no lift’), the estimated marginal

means show on average across horses comparatively small amounts of movement asymmetry

from 3mm left-sided asymmetry for WDup to 2mm right-sided asymmetry for PDmax and

HHD (Table 2). The 95% confidence intervals typically span a range of 10mm to 16mm for

pelvis and withers related movement asymmetry and up to 29mm for head movement asym-

metry indicating a fair amount of variation between horses.

Pelvic movement asymmetry was found to be significantly influenced by the application of

unilateral orthotic hind limb lifts with the mixed linear model for PDmin (P<0.001), PDmax

(P<0.001) and PDup (P = 0.020) but not for HHD (P = 0.348), indicating a significant influ-

ence of orthotic lift condition on movement asymmetry of the tubera sacrale, but not of the

difference between left and right tubera coxae. PDmin showed a change in movement asym-

metry consistent with a reduction in weight bearing with the limb ipsilateral to the fitted

orthotic hind limb lift, i.e. left-sided asymmetry for left-sided lifts and right-sided asymmetry

for right-sided lifts (Table 2, Fig 2). PDmax showed a change in movement asymmetry consis-

tent with a reduction in pushoff with the limb contralateral to the fitted orthotic lift, i.e. a

right-sided asymmetry for left-sided lifts and left-sided asymmetry for right-sided lifts. PDup

showed one significant pairwise difference between the two 30mm lifts (30L and 30R).

Estimated marginal means for PDmin were 7 to 9mm for left-sided lifts and 3 to 10mm for

right sided lifts (Table 2). For PDmax for left-sided lifts, 4 to 6mm asymmetry were found and

3 to 6mm for right-sided lifts (Table 2). PDup showed 6mm left-sided asymmetry for L30 and

4mm right-sided asymmetry for R30.

Head movement asymmetry was found to be significantly influenced by the application of

unilateral orthotic hind limb lifts with the mixed linear model for HDmax (P<0.001) and

HDup (P<0.001) but not for HDmin (P = 0.096) indicating a significant influence of
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condition for 2 out of three head movement symmetry parameters (Table 1). Pairwise compar-

isons for HDmax revealed that condition R30 was significantly different to all other conditions

and, in particular, created the most left-sided asymmetry of all conditions (8.7mm left-sided,

Table 2) while the only right-sided value for HDmax was found for L30 (1.1mm right-sided,

Table 2). A similar trend was found for HDup. Illustrations of the data distribution for head

movement asymmetry across the 5 conditions are given in Fig 3.

The only withers movement asymmetry parameter found to be significantly influenced by

orthotic lift condition was WDmin (P<0.003). WDmax (P = 0.102) and WDup (P = 0.753)

were not influenced by lift condition (Table 1). WDmin showed the most left-sided asymmetry

for R30 (more left-sided than the two left-sided lifts) with an estimated marginal mean value of

6mm (Table 2). Fig 4 illustrates the data distribution of withers movement asymmetry across

the 5 conditions.

Table 1. Results of mixed model analysis of pelvic, head and withers movement asymmetry with horse as random factor, stride time as covariate and orthotic lift

condition as fixed factor. Level of significance was set to P<0.05 and pairwise Bonferroni comparisons conducted for asymmetry parameters found to be significantly

affected by orthotic lift condition.

asymmetry

parameter

condition stride time pairwise comparison (Bonferroni corrected P-values)

PDmin <0.001 0.656 0.047 ‘no lift’ <-> L15

0.001 ‘no lift’ <-> L30

<0.001 ‘no lift’ <-> R30

0.001 L15 <-> R15

<0.001 L15 <-> R30

<0.001 R15 <->L30

0.012 R15 <->R30

<0.001 L30 <-> R30

PDmax 0<0.001 0.138 0.029 ‘no lift’ <-> R30

0.010 L15 <->R15

0.001 L15 <-> R30

0.007 L30 <-> R30

PDup 0.020 0.293 0.012 L30 <-> R30

HHD 0.348 0.335 not applicable not applicable

HDmin 0.096 0.152 not applicable not applicable

HDmax <0.001 0.677 0.001 ‘no lift’ <-> R30

0.010 L15 <-> R30

0.039 R15 <-> R30

<0.001 L30 <-> R30

HDup <0.001 0.235 0.003 ‘no lift’ <-> R30

0.004 L15 <-> R30

<0.001 L30 <-> R30

WDmin 0.003 0.278 0.011 L15 <-> R30

0.011 L30 <-> R30

WDmax 0.102 0.741 not applicable not applicable

WDup 0.753 0.325 not applicable not applicable

Pelvic movement asymmetry parameters: PDmin, PDmax, PDup, HHD; head movement asymmetry parameters: HDmin, HDmax, HDup; withers movement

asymmetry parameters WDmin, WDmax, WDup; orthotic lift conditions: ‘no lift’, L15, R15, L30, R30 describing unilateral lifts of 15 and 30mm applied to the left (L) or

right (R) hind limb. Sample size: N = 11 for ‘no lift’, L30 and R30; N = 10 for L15 and R15

https://doi.org/10.1371/journal.pone.0199447.t001
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Discussion

This study has investigated the application of an artificial lengthening of a pelvic limb–a simple

mechanical change–termed an orthotic lift and its immediate influence on pelvic as well as

head and withers movement asymmetry parameters. The most consistent changes were mea-

sured for pelvic movement asymmetry and these are in agreement with the effects observed in

humans [20,21]. Both head and withers movement asymmetry were also affected indicating

consequences expanding across the whole trunk and head-neck segment.

Pelvic movement asymmetry and unilateral orthotic hind limb lift

Pelvic movement asymmetry showed opposite-sided effects for PDmin and PDmax. While

PDmin is commonly associated with peak force asymmetry between left and right hind limbs,

PDmax is related to differences in the propulsive effort in the second half of stance as well as

implicated in the transfer between vertical and horizontal impulse [4]. Horses with induced

hind limb lameness (using a validated lameness model [28]) show a different pattern than the

horses in this study: same-sided effect for PDmin and PDmax i.e. a reduction in both down-

ward and upwards movement of the pelvis during the stance phase of the lame limb [3]. That

pattern is also found in many (not all) clinically hind limb lame horses [6,13]. The opposite-

sided changes in PDmin and PDmax found here suggest that horses move mechanically differ-

ently immediately after being fitted with an orthotic lift–an artificial lengthening of one of the

hind limbs–compared to an induced (painful) lameness [14] or indeed differently to common

patterns seen in naturally asymmetrical horses [29].

Whether or not the prediction of force asymmetry from upper body kinematics, as found

previously [4,5], works reliably in the presence of limb length discrepancies ultimately needs

clarification by means of concurrent measurement of ground reaction force. Studies in human

subjects with natural and artificial limb length discrepancies provide initial support for the

ability to predict force asymmetry from kinematic asymmetries even under these circum-

stances: there the shorter limb experiences a higher peak vertical force and the longer limb pro-

vides more propulsion [20,21]. This would also be predicted from our study: with a left-sided

orthotic lift (longer LH limb) a horse appears left-asymmetrical in terms of PDmin, i.e. shows

a pattern commonly seen in a LH lame horse, which produces more force with the

Table 2. Estimated marginal means (and 95% confidence intervals) from mixed models for movement asymmetry parameters with orthotic lift condition as fixed

effect, stride time as covariate and horse as random effect. Directions of asymmetry parameters are marked with L or R depending on whether the direction of asymme-

try would be found in horses with left (L) or right (R) sided lameness: the directional relationship is indicated in the column ‘direction’ linking positive (+ve) or negative

(-ve) values to L-sided or R-sided asymmetry.

param Direction ‘no lift’ L15 R15 L30 R30

PDmin +ve L, -ve R 0.6L [4.6R 5.8L] 6.8L [1.5L 12.1L] 2.8R [8.1R 2.6L] 9.3L [4.0L 14.5L] 10.0R [15.3R 4.8R]

PDmax +ve R, -ve L 2.2R [3.7L 8.1R] 5.9R [0 11.9R] 3.4L [9.4L 2.5R] 3.5R [2.4L 9.4R] 5.8L [11.7L 0.1R]

PDup +ve R, -ve L 1.6R [4.9L 8.1R] 0.8L [7.5L 5.8R] 0.6L [7.3L 6.0R] 5.8L [12.3L 0.8R] 4.2R [2.3L 10.8R]

HHD +ve L, -ve R 2R [9.1R 5.0L] 6.2L [1.2R 13.5L] 0 [7.4R 7.3L] 3.1L [4.3R 10.4L] 0.1R [7.1R 7.0L]

HDmin +ve R, -ve L 0.6R [9.7L 10.9R] 2.0R [8.3L 12.4R] 1.3L [11.7L 9.0R] 1.2R [9.2L 11.5R] 2.9L [13.2L 7.4R]

HDmax +ve L, -ve R 0.6L [6.4R 7.6L] 2.1L [5.0R 9.1L] 2.9L [4.1R 10.0L] 1.1R [8.1R 5.9L] 8.7L [1.7L 15.7L]

HDup +ve L, -ve R 0.1R [14.7R 14.6L] 0 [14.7R 14.7L] 4.3L [10.5R 19.0L] 2.2R [16.9R 12.5L] 11.6L [3.1R 26.3L]

WDmin +ve R, -ve L 1.7L [6.7L 3.3R] 0.1R [5.0L 5.1R] 4.4L [9.4L 0.7R] 0.1L [5.1L 4.9R] 6.2L [11.2L 1.2L]

WDmax +ve L, -ve R 1.4L [4.8R 7.7L] 1.4L [4.8R 7.7L] 2.1R [8.3R 4.2R] 1.6L [4.6R 7.9L] 1.4R [7.6R 4.8L]

WDup +ve L, -ve R 3.1L [5.5R 11.7L] 1.4L [7.3R 10.0L] 2.3L [6.3R 11.0L] 1.7L [6.9R 10.3L] 4.8L [3.8R 13.3L]

All values are given in mm.

https://doi.org/10.1371/journal.pone.0199447.t002
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contralateral RH (here: shorter) limb [10]. With the same left-sided orthotic lift, a horse

appears more right-asymmetrical in terms of PDmax, i.e. shows a reduction in propulsive

effort with the (shorter) RH limb compared to the (longer) LH limb again agreeing with the

force effects in humans.

Opposite effects in terms of directional changes in PDmin and PDmax may also help

explain why no consistent effect was measured for HHD. HHD is a lameness indicator used

when visually identifying hind limb lameness and compares the vertical movement of the left

to the right tuber coxae [2]. Assuming, that in a horse with a left-sided hind limb lift, PDmin is

associated with reduced weight bearing with the LH limb (a higher position of the pelvis dur-

ing LH stance related to a reduction in fetlock hyperextension as a result of the linear relation-

ship between force and fetlock joint angle [30]) and PDmax is associated with a reduced pelvic

height reached after RH limb stance, the upward movement asymmetry (the difference

between the maximum and the minimum position) of either the tubera coxae (expressed as

Fig 2. Boxplots for pelvic movement asymmetry parameters as a function of orthotic lift conditions (‘no lift’ and 15mm (L15 and R15) and 30mm (L30 and R30)

left and right unilateral orthotic hind limb lifts). A: PDmin, B: PDmax, C: PDup, D: HHD. Pairwise significant differences (Bonferroni corrected P-values in Table 1)

are indicated in each box plot by black horizontal lines between the conditions for which significant differences were found.

https://doi.org/10.1371/journal.pone.0199447.g002
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HHD) or of the midline of the pelvis (expressed as PDup) would be expected to remain unaf-

fected by the opposing shift in force.

This effect may both be a blessing and a curse for visual assessment of horses, the former

since when assessing lameness by comparing left to right tuber coxae movement asymme-

try, a horse with a limb length discrepancy and no underlying painful pathology (which pre-

sumably would cause a typical hip hike [2]) may not be categorized as lame visually. The

latter, since observers visually assessing downward movement or upward movement sym-

metry of the mid pelvis (rather than tubera coxae movement) may come to different conclu-

sions, however a subsequently initiated clinical lameness exam with diagnostic analgesia

should then reveal that no painful condition is present. The fact that movement patterns

can show mid-pelvic asymmetry but no asymmetry at the level of the tubera coxae may in

fact contribute to the poor inter-observer agreement between experts in horses with mild

hind limb lameness [31].

Fig 3. Boxplots for head movement asymmetry parameters as a function of orthotic lift conditions (‘no lift’ and 15mm (L15 and R15) and 30mm (L30 and R30)

left and right unilateral orthotic hind limb lifts). A: HDmin, B: HDmax, C: HDup. Pairwise significant differences (Bonferroni corrected P-values in Table 1) are

indicated in each box plot by black horizontal lines between the conditions for which significant differences were found.

https://doi.org/10.1371/journal.pone.0199447.g003
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Head and withers movement asymmetry

Pelvic movement asymmetry showed the highest number of pairwise significant differences in

relation to the use of the hind limb lifts. This is not surprising given the direct association

between hind limb forces and pelvic movement asymmetry [4]. However, both head and with-

ers movement asymmetry were also affected. This appears to be of relevance in the context of

compensatory mechanisms. It is widely accepted (and referred to as the ‘rule of sides’ [13])

that horses with clinical hind limb lameness show changes in head movement–mimicking the

pattern of a forelimb lameness ipsilateral to the hind limb lameness–and horses with clinical

forelimb lameness show altered pelvic movement–mimicking the pattern of a hind limb lame-

ness contralateral to the forelimb lameness [12,13]. Recent findings show, that hind limb lame-

ness (specifically its elimination) has consistent effects along the thoracolumbosacral region

[32] and that withers movement appears to be of discriminative quality in the context of

induced forelimb and hind limb lameness [14].

Fig 4. Boxplots for withers movement asymmetry parameters as a function of orthotic lift conditions (‘no lift’ and 15mm (L15 and R15) and 30mm (L30 and R30)

left and right unilateral orthotic hind limb lifts). A: WDmin, B: WDmax, C: WDup. Pairwise significant differences (Bonferroni corrected P-values in Table 1) are

indicated in each box plot by black horizontal lines between the conditions for which significant differences were found.

https://doi.org/10.1371/journal.pone.0199447.g004

Orthotic hind limb lift and upper body movement symmetry in trot

PLOS ONE | https://doi.org/10.1371/journal.pone.0199447 June 21, 2018 10 / 14

https://doi.org/10.1371/journal.pone.0199447.g004
https://doi.org/10.1371/journal.pone.0199447


In our study, head movement asymmetry showed a tendency towards more left-sided (LF)

asymmetry for right-sided hind limb lifts and vice versa. For example, HDmax showed the

most left-sided asymmetry for R30 and the most right-sided asymmetry for L30. This is the

opposite pattern to PDmin (left-sided for L15/L30, right-sided for R15/R30) but agrees with

the sidedness of PDmax (left-sided for R15/R30, right-sided for L15/L30). The fact that PDmin

and PDmax are showing opposite-sided effects however complicates matters, since it is not

immediately clear what the overall direction of pelvic movement asymmetry is: a left-sided lift

creates the appearance of a mixed LH weight bearing and RH pushoff asymmetry. It would be

interesting to further study the (compensatory) head and withers movement effect in horses

with clinically diagnosed lameness and for example contrast the effects of the use of an orthotic

lift on the straight to effects seen on the lunge [33]. Lungeing seems to have similar effects:

reduced weight bearing with the inside hind leg, reduced pushoff with the outside hind leg.

The inward lean of a horse on the lunge effectively lengthens the inside leg and shortens the

outside leg and hence the ‘longer’ inside leg would be expected to experience less force and the

shorter outside leg would be expected to create less pushoff [20,21]. However, intriguingly on

the lunge horses also show a consistent increase in inside tuber coxae movement amplitude

[34] which makes lungeing different from the use of an orthotic lift on the straight. Finally,

while not significantly affected by lift condition, WDmax appears to show a trend of counter-

acting HDmax in direction, indicating that this may be a compensatory mechanism (based on

the observation of opposing head and withers asymmetry in induced hind limb lameness

[14]), likely in reaction to the changes in PDmax, which agree in direction with changes in

HDmax and hence agree with the ‘rule of sides’ for hind limb lameness.

Practical relevance

Our findings that artificial limb length discrepancies are influencing movement asymmetry

(immediately after application) have practical consequences.

First, a horse presenting with a small and consistent PDmin value suggesting a LH lameness

and a small and consistent PDmax value suggesting a RH lameness may in fact not experience

pain in either the LH or RH limb. It is possible that (at least part of) the movement asymmetry

pattern is related to a mechanical difference that could be addressed by changes to trimming

and shoeing, for which small changes in movement asymmetry have been observed [35]. The

term ‘mechanical lameness’ springs to mind here. The size of the induced pelvic movement

asymmetries of 3 to 6mm even for the smaller 15mm lifts (L15, R15) indicates that a limb

length discrepancy between hind limbs should not be neglected as a contributing factor in fur-

ther veterinary investigations after having screened a horse for lameness by use of gait analysis.

These asymmetry values are similar to previously reported thresholds of 3mm for pelvic move-

ment asymmetry and 6mm for head movement asymmetry; in both cases it appears essential

in addition to the amount of asymmetry to also assess its variability, e.g. comparing the mean

value over a sufficiently high number of strides to the standard deviation across strides [26].

Second, and related to the first point, the influence of limb length discrepancies in both the

development of pathology as well as the rehabilitation from orthopaedic deficits might need

further investigation. Our study suggests that small limb length discrepancies immediately

lead to asymmetry of force production which, if persistent over longer time periods, may lead

to overuse injuries. Hence, the aspect of persistence of limb length related movement asymme-

tries over days or weeks after application of an orthotic lift seems worthy of further investiga-

tion. When rehabilitating a horse after correction of an orthopaedic problem, it is possible,

that the horse shows chronic changes in hoof shape. If left unattended, our results suggest that

without addressing these changes, and assuming the short-term effects measured here persist

Orthotic hind limb lift and upper body movement symmetry in trot

PLOS ONE | https://doi.org/10.1371/journal.pone.0199447 June 21, 2018 11 / 14

https://doi.org/10.1371/journal.pone.0199447


over longer time periods, the difference in limb length (hoof height) may prevent the horse

from going back to perfectly symmetrical movement and likely force production.

Limitations

The sample size of this study was small, limiting the generalizability of our results. The study

design, investigating immediate changes within horses with subsequent left and right sided

unilateral interventions aimed to reduce the influence of inter-horse variability. The persis-

tence of the measured effects over days or weeks was not assessed in this study and as such this

limits any conclusions drawn about potential long-term consequences for example in the con-

text of rehabilitation. This aspect needs further investigation.

We have only measured upper body kinematics and no direct force measurements were

conducted. Hence, while the measured effects agree with force changes measured in bipeds, it

remains to be proven, that the kinematics accurately predict force asymmetry when manipu-

lating limb length. However, based on first principles, like the mathematical relationship

between displacement and velocity and velocity and acceleration and Newtonian Physics

(F = m�a), a reduction in vertical movement during one stance phase compared to the other

would appear to be related to a reduction in force production during that stance phase further

supporting any conclusions referring to force distribution.

In an attempt to limit the effects of altered mass between contralateral limbs, the shoe

attached to the bottom of the contralateral boot (the one without the orthotic lift) in the 30mm

condition, meant that the effective height difference on a hard surface would only have been

23mm between limbs. How big the effective height difference will be on average across strides

on the soft surfaces used here was impossible to ascertain in the current study. This however

should be further investigated in future studies, e.g. investigating the effects during lungeing.

Supporting information

S1 Table. Raw data. Given are for each horse and each available orthotic lift condition (cond.)

values (median values over all strides per condition) for all ten movement asymmetry variables

as well as number of strides per condition (# strides) and average stride time per condition

(time). Average values, minima, maxima and sum (number of strides) are given at the bottom

of the table. All movement asymmetry values in mm.
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