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The centerline, as a simple and compact representation of object shape, has been used to analyze variations of the human callosal
shape. However, automatic extraction of the callosal centerline remains a sophisticated problem. In this paper, we propose amethod
of automatic extraction of the callosal centerline from segmented mid-sagittal magnetic resonance (MR) images. A model-based
point matching method is introduced to localize the anterior and posterior endpoints of the centerline. The model of the endpoint
is constructed with a statistical descriptor of the shape context. Active contourmodeling is adopted to drive the curve with the fixed
endpoints to approximate the centerline using the gradient of the distance map of the segmented corpus callosum. Experiments
with 80 segmented mid-sagittal MR images were performed. The proposed method is compared with a skeletonization method
and an interactive method in terms of recovery error and reproducibility. Results indicate that the proposed method outperforms
skeletonization and is comparable with and sometimes better than the interactive method.

1. Introduction

The corpus callosum (CC) is the main commissural bundle
of fibers interconnecting the left and right cerebral hemi-
spheres [1]. It facilitates interhemispheric communication in
the human brain. Its special role has motivated imaging-
based study of its size and shape to investigate the mor-
phological correlation with various disorders, such as spastic
cerebral palsy [2], fetal alcohol syndrome and fetal alcohol
spectrum disorders [3], autism [4, 5], Turner syndrome [6,
7], HIV/AIDS [8], frontonasal dysplasia [9], dyslexia [10],
attention-deficit hyperactivity disorder (ADHD) [11], and
Alzheimer’s disease [12, 13].Most of these studies are based on
the measurement of the CC’s simplex geometric properties,
such as the area [2, 6, 7, 12, 13] and circumference [11] of CC
region, the angle between theCCand anterior-posterior com-
missure line [9]. However, these studies can only reveal the
growth or atrophy of the entire CC but not exactly where the
change occurs.

Recently, some researchers have focused on centerline-
based analysis [3–5, 10], which is more powerful and com-
prehensive: centerline-based analysis can detect the exact
position where the variation of thickness and angular change
of the CC along the centerline occurs, which is more sensitive
and discriminative in comparison with size- or area-based
analysis. Nevertheless, the centerline is an implicit repre-
sentation of the shape, and it is impossible to delineate the
callosal centerline from magnetic resonance (MR) images
manually. Many researchers have utilized skeletonization
techniques to extract the skeleton as the main body of
the centerline. The skeleton is a thin version of a shape,
which is an important feature for shape description in image
processing and computer vision. It is defined as the locus
of centers of maximal inscribed disks in two dimensions
(2D) [14]. In the technical literature, the concepts of skeleton
and centerline are used interchangeably by some researchers,
while others regard them as related, but not the same. In
the view of anatomists, the centerline of the anatomy is not

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2018, Article ID 4014213, 10 pages
https://doi.org/10.1155/2018/4014213

http://orcid.org/0000-0001-7720-654X
http://orcid.org/0000-0001-7095-043X
https://doi.org/10.1155/2018/4014213


2 Computational and Mathematical Methods in Medicine

consistent with the skeleton, because the topology of the
skeleton is uncertain, whereas the topology of the anatomical
centerline is known. In general, the centerline starts and
ends at boundary points. Taking the CC as an example, its
centerline should be a curve that starts at the anterior pole of
the rostrum and ends at the posterior pole of the splenium.
Therefore, centerline extraction cannot completely depend
on the techniques of skeletonization. However, the idea can
be applied to extraction of the callosal centerline. Most pre-
vious centerline-based studies have adopted skeletonization
techniques to extract the main part of the centerline and
apply curve fitting after labeling the endpoints to obtain the
centerline.

To date, diversified approaches have been proposed to
extract the skeleton from an image. These approaches can be
mainly classified into three categories: distance transforma-
tion based [15–19], Voronoi diagram based [20], and thinning
based [21]. The distance transform computes the minimum
distance of each pixel to the shape boundary. However, the
distance transform is very sensitive to small perturbations
of the boundary, as each value of the shape is assigned
according to a single boundary point (the nearest point).
The skeletons obtained by the distance transform require a
pruning stage if the boundary is noisy [22]. To overcome the
limitations of the distance transform, several smooth medial
functions have been introduced based on Newton’s law [23],
electrostatic field [24], and Poisson’s equation [25]. These
methods consider several boundary points and therefore
better reflect the global properties of the shape than does
the distance transform. Thinning based methods involve
a morphological operation that is used to remove object
boundary pixels from binary images iteratively with a set
of conditions, somewhat like erosion or gradual opening.
Complex conditions are required to terminate this process
and to preserve the topology and connectivity of the skeleton.
In the Voronoi diagram-based approaches, the skeleton is
extracted from a Voronoi diagram derived from the object
boundaries. Existing skeletonization techniques suffer from
at least one of the following shortcomings: dependence on the
accuracy of determining themedial axis, computational com-
plexity, lack of robustness, connectivity, spurious branches,
or sensitivity to boundary noise. Therefore, the centerline
cannot be precisely obtained through skeletonization alone.

Localization of the anterior and posterior endpoints is
another issue.The anterior and posterior endpoints are at the
anterior and posterior poles of the CC, respectively, as shown
in Figure 1. In general, the skeleton extraction methods
cannot localize these two points, because they are not part
of the skeleton according to the definition of a skeleton. The
endpoint at the anterior pole of the rostrum (see Figure 1)
is usually associated with a local maximum curvature of the
callosal boundary [4, 5, 7]. Owing to the existence of noise on
the boundary, it is not easy to locate it uniquely using state-
of-the-art corner detection methods. As for the posterior
endpoint, the problem is even more complicated, because
the geometric features around it are not obvious, and there
is no sharp tip in the splenium as exists in the rostrum. In
addition, anatomical variabilitymakes it more complicated to
locate the posterior endpoint.Thompson et al. [8] selected the

rostrum splenium

anterior posterior

Figure 1: Endpoints (centers of the red circles) of the CC in a mid-
sagittal MR image.

lowest points of the genu and splenium as the endpoints. In
[11], the endpoints of the CC were determined by extending
the centerline to the boundary. Owing to the inconsistent
criteria for locating the endpoints, the results of these studies
may also be inconsistent. To the best of our knowledge, there
is no effective method that localizes these two endpoints.

Centerline-based shape analysis has been widely used in
CC.Most research has adopted themethod of skeletonization
to extract the centerline. However, there are few works on
the evaluation and validation of these centerline extraction
techniques, which poses a rather serious challenge when
interpreting their results. In this paper, we propose a method
for the callosal centerline extraction from segmented mid-
sagittal MR images. The main contributions of this paper are
as follows. First, a method of model-based point detection
is proposed to localize the callosal endpoints. A model for
each endpoint is generated using statistical shape context
as the descriptor under a local coordinate system, in which
point detection is robust to boundary noise and is rotation
invariant (to a certain extent). Then, active contour model
(ACM) based curve evolution with two fixed endpoints
is applied to approximate the centerline, which guarantees
the topology of the obtained centerline and tolerates the
influence of boundary noise. Experiments with 80 segmented
mid-sagittal MR images were performed to evaluate the
effectiveness of the proposed method.

2. Methods

2.1. Automatic Localization of the Endpoints. To automati-
cally localize the two endpoints, a statistical model-based
point detection method is proposed, which consists of two
steps: model construction and point localization.

2.1.1. Model Construction. The statistical models of the end-
points are generated using shape context [26], which is a
robust, compact, and highly discriminative descriptor widely
used in shape matching. The shape context of a point of
interest is a measure of the distribution of other points in
the shape relative to it under the log-polar coordinate system.
Given a point 𝑝, the shape context of 𝑝 is defined as a coarse
histogramof the relative polar coordinates of the other points,
written as

ℎ (𝑚, 𝑛) = # {𝑞 ̸= 𝑝 : (𝑞 − 𝑝) ∈ bin (𝑚, 𝑛)} (1)
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Figure 2: Shape context computation. (a) Contour of CC (black) and three boundary points marked by the centers of circles (blue). (b)
Diagram of log-polar bins used in computing the shape contexts under the local log-polar coordinate system (10 bins for log 𝑟 coordinate and
15 bins for angular coordinate in this work). (c–e) Histogram maps of three points marked in (a).

where 𝑞 denotes the other points of the shape and ℎ(𝑚, 𝑛)
is a normalized 𝑀 × 𝑁 bins histogram in log-polar space
at 𝑝. Each bin indicates the proportion of the points in this
region with respect to the total adjacent points of 𝑝. Figure 2
illustrates the process of computing the shape context.

It is easy to make the shape context scale invariant, but
we cannot guarantee rotation invariance by referring to the
image coordinate system owing to different scanning direc-
tions and the existence of individual variability. Some meth-
ods obtain the shape contextwith respect to the tangent direc-
tion at the point, which may lose orientation information
of the point and cause the shape context to be less sensitive
when distinguishing similar boundary points. Alternatively,
two local Cartesian coordinate systems with respect to the
rostrum and splenium are defined for the computation of the
two endpoints’ shape contexts. Given a segmented CC, its
bounding rectangle and major and minor axes are extracted
using the method proposed by Chaudhuri and Samal [27].
Then, the CC is automatically divided into five subregions
according to a modification of the Witelson partitioning
scheme [28, 29]. Four radial dividers emanate from the
midpoint of the inferior side of the bounding rectangle with
equal angular interval and divide the CC into five subregions,
i.e., the rostrum and genu (denoted as CC1), the rostral
body (denoted as CC2), the mid-body (denoted as CC3),

Figure 3: Subregions of CC. Red: rostrum and genu (CC1), green:
rostral body (CC2), blue: mid-body (CC3), pink: isthmus (CC4),
and yellow: splenium (CC5).

the isthmus (denoted as CC4), and the splenium (denoted
as CC5) (see Figure 3). The log-polar coordinate system is
defined on CC1 (and CC5) with its origin at the mass center
of CC1 (and CC5) and radial axis parallel to the major axis of
CC1 (and CC5) from anterior to posterior (see Figure 2(b)).
The radial coordinate is divided by the height of the bounding
rectangle of the CC for normalization, which guarantees
scale invariance of the shape context.

Results may be biased if the endpoint with its shape con-
text is derived from only one individual’s CC. Therefore, we
create a statistical model using the mean shape context as the
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descriptor. Suppose there are 𝐾 samples (i.e., segmented CC
images) in the training sets. Two raters are asked to label the
endpoints by mutual agreement. Then, the shape context of
each sample (denoted as ℎ𝑘) is calculated according to (1)
and all shapes are aligned with respect to a local log-polar
coordinate system. The mean shape context (denoted as ℎ) is
then written as

ℎ (𝑚, 𝑛) = 1
𝐾
𝐾∑
𝑘=1

ℎ𝑖 (𝑚, 𝑛) (2)

Here, a statistical model is created and used to detect the
endpoint by matching the model with the shape contexts of
the candidate points.

2.1.2. Point Localization. Given a segmentedCC,𝑝𝑗 denotes a
candidate point on the boundary. The process of locating the
endpoints is to find a boundary point whose shape context is
most similar to themodel. As the shape context is represented
as a histogram, the similarity is measured as the sum of the
difference of two histograms according to

𝑝∗ = arg min
𝑝𝑗

∑
𝑚

∑
𝑛

󵄨󵄨󵄨󵄨󵄨ℎ (𝑚, 𝑛) − ℎ𝑗 (𝑚, 𝑛)󵄨󵄨󵄨󵄨󵄨 (3)

Here, ℎ𝑗(𝑚, 𝑛) is the shape context of 𝑝𝑗 and ℎ(𝑚, 𝑛) is the
statistical model obtained from (2).

2.2. Active Contour Based Centerline Extraction. The invisible
CC centerline is approximated using the ACM proposed by
Kass et al. [30]. The advantage of ACM is that the topology
of the curve can be preserved during its evolution, which
means that spurious branches can be avoided. To allow the
curve to approximate the invisible centerline of the CC,
the representation of the centerline should be introduced in
advance.

2.2.1. Representation of the Centerline. The centerline is
depicted implicitly using a distance map [31], which labels
each pixel with the distance to the nearest boundary pixel. If a
pixel in the CC is labeled with a maximum distance, it means
that this pixel is far from the boundary and in the center
of the CC. Therefore, this pixel may be on the centerline.
Let 𝑂 denote the segmented CC region, and 𝜕𝑂 denote the
boundary of 𝑂. We refer to 𝑑(𝑝, 𝑞) as the Euclidean distance
between two pixels 𝑝 and 𝑞. The distance map in the CC is
defined as

𝐷𝑂 (𝑝) = {{{
min
∀𝑞∈𝜕𝑂

𝑑 (𝑝, 𝑞) 𝑝 ∈ 𝑂
0 𝑝 ∉ 𝑂 (4)

2.2.2. Evolution of the Curve. To fit the centerline usingACM,
a curve x(𝑠) = [𝑥(𝑠), 𝑦(𝑠)], 𝑠 ∈ [0, 1]moves within the spatial
domain of the distance map by minimizing the following
energy function:

𝐸 = ∫1
0

1
2 (𝛼 󵄨󵄨󵄨󵄨󵄨x󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨2 + 𝛽 |x" (𝑠)|2 + 𝐸𝑒𝑥𝑡 (x (𝑠))) 𝑑𝑠 (5)

where 𝛼 and 𝛽 are weighting parameters that control the
curve’s tension and rigidity, respectively, and x󸀠(𝑠) and x"(𝑠)
denote the first and second derivatives of x(𝑠) with respect
to 𝑠. The external energy 𝐸𝑒𝑥𝑡 is a function derived from the
distance map of the CC and is responsible for driving the
curve to the maximum distance region where the centerline
is located. The formulation of 𝐸𝑒𝑥𝑡 is

𝐸𝑒𝑥𝑡 = 2
(1 − 𝑒|𝐷(x(𝑠))|) |∇𝐷 (x (𝑠))| (6)

where 𝐷 is the normalized distance map. The gradient flow∇𝐷(x(𝑠)) moves the curve toward to the centerline. The
coefficient 2/(1 − 𝑒|𝐷(x(𝑠))|) is used to modulate the force of
the gradient flow of the distance map. When x(𝑠) is near the
boundary (or center) of the CC, the coefficient is close to 1.0
(or 0.0), and the external energy is increased (or decreased).
This guarantees that the curve approximates the centerline
more stably.

The model is initialized with a spline curve starting
at the anterior endpoint, ending at the posterior endpoint,
and passing through four control points in the CC. These
four control points are on the four radial lines shown in
Figure 3 (the maximum distance points). Then, a spline
curve is interpolated with nearly equal distance intervals
for initialization of the model. During the evolution of the
curve, the endpoints of the curve are fixed at the detected
endpoints.

3. Experiments and Results

The proposed method was implemented using the C++
language. The experiments were performed on an HP work-
station with Intel Xeon CPU (E5540@ dual-core, 2.53 GHz)
and 8 GB RAM. In the experiments, the weighted coefficients𝛼 and 𝛽 in (5) were empirically set to 0.1 and 0.5, respec-
tively.

To compare our method with existing methods, a
skeletonization method and an interactive method were
implemented. The skeletonization method (pfSkel-1.2.1.1)
proposed by Chuang et al. [32] is publicly available (http://
coewww.rutgers.edu/www2/vizlab/NicuCornea/Skeletaniza-
tion/skeletanization.html).pfSkel mainly consists of four
steps. First, a 2D vector field in the segmented CC is
calculated with respect to the boundary pixels. Second, the
critical points of the vector field are detected as the core
skeleton. Third, the first level skeleton is generated from the
divergence of the vector field. Last and fourth, the second
level skeleton is derived by connecting the boundary pixel
with a certain percentage of curvature value to the core and
first level skeleton. The interactive method is based on the
pfSkel method and consists of three steps. First, the skeleton
is extracted from the segmented CC. Then, the anterior
and posterior endpoints are labeled manually. Finally, the
centerline is obtained with a cubic spline connecting the
endpoints and fitting the skeleton. For clarity, pfSkel is
denoted as SKEL1 (which only generates the first level
skeleton) and SKEL2 (which generates the first level plus
second level skeletons). The interactive method and our
method are denoted as CLM and CLA, respectively.

http://coewww.rutgers.edu/www2/vizlab/NicuCornea/Skeletanization/skeletanization.html
http://coewww.rutgers.edu/www2/vizlab/NicuCornea/Skeletanization/skeletanization.html
http://coewww.rutgers.edu/www2/vizlab/NicuCornea/Skeletanization/skeletanization.html
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3.1. Data and Preprocessing. The data sets for evaluating the
presented method contain high-resolution T1-weighted MR
brain volumes of 80 subjects, including 50 healthy controls
and 30 patients with various pathologies (infarctions); subject
ages range from 12 to 60 years. The volume size varies from
192×256×256 to 256×181×256 voxels. The voxel size ranges
from 0.897 mm to 1 mm in the sagittal plane, from 0.879 mm
to 1.25mm in the coronal plane, and from 0.67mm to 1.5 mm
in the axial directions.

The CC in the mid-sagittal plane was segmented with
our self-developed software applying the following steps: (1)
resampling each volume to make it isotropic; (2) extracting
themid-sagittalMR image using themethod proposed byHu
and Nowinski [33]; (3) Binarizing the mid-sagittal MR image
with upper and lower thresholds determined using Gaussian
mixturemodeling [34]; (4) extracting the bounding rectangle
of each region and calculating geometric parameters (such as
length and width) using the method proposed by Chaudhrui
and Samal [27]; (5) selecting the CC region according to its
anatomic characteristics: (a) length (from the anterior point
to posterior point) of 7 to 9 cm, (b) width (from the superior
point to the inferior point) of 2 to 4 cm, (c) orientation (angle
of the major axis with respect to the horizontal axis) from
5∘ to 40∘, and (d) area > 2 cm2; and (6) manually rectifying
any mis-segmentation or oversegmentation by two raters in
mutual agreement. After the segmentation, the centerline
endpoints were manually identified on the boundary of the
CC by two experts according to their anatomical knowledge
after mutual agreement.

3.2. Accuracy of Endpoint Localization. To validate the accu-
racy of the presented endpoint localizationmethod, statistical
models were generated with 15 samples in the datasets using
the method described in Section 2.1.1. Then, the statistical
models were used to localize the endpoints in the other 65
samples in the datasets. The endpoint localization error is
measured as the distance between the detected point and the
manually labeled point. The endpoint localization error was
0.85±0.12 mm in this case.

3.3. Qualitative (Visual) Evaluation. We present the results of
SKEL1, SKEL2, CLM, and CLA to illustrate the difference in
the centerline extraction in Figure 4. The top row illustrates
the mid-sagittal MR images. Owing to the existence of inter-
subject variability, the shape of the CC varies significantly
among the eight subjects. The results of SKEL1 are shown
in the second row. The skeletons are not continuous and
do not start and end at the anterior and posterior poles of
the CC (see Figures 4(c) and 4(g)). The third row illustrates
the results of SKEL2, in which the percentage was set to
0.001 experimentally. It generates fewer branches and more
skeletons near the centerline. Even though the parameter has
been adjusted to reduce the number of branches, there are still
some spurious branches present (see Figures 4(b), 4(d), 4(e),
4(g), and 4(h)). The fourth row demonstrates the centerline
extracted by an experienced and well-trained rater with the
interactivemethod.The bottom row exhibits the results of the
proposed method. The extracted centerlines are continuous

curves connecting the anterior pole to the posterior pole and
are centered in the region of the CC.

3.4. Quantitative Evaluation. The centerline is a geometric
feature of a shape and is essentially invisible to the naked
eye. Given a segmented CC, no radiologist or anatomist can
manually delineate a centerline as the ground truth. Hence,
it is difficult to validate the accuracy of the proposed method
straightforwardly. In this paper, we adopted a technique used
in assessing skeletonization results as proposed by Direkoglu
et al. [35].

Suppose a point set 𝑃 represents the extracted centerline.
According to the definition of the centerline, a point 𝑝 on the
centerline must be the center of a maximum disk inscribed in
the CC’s shape. Let 𝑟max(𝑝) denote the radius of the maximal
disk 𝐵(𝑠, 𝑟(𝑝)) centered at the point 𝑝. The reconstruction of
the CC region is given by

𝑅 (𝑃) = ⋃
𝑝∈𝑃

𝐵 (𝑠, 𝑟 (𝑝)) (7)

where𝑅(𝑃) is the reconstructed CC region.The quality of the
extracted centerline is evaluated using a reconstruction error
rate (RER) between the reconstructed and the segmented
regions of the CC, which is calculated as follows:

𝑅𝐸𝑅 = 𝐴 (𝑂) − 𝐴 (𝑅 (𝑃))
𝐴 (𝑂) (8)

where 𝐴(∗) is a function used to calculate the area measured
in pixels. 𝑂 and 𝑅 represent the images that contain the
segmented and reconstructed regions of the CC, respectively.

We reconstructed the regions of the CC using the center-
lines obtained by SKEL1, SKEL2, CLM, andCLA, respectively.
RER is calculated using (8). Figure 5 shows the RERs of
SKEL1, SKEL2, CLM, and CLA. The mean and standard
deviation of the RERs of CLA, SKEL1, SKEL2, and CLM
are 0.12±0.01, 0.24±0.08, 0.15±0.04, and 0.14±0.02, respec-
tively.The presentedmethod outperforms the skeletonization
methods (SKEL1 and SKEL2) and is comparable with or even
better than CLM in terms of the RER.

3.5. Reproducibility Evaluation. To compare the presented
method with CLM in terms of reproducibility, we randomly
selected 10 samples in the dataset. For each sample, we
extracted the centerline 10 times with the presented method
and CLM, respectively. Five knowledgeable raters were asked
to extract the centerline of each case with CLM once per day
to guarantee that the raters were not influenced by previous
results. Then, we obtained two groups of centerlines, i.e.,
one group with our method and another one with CLM.
In each group, the distance between any two centerlines
was calculated, and the mean distance was denoted as the
reproducibility error.

Owing to the discretization of the centerline, the distance
between two centerlines is measured as the distance between
two point sets representing the centerlines. Given two center-
line point sets 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑀} and 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑁},
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Figure 4: Results (red curves) for eight mid-sagittal MR images. Top row: mid-sagittal MR images, second row: results of SKEL1, third row:
results of SKEL2, fourth row: results of CLM, and bottom row: results of CLA.
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Figure 5: Boxplot chart of the RERs of SKEL1, SKEL2, CLA, and
CLM.

Table 1: Reproducibility errors of CLM (unit: mm).

Mean SD. Max Min
Sample 1 0.012 0.003 0.034 0.002
Sample 2 0.023 0.009 0.067 0.001
Sample 3 0.071 0.010 0.106 0.015
Sample 4 0.044 0.009 0.082 0.009
Sample 5 0.042 0.007 0.067 0.014
Sample 6 0.072 0.014 0.139 0.021
Sample 7 0.119 0.015 0.214 0.039
Sample 8 0.072 0.089 0.113 0.025
Sample 9 0.063 0.009 0.106 0.021
Sample 10 0.066 0.008 0.103 0.030

the mean distance between them using Euclidean distance
is

𝑑 (𝑃, 𝑄) = 1
2 [
[

1
𝑀
𝑀∑
𝑖=1

min
𝑗=1,2,...,𝑁

󵄩󵄩󵄩󵄩󵄩𝑝𝑖 − 𝑞𝑗󵄩󵄩󵄩󵄩󵄩

+ 1
𝑁
𝑁∑
𝑗=1

min
𝑖=1,2,...,𝑁

󵄩󵄩󵄩󵄩󵄩𝑝𝑖 − 𝑞𝑗󵄩󵄩󵄩󵄩󵄩]]

(9)

There was no reproducibility error with our method and
an average reproducibility error of 0.047±0.003 mm with
CLM. Table 1 shows the results of CLM in detail.

4. Discussion

The corpus callosum plays an important role in the com-
munication between the left and right cerebrums. Due to its
essential role, its dysfunction may cause various neuropsy-
chological or neuropathological diseases, while the progres-
sion of these diseases may also cause it to physically change

shape and/or thickness. MRI-based morphology analysis of
the CC has become an effective technique to investigate the
variation of the CC in relation to these diseases in vivo. Most
studies are based on areameasurement [2, 13].Thesemethods
can only detect the whole body change of the CC, which
cannot describe the shape change in detail, and their findings
are not sensitive or discriminative to specific diseases. To
reduce this limitation, some researchers proposed measuring
the area of the CC’s subregions, which are obtained according
to its geometric features [1, 12]. There are several rules to
divide the CC [29, 36–38].More recent studies based on these
schemes have generated controversial results concerning the
assumed topography of the callosal fiber tracts. Recently,
several groups have focused on centerline-based analysis of
the CC [3–5, 10], which is a promising way to investigate
the variation of the CC in relation to specific diseases. The
centerline, as a compact representation of the CC’s shape,
can be used to measure the thickness of the CC and the
curvature at any centerline point; these descriptors provide
comprehensive information regarding the CC’s shape. In
addition, the correspondence information among samples
can be achieved easily, which facilitates population-based
analysis, also known as centerline-basedmorphological anal-
ysis.

The presented method consists of two steps: automatic
localization of the endpoints and ACM-based centerline
extraction. There are three advantages to the presented
method. First, the endpoint localization method is robust
to boundary noise in comparison with methods based on
curvature because the statistical shape context as a descriptor
of local shape features can avoid the disturbances caused
by noise. Second, the endpoints localization method is
scale invariant due to normalization of the shape context.
In addition, the endpoints localization method is rotation
invariant to some extent. This is owing to the adoption of
the local coordinate system, which makes our method robust
to the rotation derived from not only the scanning direction
but also individual variability in the CCs of different people.
Despite the CC inclining forward and backward with respect
to the horizontal line in Figures 4(b) and 4(f), our method
can localize the endpoints accurately. The shape context is
calculated with 15 bins in (1) (see Figure 2). In theory, the
presented method can accommodate an angle between the
model and the sample if less than 24∘ (= 360∘/15). Figures
4(d) and 4(e) show the case for different angles between the
rostrum and the body owing to the existence of intersubject
variability. Finally, our method preserves topology by utiliz-
ing ACM to fit the centerline: a smooth centerline with no
branches is obtained. In contrast, it is difficult to control the
topology of the centerline using skeletonization.There is also
no gap in the extracted centerline using our method, while
gaps may exist in the skeletonization centerline (see Figures
4(c) and 4(g)).

The presented method has a lower RER in comparison
with SKEL1, SKEL2, and CLM. This contributes to an auto-
matic, accurate, and robustmethod for locating the endpoints
and reproducing the centerline using ACM-based curve
evolution. However, the recovery error cannot reach zero due
to the irregular shape of any CC. In terms of reproducibility,



8 Computational and Mathematical Methods in Medicine

the presented method has a higher accuracy in comparison
with CLMbecause the endpoints localizationmethod ismore
consistent in contrast to manual labeling by raters’ subjective
analysis.

The accuracy of the endpoint localization will affect that
of the centerline extraction. However, the influence is limited
owing to the movement of the curve in ACM mainly driven
by the gradient flow of the distance map. The endpoint
localization error merely interferes in the curve’s behavior
near the endpoints. The movement of the curve’s main body
is still under the supervision of the gradient flow. Moreover,
the proposed method presents high accuracy (0.85±0.12mm)
and robustness (see Figure 4) in the endpoint localization.

The prerequisite of the presented method is that the
CC should be segmented from a mid-sagittal MR image in
advance. To date, there are several techniques available to
extract the mid-sagittal MR image automatically [33, 39–41]
and various methods to delineate the corpus callosum, such
as mathematical morphology-based methods [42], cluster-
based methods [43, 44], deformable mode-based methods
[45], tractography-based methods [46, 47], and template-
based methods [48]. Any of these methods can be integrated
into the presented method for convenience.

5. Conclusions

The centerline of the CC can depict the CC’s shape variation
in more detail when compared to size or area measurements.
In this paper, we proposed a method of automatic extrac-
tion of the callosal centerline. The anterior and posterior
endpoints are localized using statistical model-based point
matching, which is robust to boundary noise and is rotation
invariant to a certain extent. The centerline is fitted using the
active contour model driven by a gradient of the distance
map to produce an implicit representation of the centerline.
Experiments with segmented MR images were performed
to validate this method and the results indicate that our
method outperforms skeletonization and is comparable with
and sometimes better than the interactive method.

In the future, neurological or neuropathological diseases
related to changes in the corpus callosum can be analyzed
with centerline-based measurements, such as variation of
thickness and curvature.
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V. L. Gil Da Silva Lopes, “Angular analysis of corpus callosum
in 18 patients with frontonasal dysplasia,” Arquivos de Neuro-
Psiquiatria, vol. 62, no. 2 A, pp. 195–198, 2004.

[10] A. Elnakib, M. F. Casanova, G. Gimelrfarb, A. E. Switala, and
A. El-Baz, “Dyslexia diagnostics by 3-D shape analysis of the
corpus callosum,” IEEE Transactions on Information Technology
in Biomedicine, vol. 16, no. 4, pp. 700–708, 2012.

[11] M. A. McNally, D. Crocetti, E. M. Mahone, M. B. Denckla, S.
J. Suskauer, and S. H. Mostofsky, “Corpus callosum segment
circumference is associated with response control in children
with attention-deficit hyperactivity disorder (ADHD),” Journal
of Child Neurology, vol. 25, no. 4, pp. 453–462, 2010.

[12] M. Zhu, W. Gao, X. Wang, C. Shi, and Z. Lin, “Progression of
Corpus Callosum Atrophy in Early Stage of Alzheimer’s Dis-
ease. MRI Based Study,” Academic Radiology, vol. 19, no. 5, pp.
512–517, 2012.

[13] M. Zhu, X. Wang, W. Gao et al., “Corpus callosum atrophy
and cognitive decline in early Alzheimer’s disease: Longitudinal
MRI study,”Dementia and Geriatric Cognitive Disorders, vol. 37,
no. 3-4, pp. 214–222, 2014.

[14] A. Lieutier, “Any open bounded subset of Rn has the same
homotopy type than its Medial Axis,” in Proceedings of the
Eighth ACM Symposium on SolidModeling and Applications, pp.
65–75, usa, June 2003.



Computational and Mathematical Methods in Medicine 9

[15] C. Arcelli and G. Sanniti di Baja, “Ridge points in Euclidean
distance maps,” Pattern Recognition Letters, vol. 13, no. 4, pp.
237–243, 1992.

[16] R. Kimmel, D. Shaked, N. Kiryati, and A. M. Bruckstein,
“Skeletonization via Distance Maps and Level Sets,” Computer
Vision and Image Understanding, vol. 62, no. 3, pp. 382–391,
1995.

[17] G. Malandain and S. Fernández-Vidal, “Euclidean skeletons,”
Image and Vision Computing, vol. 16, no. 5, pp. 317–327, 1998.

[18] W. H. Hesselink and J. B. T. M. Roerdink, “Euclidean skeletons
of digital image and volume data in linear time by the integer
medial axis transform,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 30, no. 12, pp. 2204–2217, 2008.

[19] A. D. Ward and G. Hamarneh, “The groupwise medial axis
transform for fuzzy skeletonization and pruning,” IEEE Trans-
actions on Pattern Analysis andMachine Intelligence, vol. 32, no.
6, pp. 1084–1096, 2010.
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